reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
//   Improving Performance of OpenCL on CPUs
//   Ralf Karrenberg and Sebastian Hack
//   CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
//   %cond = icmp slt i32 %tid, 10
//   br i1 %cond, label %then, label %else
// then:
//   br label %merge
// else:
//   br label %merge
// merge:
//   %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
//    non-kernel-entry function and the return value of a function call as
//    divergent.
// 2. memory as black box. It conservatively considers values loaded from
//    generic or local address as divergent. This can be improved by leveraging
//    pointer analysis and/or by modelling non-escaping memory objects in SSA
//    as done in RV.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "divergence-analysis"

// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
    const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
    const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
    : F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
      IsLCSSAForm(IsLCSSAForm) {}

void DivergenceAnalysis::markDivergent(const Value &DivVal) {
  assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
  assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
  DivergentValues.insert(&DivVal);
}

void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
  UniformOverrides.insert(&UniVal);
}

bool DivergenceAnalysis::updateTerminator(const Instruction &Term) const {
  if (Term.getNumSuccessors() <= 1)
    return false;
  if (auto *BranchTerm = dyn_cast<BranchInst>(&Term)) {
    assert(BranchTerm->isConditional());
    return isDivergent(*BranchTerm->getCondition());
  }
  if (auto *SwitchTerm = dyn_cast<SwitchInst>(&Term)) {
    return isDivergent(*SwitchTerm->getCondition());
  }
  if (isa<InvokeInst>(Term)) {
    return false; // ignore abnormal executions through landingpad
  }

  llvm_unreachable("unexpected terminator");
}

bool DivergenceAnalysis::updateNormalInstruction(const Instruction &I) const {
  // TODO function calls with side effects, etc
  for (const auto &Op : I.operands()) {
    if (isDivergent(*Op))
      return true;
  }
  return false;
}

bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
                                             const Value &Val) const {
  const auto *Inst = dyn_cast<const Instruction>(&Val);
  if (!Inst)
    return false;
  // check whether any divergent loop carrying Val terminates before control
  // proceeds to ObservingBlock
  for (const auto *Loop = LI.getLoopFor(Inst->getParent());
       Loop != RegionLoop && !Loop->contains(&ObservingBlock);
       Loop = Loop->getParentLoop()) {
    if (DivergentLoops.find(Loop) != DivergentLoops.end())
      return true;
  }

  return false;
}

bool DivergenceAnalysis::updatePHINode(const PHINode &Phi) const {
  // joining divergent disjoint path in Phi parent block
  if (!Phi.hasConstantOrUndefValue() && isJoinDivergent(*Phi.getParent())) {
    return true;
  }

  // An incoming value could be divergent by itself.
  // Otherwise, an incoming value could be uniform within the loop
  // that carries its definition but it may appear divergent
  // from outside the loop. This happens when divergent loop exits
  // drop definitions of that uniform value in different iterations.
  //
  // for (int i = 0; i < n; ++i) { // 'i' is uniform inside the loop
  //   if (i % thread_id == 0) break;    // divergent loop exit
  // }
  // int divI = i;                 // divI is divergent
  for (size_t i = 0; i < Phi.getNumIncomingValues(); ++i) {
    const auto *InVal = Phi.getIncomingValue(i);
    if (isDivergent(*Phi.getIncomingValue(i)) ||
        isTemporalDivergent(*Phi.getParent(), *InVal)) {
      return true;
    }
  }
  return false;
}

bool DivergenceAnalysis::inRegion(const Instruction &I) const {
  return I.getParent() && inRegion(*I.getParent());
}

bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
  return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}

// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::taintLoopLiveOuts(const BasicBlock &LoopHeader) {
  auto *DivLoop = LI.getLoopFor(&LoopHeader);
  assert(DivLoop && "loopHeader is not actually part of a loop");

  SmallVector<BasicBlock *, 8> TaintStack;
  DivLoop->getExitBlocks(TaintStack);

