reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===------------------
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"

#define DEBUG_TYPE "gisel-known-bits"

using namespace llvm;

char llvm::GISelKnownBitsAnalysis::ID = 0;

INITIALIZE_PASS_BEGIN(GISelKnownBitsAnalysis, DEBUG_TYPE,
                      "Analysis for ComputingKnownBits", false, true)
INITIALIZE_PASS_END(GISelKnownBitsAnalysis, DEBUG_TYPE,
                    "Analysis for ComputingKnownBits", false, true)

GISelKnownBits::GISelKnownBits(MachineFunction &MF)
    : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
      DL(MF.getFunction().getParent()->getDataLayout()) {}

Align GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset,
                                                const MachineFunction &MF) {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  return commonAlignment(Align(MFI.getObjectAlignment(FrameIdx)), Offset);
  // TODO: How to handle cases with Base + Offset?
}

MaybeAlign GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) {
  if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
    int FrameIdx = MI.getOperand(1).getIndex();
    return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF());
  }
  return None;
}

void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known,
                                                   const APInt &DemandedElts,
                                                   unsigned Depth) {
  const MachineInstr &MI = *MRI.getVRegDef(R);
  computeKnownBitsForAlignment(Known, inferPtrAlignment(MI));
}

void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known,
                                                  MaybeAlign Alignment) {
  if (Alignment)
    // The low bits are known zero if the pointer is aligned.
    Known.Zero.setLowBits(Log2(Alignment));
}

KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
  return getKnownBits(MI.getOperand(0).getReg());
}

KnownBits GISelKnownBits::getKnownBits(Register R) {
  KnownBits Known;
  LLT Ty = MRI.getType(R);
  APInt DemandedElts =
      Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
  computeKnownBitsImpl(R, Known, DemandedElts);
  return Known;
}

bool GISelKnownBits::signBitIsZero(Register R) {
  LLT Ty = MRI.getType(R);
  unsigned BitWidth = Ty.getScalarSizeInBits();
  return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}

APInt GISelKnownBits::getKnownZeroes(Register R) {
  return getKnownBits(R).Zero;
}

APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }

void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
                                          const APInt &DemandedElts,
                                          unsigned Depth) {
  MachineInstr &MI = *MRI.getVRegDef(R);
  unsigned Opcode = MI.getOpcode();
  LLT DstTy = MRI.getType(R);

  // Handle the case where this is called on a register that does not have a
  // type constraint (i.e. it has a register class constraint instead). This is
  // unlikely to occur except by looking through copies but it is possible for
  // the initial register being queried to be in this state.
  if (!DstTy.isValid()) {
    Known = KnownBits();
    return;
  }

  unsigned BitWidth = DstTy.getSizeInBits();
  Known = KnownBits(BitWidth); // Don't know anything

  if (DstTy.isVector())
    return; // TODO: Handle vectors.

  if (Depth == getMaxDepth())
    return;

  if (!DemandedElts)
    return; // No demanded elts, better to assume we don't know anything.

  KnownBits Known2;

  switch (Opcode) {
  default:
    TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
                                      Depth);
    break;
  case TargetOpcode::COPY: {
    MachineOperand Dst = MI.getOperand(0);
    MachineOperand Src = MI.getOperand(1);
    // Look through trivial copies but don't look through trivial copies of the
    // form `%1:(s32) = OP %0:gpr32` known-bits analysis is currently unable to
    // determine the bit width of a register class.
    //
    // We can't use NoSubRegister by name as it's defined by each target but
    // it's always defined to be 0 by tablegen.
    if (Dst.getSubReg() == 0 /*NoSubRegister*/ && Src.getReg().isVirtual() &&
        Src.getSubReg() == 0 /*NoSubRegister*/ &&
        MRI.getType(Src.getReg()).isValid()) {
      // Don't increment Depth for this one since we didn't do any work.
      computeKnownBitsImpl(Src.getReg(), Known, DemandedElts, Depth);
    }
    break;
  }
  case TargetOpcode::G_CONSTANT: {
    auto CstVal = getConstantVRegVal(R, MRI);
    if (!CstVal)
      break;
    Known.One = *CstVal;
    Known.Zero = ~Known.One;
    break;
  }
  case TargetOpcode::G_FRAME_INDEX: {
    computeKnownBitsForFrameIndex(R, Known, DemandedElts);
    break;
  }
  case TargetOpcode::G_SUB: {
    // If low bits are known to be zero in both operands, then we know they are
    // going to be 0 in the result. Both addition and complement operations
    // preserve the low zero bits.
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    unsigned KnownZeroLow = Known2.countMinTrailingZeros();
    if (KnownZeroLow == 0)
      break;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
    Known.Zero.setLowBits(KnownZeroLow);
    break;
  }
  case TargetOpcode::G_XOR: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
    Known.Zero = KnownZeroOut;
    break;
  }
  case TargetOpcode::G_GEP: {
    // G_GEP is like G_ADD. FIXME: Is this true for all targets?
    LLT Ty = MRI.getType(MI.getOperand(1).getReg());
    if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
      break;
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_ADD: {
    // Output known-0 bits are known if clear or set in both the low clear bits
    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
    // low 3 bits clear.
    // Output known-0 bits are also known if the top bits of each input are
    // known to be clear. For example, if one input has the top 10 bits clear
    // and the other has the top 8 bits clear, we know the top 7 bits of the
    // output must be clear.
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
    unsigned KnownZeroLow = Known2.countMinTrailingZeros();
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
    KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
    Known.Zero.setLowBits(KnownZeroLow);
    if (KnownZeroHigh > 1)
      Known.Zero.setHighBits(KnownZeroHigh - 1);
    break;
  }
  case TargetOpcode::G_AND: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-1 bits are only known if set in both the LHS & RHS.
    Known.One &= Known2.One;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    Known.Zero |= Known2.Zero;
    break;
  }
  case TargetOpcode::G_OR: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    Known.Zero &= Known2.Zero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    Known.One |= Known2.One;
    break;
  }
  case TargetOpcode::G_MUL: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // If low bits are zero in either operand, output low known-0 bits.
    // Also compute a conservative estimate for high known-0 bits.
    // More trickiness is possible, but this is sufficient for the
    // interesting case of alignment computation.
    unsigned TrailZ =
        Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
    unsigned LeadZ =
        std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
                 BitWidth) -
        BitWidth;

