reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
//===- MCSubtargetInfo.cpp - Subtarget Information ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstring>

using namespace llvm;

/// Find KV in array using binary search.
template <typename T>
static const T *Find(StringRef S, ArrayRef<T> A) {
  // Binary search the array
  auto F = llvm::lower_bound(A, S);
  // If not found then return NULL
  if (F == A.end() || StringRef(F->Key) != S) return nullptr;
  // Return the found array item
  return F;
}

/// For each feature that is (transitively) implied by this feature, set it.
static
void SetImpliedBits(FeatureBitset &Bits, const FeatureBitset &Implies,
                    ArrayRef<SubtargetFeatureKV> FeatureTable) {
  // OR the Implies bits in outside the loop. This allows the Implies for CPUs
  // which might imply features not in FeatureTable to use this.
  Bits |= Implies;
  for (const SubtargetFeatureKV &FE : FeatureTable)
    if (Implies.test(FE.Value))
      SetImpliedBits(Bits, FE.Implies.getAsBitset(), FeatureTable);
}

/// For each feature that (transitively) implies this feature, clear it.
static
void ClearImpliedBits(FeatureBitset &Bits, unsigned Value,
                      ArrayRef<SubtargetFeatureKV> FeatureTable) {
  for (const SubtargetFeatureKV &FE : FeatureTable) {
    if (FE.Implies.getAsBitset().test(Value)) {
      Bits.reset(FE.Value);
      ClearImpliedBits(Bits, FE.Value, FeatureTable);
    }
  }
}

static void ApplyFeatureFlag(FeatureBitset &Bits, StringRef Feature,
                             ArrayRef<SubtargetFeatureKV> FeatureTable) {
  assert(SubtargetFeatures::hasFlag(Feature) &&
         "Feature flags should start with '+' or '-'");

  // Find feature in table.
  const SubtargetFeatureKV *FeatureEntry =
      Find(SubtargetFeatures::StripFlag(Feature), FeatureTable);
  // If there is a match
  if (FeatureEntry) {
    // Enable/disable feature in bits
    if (SubtargetFeatures::isEnabled(Feature)) {
      Bits.set(FeatureEntry->Value);

      // For each feature that this implies, set it.
      SetImpliedBits(Bits, FeatureEntry->Implies.getAsBitset(), FeatureTable);
    } else {
      Bits.reset(FeatureEntry->Value);

      // For each feature that implies this, clear it.
      ClearImpliedBits(Bits, FeatureEntry->Value, FeatureTable);
    }
  } else {
    errs() << "'" << Feature << "' is not a recognized feature for this target"
           << " (ignoring feature)\n";
  }
}

/// Return the length of the longest entry in the table.
template <typename T>
static size_t getLongestEntryLength(ArrayRef<T> Table) {
  size_t MaxLen = 0;
  for (auto &I : Table)
    MaxLen = std::max(MaxLen, std::strlen(I.Key));
  return MaxLen;
}

/// Display help for feature and mcpu choices.
static void Help(ArrayRef<SubtargetSubTypeKV> CPUTable,
                 ArrayRef<SubtargetFeatureKV> FeatTable) {
  // the static variable ensures that the help information only gets
  // printed once even though a target machine creates multiple subtargets
  static bool PrintOnce = false;
  if (PrintOnce) {
    return;
  }

  // Determine the length of the longest CPU and Feature entries.
  unsigned MaxCPULen  = getLongestEntryLength(CPUTable);
  unsigned MaxFeatLen = getLongestEntryLength(FeatTable);

  // Print the CPU table.
  errs() << "Available CPUs for this target:\n\n";
  for (auto &CPU : CPUTable)
    errs() << format("  %-*s - Select the %s processor.\n", MaxCPULen, CPU.Key,
                     CPU.Key);
  errs() << '\n';

  // Print the Feature table.
  errs() << "Available features for this target:\n\n";
  for (auto &Feature : FeatTable)
    errs() << format("  %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
  errs() << '\n';

  errs() << "Use +feature to enable a feature, or -feature to disable it.\n"
            "For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n";