  // Otherwise potential users of loop-carried values could be anywhere in the
  // dominance region of DivLoop (including its fringes for phi nodes)
  DenseSet<const BasicBlock *> Visited;
  for (auto *Block : TaintStack) {
    Visited.insert(Block);
  }
  Visited.insert(&LoopHeader);

  while (!TaintStack.empty()) {
    auto *UserBlock = TaintStack.back();
    TaintStack.pop_back();

    // don't spread divergence beyond the region
    if (!inRegion(*UserBlock))
      continue;

    assert(!DivLoop->contains(UserBlock) &&
           "irreducible control flow detected");

    // phi nodes at the fringes of the dominance region
    if (!DT.dominates(&LoopHeader, UserBlock)) {
      // all PHI nodes of UserBlock become divergent
      for (auto &Phi : UserBlock->phis()) {
        Worklist.push_back(&Phi);
      }
      continue;
    }

    // taint outside users of values carried by DivLoop
    for (auto &I : *UserBlock) {
      if (isAlwaysUniform(I))
        continue;
      if (isDivergent(I))
        continue;

      for (auto &Op : I.operands()) {
        auto *OpInst = dyn_cast<Instruction>(&Op);
        if (!OpInst)
          continue;
        if (DivLoop->contains(OpInst->getParent())) {
          markDivergent(I);
          pushUsers(I);
          break;
        }
      }
    }

    // visit all blocks in the dominance region
    for (auto *SuccBlock : successors(UserBlock)) {
      if (!Visited.insert(SuccBlock).second) {
        continue;
      }
      TaintStack.push_back(SuccBlock);
    }
  }
}

void DivergenceAnalysis::pushPHINodes(const BasicBlock &Block) {
  for (const auto &Phi : Block.phis()) {
    if (isDivergent(Phi))
      continue;
    Worklist.push_back(&Phi);
  }
}

void DivergenceAnalysis::pushUsers(const Value &V) {
  for (const auto *User : V.users()) {
    const auto *UserInst = dyn_cast<const Instruction>(User);
    if (!UserInst)
      continue;

    if (isDivergent(*UserInst))
      continue;

    // only compute divergent inside loop
    if (!inRegion(*UserInst))
      continue;
    Worklist.push_back(UserInst);
  }
}

bool DivergenceAnalysis::propagateJoinDivergence(const BasicBlock &JoinBlock,
                                                 const Loop *BranchLoop) {
  LLVM_DEBUG(dbgs() << "\tpropJoinDiv " << JoinBlock.getName() << "\n");

  // ignore divergence outside the region
  if (!inRegion(JoinBlock)) {
    return false;
  }

  // push non-divergent phi nodes in JoinBlock to the worklist
  pushPHINodes(JoinBlock);

  // JoinBlock is a divergent loop exit
  if (BranchLoop && !BranchLoop->contains(&JoinBlock)) {
    return true;
  }

  // disjoint-paths divergent at JoinBlock
  markBlockJoinDivergent(JoinBlock);
  return false;
}

void DivergenceAnalysis::propagateBranchDivergence(const Instruction &Term) {
  LLVM_DEBUG(dbgs() << "propBranchDiv " << Term.getParent()->getName() << "\n");

  markDivergent(Term);

  const auto *BranchLoop = LI.getLoopFor(Term.getParent());

  // whether there is a divergent loop exit from BranchLoop (if any)
  bool IsBranchLoopDivergent = false;

  // iterate over all blocks reachable by disjoint from Term within the loop
  // also iterates over loop exits that become divergent due to Term.
  for (const auto *JoinBlock : SDA.join_blocks(Term)) {
    IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
  }

  // Branch loop is a divergent loop due to the divergent branch in Term
  if (IsBranchLoopDivergent) {
    assert(BranchLoop);
    if (!DivergentLoops.insert(BranchLoop).second) {
      return;
    }
    propagateLoopDivergence(*BranchLoop);
  }
}

void DivergenceAnalysis::propagateLoopDivergence(const Loop &ExitingLoop) {
  LLVM_DEBUG(dbgs() << "propLoopDiv " << ExitingLoop.getName() << "\n");

