reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
//== llvm/Support/LowLevelTypeImpl.h --------------------------- -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Implement a low-level type suitable for MachineInstr level instruction
/// selection.
///
/// For a type attached to a MachineInstr, we only care about 2 details: total
/// size and the number of vector lanes (if any). Accordingly, there are 4
/// possible valid type-kinds:
///
///    * `sN` for scalars and aggregates
///    * `<N x sM>` for vectors, which must have at least 2 elements.
///    * `pN` for pointers
///
/// Other information required for correct selection is expected to be carried
/// by the opcode, or non-type flags. For example the distinction between G_ADD
/// and G_FADD for int/float or fast-math flags.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
#define LLVM_SUPPORT_LOWLEVELTYPEIMPL_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/MachineValueType.h"
#include <cassert>

namespace llvm {

class DataLayout;
class Type;
class raw_ostream;

class LLT {
public:
  /// Get a low-level scalar or aggregate "bag of bits".
  static LLT scalar(unsigned SizeInBits) {
    assert(SizeInBits > 0 && "invalid scalar size");
    return LLT{/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0,
               SizeInBits, /*AddressSpace=*/0};
  }

  /// Get a low-level pointer in the given address space.
  static LLT pointer(unsigned AddressSpace, unsigned SizeInBits) {
    assert(SizeInBits > 0 && "invalid pointer size");
    return LLT{/*isPointer=*/true, /*isVector=*/false, /*NumElements=*/0,
               SizeInBits, AddressSpace};
  }

  /// Get a low-level vector of some number of elements and element width.
  /// \p NumElements must be at least 2.
  static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) {
    assert(NumElements > 1 && "invalid number of vector elements");
    assert(ScalarSizeInBits > 0 && "invalid vector element size");
    return LLT{/*isPointer=*/false, /*isVector=*/true, NumElements,
               ScalarSizeInBits, /*AddressSpace=*/0};
  }

  /// Get a low-level vector of some number of elements and element type.
  static LLT vector(uint16_t NumElements, LLT ScalarTy) {
    assert(NumElements > 1 && "invalid number of vector elements");
    assert(!ScalarTy.isVector() && "invalid vector element type");
    return LLT{ScalarTy.isPointer(), /*isVector=*/true, NumElements,
               ScalarTy.getSizeInBits(),
               ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
  }

  static LLT scalarOrVector(uint16_t NumElements, LLT ScalarTy) {
    return NumElements == 1 ? ScalarTy : LLT::vector(NumElements, ScalarTy);
  }

  static LLT scalarOrVector(uint16_t NumElements, unsigned ScalarSize) {
    return scalarOrVector(NumElements, LLT::scalar(ScalarSize));
  }

  explicit LLT(bool isPointer, bool isVector, uint16_t NumElements,
               unsigned SizeInBits, unsigned AddressSpace) {
    init(isPointer, isVector, NumElements, SizeInBits, AddressSpace);
  }
  explicit LLT() : IsPointer(false), IsVector(false), RawData(0) {}

  explicit LLT(MVT VT);

  bool isValid() const { return RawData != 0; }

  bool isScalar() const { return isValid() && !IsPointer && !IsVector; }

  bool isPointer() const { return isValid() && IsPointer && !IsVector; }

  bool isVector() const { return isValid() && IsVector; }

  /// Returns the number of elements in a vector LLT. Must only be called on
  /// vector types.
  uint16_t getNumElements() const {
    assert(IsVector && "cannot get number of elements on scalar/aggregate");
    if (!IsPointer)
      return getFieldValue(VectorElementsFieldInfo);
    else
      return getFieldValue(PointerVectorElementsFieldInfo);
  }

  /// Returns the total size of the type. Must only be called on sized types.
  unsigned getSizeInBits() const {
    if (isPointer() || isScalar())
      return getScalarSizeInBits();
    return getScalarSizeInBits() * getNumElements();
  }

  /// Returns the total size of the type in bytes, i.e. number of whole bytes
  /// needed to represent the size in bits. Must only be called on sized types.
  unsigned getSizeInBytes() const {
    return (getSizeInBits() + 7) / 8;
  }

  LLT getScalarType() const {
    return isVector() ? getElementType() : *this;
  }

  /// If this type is a vector, return a vector with the same number of elements
  /// but the new element type. Otherwise, return the new element type.
  LLT changeElementType(LLT NewEltTy) const {
    return isVector() ? LLT::vector(getNumElements(), NewEltTy) : NewEltTy;
  }

  /// If this type is a vector, return a vector with the same number of elements
  /// but the new element size. Otherwise, return the new element type. Invalid
  /// for pointer types. For pointer types, use changeElementType.
  LLT changeElementSize(unsigned NewEltSize) const {
    assert(!getScalarType().isPointer() &&
           "invalid to directly change element size for pointers");
    return isVector() ? LLT::vector(getNumElements(), NewEltSize)
                      : LLT::scalar(NewEltSize);
  }

  unsigned getScalarSizeInBits() const {
    assert(RawData != 0 && "Invalid Type");
    if (!IsVector) {
      if (!IsPointer)
        return getFieldValue(ScalarSizeFieldInfo);
      else
        return getFieldValue(PointerSizeFieldInfo);
    } else {
      if (!IsPointer)
        return getFieldValue(VectorSizeFieldInfo);
      else
        return getFieldValue(PointerVectorSizeFieldInfo);
    }
  }

  unsigned getAddressSpace() const {
    assert(RawData != 0 && "Invalid Type");
    assert(IsPointer && "cannot get address space of non-pointer type");
    if (!IsVector)
      return getFieldValue(PointerAddressSpaceFieldInfo);
    else
      return getFieldValue(PointerVectorAddressSpaceFieldInfo);
  }

