1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
| //===- LazyRandomTypeCollection.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/CodeView/CodeViewError.h"
#include "llvm/DebugInfo/CodeView/RecordName.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
using namespace llvm::codeview;
static void error(Error &&EC) {
assert(!static_cast<bool>(EC));
if (EC)
consumeError(std::move(EC));
}
LazyRandomTypeCollection::LazyRandomTypeCollection(uint32_t RecordCountHint)
: LazyRandomTypeCollection(CVTypeArray(), RecordCountHint,
PartialOffsetArray()) {}
LazyRandomTypeCollection::LazyRandomTypeCollection(
const CVTypeArray &Types, uint32_t RecordCountHint,
PartialOffsetArray PartialOffsets)
: NameStorage(Allocator), Types(Types), PartialOffsets(PartialOffsets) {
Records.resize(RecordCountHint);
}
LazyRandomTypeCollection::LazyRandomTypeCollection(ArrayRef<uint8_t> Data,
uint32_t RecordCountHint)
: LazyRandomTypeCollection(RecordCountHint) {
}
LazyRandomTypeCollection::LazyRandomTypeCollection(StringRef Data,
uint32_t RecordCountHint)
: LazyRandomTypeCollection(
makeArrayRef(Data.bytes_begin(), Data.bytes_end()), RecordCountHint) {
}
LazyRandomTypeCollection::LazyRandomTypeCollection(const CVTypeArray &Types,
uint32_t NumRecords)
: LazyRandomTypeCollection(Types, NumRecords, PartialOffsetArray()) {}
void LazyRandomTypeCollection::reset(BinaryStreamReader &Reader,
uint32_t RecordCountHint) {
Count = 0;
PartialOffsets = PartialOffsetArray();
error(Reader.readArray(Types, Reader.bytesRemaining()));
// Clear and then resize, to make sure existing data gets destroyed.
Records.clear();
Records.resize(RecordCountHint);
}
void LazyRandomTypeCollection::reset(StringRef Data, uint32_t RecordCountHint) {
BinaryStreamReader Reader(Data, support::little);
reset(Reader, RecordCountHint);
}
void LazyRandomTypeCollection::reset(ArrayRef<uint8_t> Data,
uint32_t RecordCountHint) {
BinaryStreamReader Reader(Data, support::little);
reset(Reader, RecordCountHint);
}
uint32_t LazyRandomTypeCollection::getOffsetOfType(TypeIndex Index) {
error(ensureTypeExists(Index));
assert(contains(Index));
return Records[Index.toArrayIndex()].Offset;
}
CVType LazyRandomTypeCollection::getType(TypeIndex Index) {
assert(!Index.isSimple());
auto EC = ensureTypeExists(Index);
error(std::move(EC));
assert(contains(Index));
return Records[Index.toArrayIndex()].Type;
}
Optional<CVType> LazyRandomTypeCollection::tryGetType(TypeIndex Index) {
if (Index.isSimple())
return None;
if (auto EC = ensureTypeExists(Index)) {
consumeError(std::move(EC));
return None;
}
assert(contains(Index));
return Records[Index.toArrayIndex()].Type;
}
StringRef LazyRandomTypeCollection::getTypeName(TypeIndex Index) {
if (Index.isNoneType() || Index.isSimple())
return TypeIndex::simpleTypeName(Index);
// Try to make sure the type exists. Even if it doesn't though, it may be
// because we're dumping a symbol stream with no corresponding type stream
// present, in which case we still want to be able to print <unknown UDT>
// for the type names.