  PrintOnce = true;
}

/// Display help for mcpu choices only
static void cpuHelp(ArrayRef<SubtargetSubTypeKV> CPUTable) {
  // the static variable ensures that the help information only gets
  // printed once even though a target machine creates multiple subtargets
  static bool PrintOnce = false;
  if (PrintOnce) {
    return;
  }

  // Print the CPU table.
  errs() << "Available CPUs for this target:\n\n";
  for (auto &CPU : CPUTable)
    errs() << "\t" << CPU.Key << "\n";
  errs() << '\n';

  errs() << "Use -mcpu or -mtune to specify the target's processor.\n"
            "For example, clang --target=aarch64-unknown-linux-gui "
            "-mcpu=cortex-a35\n";

  PrintOnce = true;
}

static FeatureBitset getFeatures(StringRef CPU, StringRef FS,
                                 ArrayRef<SubtargetSubTypeKV> ProcDesc,
                                 ArrayRef<SubtargetFeatureKV> ProcFeatures) {
  SubtargetFeatures Features(FS);

  if (ProcDesc.empty() || ProcFeatures.empty())
    return FeatureBitset();

  assert(std::is_sorted(std::begin(ProcDesc), std::end(ProcDesc)) &&
         "CPU table is not sorted");
  assert(std::is_sorted(std::begin(ProcFeatures), std::end(ProcFeatures)) &&
         "CPU features table is not sorted");
  // Resulting bits
  FeatureBitset Bits;

  // Check if help is needed
  if (CPU == "help")
    Help(ProcDesc, ProcFeatures);

  // Find CPU entry if CPU name is specified.
  else if (!CPU.empty()) {
    const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);

    // If there is a match
    if (CPUEntry) {
      // Set the features implied by this CPU feature, if any.
      SetImpliedBits(Bits, CPUEntry->Implies.getAsBitset(), ProcFeatures);
    } else {
      errs() << "'" << CPU << "' is not a recognized processor for this target"
             << " (ignoring processor)\n";
    }
  }

  // Iterate through each feature
  for (const std::string &Feature : Features.getFeatures()) {
    // Check for help
    if (Feature == "+help")
      Help(ProcDesc, ProcFeatures);
    else if (Feature == "+cpuHelp")
      cpuHelp(ProcDesc);
    else
      ApplyFeatureFlag(Bits, Feature, ProcFeatures);
  }

  return Bits;
}

void MCSubtargetInfo::InitMCProcessorInfo(StringRef CPU, StringRef FS) {
  FeatureBits = getFeatures(CPU, FS, ProcDesc, ProcFeatures);
  if (!CPU.empty())
    CPUSchedModel = &getSchedModelForCPU(CPU);
  else
    CPUSchedModel = &MCSchedModel::GetDefaultSchedModel();
}

void MCSubtargetInfo::setDefaultFeatures(StringRef CPU, StringRef FS) {
  FeatureBits = getFeatures(CPU, FS, ProcDesc, ProcFeatures);
}

MCSubtargetInfo::MCSubtargetInfo(
    const Triple &TT, StringRef C, StringRef FS,
    ArrayRef<SubtargetFeatureKV> PF, ArrayRef<SubtargetSubTypeKV> PD,
    const MCWriteProcResEntry *WPR,
    const MCWriteLatencyEntry *WL, const MCReadAdvanceEntry *RA,
    const InstrStage *IS, const unsigned *OC, const unsigned *FP)
    : TargetTriple(TT), CPU(C), ProcFeatures(PF), ProcDesc(PD),
      WriteProcResTable(WPR), WriteLatencyTable(WL),
      ReadAdvanceTable(RA), Stages(IS), OperandCycles(OC), ForwardingPaths(FP) {
  InitMCProcessorInfo(CPU, FS);
}

FeatureBitset MCSubtargetInfo::ToggleFeature(uint64_t FB) {
  FeatureBits.flip(FB);
  return FeatureBits;
}

FeatureBitset MCSubtargetInfo::ToggleFeature(const FeatureBitset &FB) {
  FeatureBits ^= FB;
  return FeatureBits;
}