  // don't propagate beyond region
  if (!inRegion(*ExitingLoop.getHeader()))
    return;

  const auto *BranchLoop = ExitingLoop.getParentLoop();

  // Uses of loop-carried values could occur anywhere
  // within the dominance region of the definition. All loop-carried
  // definitions are dominated by the loop header (reducible control).
  // Thus all users have to be in the dominance region of the loop header,
  // except PHI nodes that can also live at the fringes of the dom region
  // (incoming defining value).
  if (!IsLCSSAForm)
    taintLoopLiveOuts(*ExitingLoop.getHeader());

  // whether there is a divergent loop exit from BranchLoop (if any)
  bool IsBranchLoopDivergent = false;

  // iterate over all blocks reachable by disjoint paths from exits of
  // ExitingLoop also iterates over loop exits (of BranchLoop) that in turn
  // become divergent.
  for (const auto *JoinBlock : SDA.join_blocks(ExitingLoop)) {
    IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
  }

  // Branch loop is a divergent due to divergent loop exit in ExitingLoop
  if (IsBranchLoopDivergent) {
    assert(BranchLoop);
    if (!DivergentLoops.insert(BranchLoop).second) {
      return;
    }
    propagateLoopDivergence(*BranchLoop);
  }
}

void DivergenceAnalysis::compute() {
  for (auto *DivVal : DivergentValues) {
    pushUsers(*DivVal);
  }

  // propagate divergence
  while (!Worklist.empty()) {
    const Instruction &I = *Worklist.back();
    Worklist.pop_back();

    // maintain uniformity of overrides
    if (isAlwaysUniform(I))
      continue;

    bool WasDivergent = isDivergent(I);
    if (WasDivergent)
      continue;

    // propagate divergence caused by terminator
    if (I.isTerminator()) {
      if (updateTerminator(I)) {
        // propagate control divergence to affected instructions
        propagateBranchDivergence(I);
        continue;
      }
    }

    // update divergence of I due to divergent operands
    bool DivergentUpd = false;
    const auto *Phi = dyn_cast<const PHINode>(&I);
    if (Phi) {
      DivergentUpd = updatePHINode(*Phi);
    } else {
      DivergentUpd = updateNormalInstruction(I);
    }

    // propagate value divergence to users
    if (DivergentUpd) {
      markDivergent(I);
      pushUsers(I);
    }
  }
}

bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
  return UniformOverrides.find(&V) != UniformOverrides.end();
}

bool DivergenceAnalysis::isDivergent(const Value &V) const {
  return DivergentValues.find(&V) != DivergentValues.end();
}

bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
  Value &V = *U.get();
  Instruction &I = *cast<Instruction>(U.getUser());
  return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}

void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
  if (DivergentValues.empty())
    return;
  // iterate instructions using instructions() to ensure a deterministic order.
  for (auto &I : instructions(F)) {
    if (isDivergent(I))
      OS << "DIVERGENT:" << I << '\n';
  }
}

// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
                                             const DominatorTree &DT,
                                             const PostDominatorTree &PDT,
                                             const LoopInfo &LI,
                                             const TargetTransformInfo &TTI)
    : SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, false) {
  for (auto &I : instructions(F)) {
    if (TTI.isSourceOfDivergence(&I)) {
      DA.markDivergent(I);
    } else if (TTI.isAlwaysUniform(&I)) {
      DA.addUniformOverride(I);
    }
  }
  for (auto &Arg : F.args()) {
    if (TTI.isSourceOfDivergence(&Arg)) {
      DA.markDivergent(Arg);
    }
  }

  DA.compute();
}

bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
  return DA.isDivergent(val);
}

bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
  return DA.isDivergentUse(use);
}

void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
  OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
  DA.print(OS, mod);
  OS << "}\n";
}