if (auto EC = ensureTypeExists(Index)) {
consumeError(std::move(EC));
return "<unknown UDT>";
}
uint32_t I = Index.toArrayIndex();
ensureCapacityFor(Index);
if (Records[I].Name.data() == nullptr) {
StringRef Result = NameStorage.save(computeTypeName(*this, Index));
Records[I].Name = Result;
}
return Records[I].Name;
}
bool LazyRandomTypeCollection::contains(TypeIndex Index) {
if (Index.isSimple() || Index.isNoneType())
return false;
if (Records.size() <= Index.toArrayIndex())
return false;
if (!Records[Index.toArrayIndex()].Type.valid())
return false;
return true;
}
uint32_t LazyRandomTypeCollection::size() { return Count; }
uint32_t LazyRandomTypeCollection::capacity() { return Records.size(); }
Error LazyRandomTypeCollection::ensureTypeExists(TypeIndex TI) {
if (contains(TI))
return Error::success();
return visitRangeForType(TI);
}
void LazyRandomTypeCollection::ensureCapacityFor(TypeIndex Index) {
assert(!Index.isSimple());
uint32_t MinSize = Index.toArrayIndex() + 1;
if (MinSize <= capacity())
return;
uint32_t NewCapacity = MinSize * 3 / 2;
assert(NewCapacity > capacity());
Records.resize(NewCapacity);
}
Error LazyRandomTypeCollection::visitRangeForType(TypeIndex TI) {
assert(!TI.isSimple());
if (PartialOffsets.empty())
return fullScanForType(TI);
auto Next = std::upper_bound(PartialOffsets.begin(), PartialOffsets.end(), TI,
[](TypeIndex Value, const TypeIndexOffset &IO) {
return Value < IO.Type;
});
assert(Next != PartialOffsets.begin());
auto Prev = std::prev(Next);
TypeIndex TIB = Prev->Type;
if (contains(TIB)) {
// They've asked us to fetch a type index, but the entry we found in the
// partial offsets array has already been visited. Since we visit an entire
// block every time, that means this record should have been previously
// discovered. Ultimately, this means this is a request for a non-existant
// type index.
return make_error<CodeViewError>("Invalid type index");
}
TypeIndex TIE;
if (Next == PartialOffsets.end()) {
TIE = TypeIndex::fromArrayIndex(capacity());
} else {
TIE = Next->Type;
}
visitRange(TIB, Prev->Offset, TIE);
return Error::success();
}
Optional<TypeIndex> LazyRandomTypeCollection::getFirst() {
TypeIndex TI = TypeIndex::fromArrayIndex(0);
if (auto EC = ensureTypeExists(TI)) {
consumeError(std::move(EC));
return None;
}
return TI;
}
Optional<TypeIndex> LazyRandomTypeCollection::getNext(TypeIndex Prev) {
// We can't be sure how long this type stream is, given that the initial count
// given to the constructor is just a hint. So just try to make sure the next
// record exists, and if anything goes wrong, we must be at the end.
if (auto EC = ensureTypeExists(Prev + 1)) {
consumeError(std::move(EC));
return None;
}
return Prev + 1;
}
Error LazyRandomTypeCollection::fullScanForType(TypeIndex TI) {
assert(!TI.isSimple());
assert(PartialOffsets.empty());
TypeIndex CurrentTI = TypeIndex::fromArrayIndex(0);
auto Begin = Types.begin();
if (Count > 0) {
// In the case of type streams which we don't know the number of records of,
// it's possible to search for a type index triggering a full scan, but then
// later additional records are added since we didn't know how many there
// would be until we did a full visitation, then you try to access the new
// type triggering another full scan. To avoid this, we assume that if the
// database has some records, this must be what's going on. We can also
// assume that this index must be larger than the largest type index we've
// visited, so we start from there and scan forward.
uint32_t Offset = Records[LargestTypeIndex.toArrayIndex()].Offset;
CurrentTI = LargestTypeIndex + 1;
Begin = Types.at(Offset);
++Begin;
}
auto End = Types.end();
while (Begin != End) {
ensureCapacityFor(CurrentTI);
LargestTypeIndex = std::max(LargestTypeIndex, CurrentTI);
auto Idx = CurrentTI.toArrayIndex();
Records[Idx].Type = *Begin;
Records[Idx].Offset = Begin.offset();
++Count;
++Begin;
++CurrentTI;
}
if (CurrentTI <= TI) {
return make_error<CodeViewError>("Type Index does not exist!");
}
return Error::success();
}
void LazyRandomTypeCollection::visitRange(TypeIndex Begin, uint32_t BeginOffset,
TypeIndex End) {
auto RI = Types.at(BeginOffset);
assert(RI != Types.end());
ensureCapacityFor(End);
while (Begin != End) {
LargestTypeIndex = std::max(LargestTypeIndex, Begin);
auto Idx = Begin.toArrayIndex();
Records[Idx].Type = *RI;
Records[Idx].Offset = RI.offset();
++Count;
++Begin;
++RI;
}
}
|