FeatureBitset MCSubtargetInfo::SetFeatureBitsTransitively(
  const FeatureBitset &FB) {
  SetImpliedBits(FeatureBits, FB, ProcFeatures);
  return FeatureBits;
}

FeatureBitset MCSubtargetInfo::ClearFeatureBitsTransitively(
  const FeatureBitset &FB) {
  for (unsigned I = 0, E = FB.size(); I < E; I++) {
    if (FB[I]) {
      FeatureBits.reset(I);
      ClearImpliedBits(FeatureBits, I, ProcFeatures);
    }
  }
  return FeatureBits;
}

FeatureBitset MCSubtargetInfo::ToggleFeature(StringRef Feature) {
  // Find feature in table.
  const SubtargetFeatureKV *FeatureEntry =
      Find(SubtargetFeatures::StripFlag(Feature), ProcFeatures);
  // If there is a match
  if (FeatureEntry) {
    if (FeatureBits.test(FeatureEntry->Value)) {
      FeatureBits.reset(FeatureEntry->Value);
      // For each feature that implies this, clear it.
      ClearImpliedBits(FeatureBits, FeatureEntry->Value, ProcFeatures);
    } else {
      FeatureBits.set(FeatureEntry->Value);

      // For each feature that this implies, set it.
      SetImpliedBits(FeatureBits, FeatureEntry->Implies.getAsBitset(),
                     ProcFeatures);
    }
  } else {
    errs() << "'" << Feature << "' is not a recognized feature for this target"
           << " (ignoring feature)\n";
  }

  return FeatureBits;
}

FeatureBitset MCSubtargetInfo::ApplyFeatureFlag(StringRef FS) {
  ::ApplyFeatureFlag(FeatureBits, FS, ProcFeatures);
  return FeatureBits;
}

bool MCSubtargetInfo::checkFeatures(StringRef FS) const {
  SubtargetFeatures T(FS);
  FeatureBitset Set, All;
  for (std::string F : T.getFeatures()) {
    ::ApplyFeatureFlag(Set, F, ProcFeatures);
    if (F[0] == '-')
      F[0] = '+';
    ::ApplyFeatureFlag(All, F, ProcFeatures);
  }
  return (FeatureBits & All) == Set;
}

const MCSchedModel &MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const {
  assert(std::is_sorted(ProcDesc.begin(), ProcDesc.end()) &&
         "Processor machine model table is not sorted");

  // Find entry
  const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);

  if (!CPUEntry) {
    if (CPU != "help") // Don't error if the user asked for help.
      errs() << "'" << CPU
             << "' is not a recognized processor for this target"
             << " (ignoring processor)\n";
    return MCSchedModel::GetDefaultSchedModel();
  }
  assert(CPUEntry->SchedModel && "Missing processor SchedModel value");
  return *CPUEntry->SchedModel;
}

InstrItineraryData
MCSubtargetInfo::getInstrItineraryForCPU(StringRef CPU) const {
  const MCSchedModel &SchedModel = getSchedModelForCPU(CPU);
  return InstrItineraryData(SchedModel, Stages, OperandCycles, ForwardingPaths);
}

void MCSubtargetInfo::initInstrItins(InstrItineraryData &InstrItins) const {
  InstrItins = InstrItineraryData(getSchedModel(), Stages, OperandCycles,
                                  ForwardingPaths);
}

Optional<unsigned> MCSubtargetInfo::getCacheSize(unsigned Level) const {
  return Optional<unsigned>();
}

Optional<unsigned>
MCSubtargetInfo::getCacheAssociativity(unsigned Level) const {
  return Optional<unsigned>();
}

Optional<unsigned> MCSubtargetInfo::getCacheLineSize(unsigned Level) const {
  return Optional<unsigned>();
}

unsigned MCSubtargetInfo::getPrefetchDistance() const {
  return 0;
}

unsigned MCSubtargetInfo::getMaxPrefetchIterationsAhead() const {
  return UINT_MAX;
}

unsigned MCSubtargetInfo::getMinPrefetchStride() const {
  return 1;
}