  /// Returns the vector's element type. Only valid for vector types.
  LLT getElementType() const {
    assert(isVector() && "cannot get element type of scalar/aggregate");
    if (IsPointer)
      return pointer(getAddressSpace(), getScalarSizeInBits());
    else
      return scalar(getScalarSizeInBits());
  }

  void print(raw_ostream &OS) const;

  bool operator==(const LLT &RHS) const {
    return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
           RHS.RawData == RawData;
  }

  bool operator!=(const LLT &RHS) const { return !(*this == RHS); }

  friend struct DenseMapInfo<LLT>;
  friend class GISelInstProfileBuilder;

private:
  /// LLT is packed into 64 bits as follows:
  /// isPointer : 1
  /// isVector  : 1
  /// with 62 bits remaining for Kind-specific data, packed in bitfields
  /// as described below. As there isn't a simple portable way to pack bits
  /// into bitfields, here the different fields in the packed structure is
  /// described in static const *Field variables. Each of these variables
  /// is a 2-element array, with the first element describing the bitfield size
  /// and the second element describing the bitfield offset.
  typedef int BitFieldInfo[2];
  ///
  /// This is how the bitfields are packed per Kind:
  /// * Invalid:
  ///   gets encoded as RawData == 0, as that is an invalid encoding, since for
  ///   valid encodings, SizeInBits/SizeOfElement must be larger than 0.
  /// * Non-pointer scalar (isPointer == 0 && isVector == 0):
  ///   SizeInBits: 32;
  static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0};
  /// * Pointer (isPointer == 1 && isVector == 0):
  ///   SizeInBits: 16;
  ///   AddressSpace: 24;
  static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0};
  static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
      24, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
  /// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
  ///   NumElements: 16;
  ///   SizeOfElement: 32;
  static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0};
  static const constexpr BitFieldInfo VectorSizeFieldInfo{
      32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
  /// * Vector-of-pointer (isPointer == 1 && isVector == 1):
  ///   NumElements: 16;
  ///   SizeOfElement: 16;
  ///   AddressSpace: 24;
  static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0};
  static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{
      16,
      PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]};
  static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{
      24, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]};

  uint64_t IsPointer : 1;
  uint64_t IsVector : 1;
  uint64_t RawData : 62;

  static uint64_t getMask(const BitFieldInfo FieldInfo) {
    const int FieldSizeInBits = FieldInfo[0];
    return (((uint64_t)1) << FieldSizeInBits) - 1;
  }
  static uint64_t maskAndShift(uint64_t Val, uint64_t Mask, uint8_t Shift) {
    assert(Val <= Mask && "Value too large for field");
    return (Val & Mask) << Shift;
  }
  static uint64_t maskAndShift(uint64_t Val, const BitFieldInfo FieldInfo) {
    return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]);
  }
  uint64_t getFieldValue(const BitFieldInfo FieldInfo) const {
    return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
  }

  void init(bool IsPointer, bool IsVector, uint16_t NumElements,
            unsigned SizeInBits, unsigned AddressSpace) {
    this->IsPointer = IsPointer;
    this->IsVector = IsVector;
    if (!IsVector) {
      if (!IsPointer)
        RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
      else
        RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
                  maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
    } else {
      assert(NumElements > 1 && "invalid number of vector elements");
      if (!IsPointer)
        RawData = maskAndShift(NumElements, VectorElementsFieldInfo) |
                  maskAndShift(SizeInBits, VectorSizeFieldInfo);
      else
        RawData =
            maskAndShift(NumElements, PointerVectorElementsFieldInfo) |
            maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) |
            maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo);
    }
  }

  uint64_t getUniqueRAWLLTData() const {
    return ((uint64_t)RawData) << 2 | ((uint64_t)IsPointer) << 1 |
           ((uint64_t)IsVector);
  }
};

inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
  Ty.print(OS);
  return OS;
}

template<> struct DenseMapInfo<LLT> {
  static inline LLT getEmptyKey() {
    LLT Invalid;
    Invalid.IsPointer = true;
    return Invalid;
  }
  static inline LLT getTombstoneKey() {
    LLT Invalid;
    Invalid.IsVector = true;
    return Invalid;
  }
  static inline unsigned getHashValue(const LLT &Ty) {
    uint64_t Val = Ty.getUniqueRAWLLTData();
    return DenseMapInfo<uint64_t>::getHashValue(Val);
  }
  static bool isEqual(const LLT &LHS, const LLT &RHS) {
    return LHS == RHS;
  }
};

}

#endif // LLVM_SUPPORT_LOWLEVELTYPEIMPL_H