    Known.resetAll();
    Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
    Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
    break;
  }
  case TargetOpcode::G_SELECT: {
    computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If we don't know any bits, early out.
    if (Known.isUnknown())
      break;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // Only known if known in both the LHS and RHS.
    Known.One &= Known2.One;
    Known.Zero &= Known2.Zero;
    break;
  }
  case TargetOpcode::G_FCMP:
  case TargetOpcode::G_ICMP: {
    if (TL.getBooleanContents(DstTy.isVector(),
                              Opcode == TargetOpcode::G_FCMP) ==
            TargetLowering::ZeroOrOneBooleanContent &&
        BitWidth > 1)
      Known.Zero.setBitsFrom(1);
    break;
  }
  case TargetOpcode::G_SEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If the sign bit is known to be zero or one, then sext will extend
    // it to the top bits, else it will just zext.
    Known = Known.sext(BitWidth);
    break;
  }
  case TargetOpcode::G_ANYEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
    break;
  }
  case TargetOpcode::G_LOAD: {
    if (MI.hasOneMemOperand()) {
      const MachineMemOperand *MMO = *MI.memoperands_begin();
      if (const MDNode *Ranges = MMO->getRanges()) {
        computeKnownBitsFromRangeMetadata(*Ranges, Known);
      }
    }
    break;
  }
  case TargetOpcode::G_ZEXTLOAD: {
    // Everything above the retrieved bits is zero
    if (MI.hasOneMemOperand())
      Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
    break;
  }
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_SHL: {
    KnownBits RHSKnown;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
                         Depth + 1);
    if (!RHSKnown.isConstant()) {
      LLVM_DEBUG(
          MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
          dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
      break;
    }
    uint64_t Shift = RHSKnown.getConstant().getZExtValue();
    LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');

    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);

    switch (Opcode) {
    case TargetOpcode::G_ASHR:
      Known.Zero = Known.Zero.ashr(Shift);
      Known.One = Known.One.ashr(Shift);
      break;
    case TargetOpcode::G_LSHR:
      Known.Zero = Known.Zero.lshr(Shift);
      Known.One = Known.One.lshr(Shift);
      Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
      break;
    case TargetOpcode::G_SHL:
      Known.Zero = Known.Zero.shl(Shift);
      Known.One = Known.One.shl(Shift);
      Known.Zero.setBits(0, Shift);
      break;
    }
    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
    // Fall through and handle them the same as zext/trunc.
    LLVM_FALLTHROUGH;
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_TRUNC: {
    Register SrcReg = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(SrcReg);
    unsigned SrcBitWidth = SrcTy.isPointer()
                               ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
                               : SrcTy.getSizeInBits();
    assert(SrcBitWidth && "SrcBitWidth can't be zero");
    Known = Known.zextOrTrunc(SrcBitWidth, true);
    computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
    Known = Known.zextOrTrunc(BitWidth, true);
    if (BitWidth > SrcBitWidth)
      Known.Zero.setBitsFrom(SrcBitWidth);
    break;
  }
  }

  assert(!Known.hasConflict() && "Bits known to be one AND zero?");
  LLVM_DEBUG(dbgs() << "[" << Depth << "] Compute known bits: " << MI << "["
                    << Depth << "] Computed for: " << MI << "[" << Depth
                    << "] Known: 0x"
                    << (Known.Zero | Known.One).toString(16, false) << "\n"
                    << "[" << Depth << "] Zero: 0x"
                    << Known.Zero.toString(16, false) << "\n"
                    << "[" << Depth << "] One:  0x"
                    << Known.One.toString(16, false) << "\n");
}

void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
  return false;
}