reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Adapted to be used with google benchmark

#include "benchmark/benchmark.h"

#include <algorithm>
#include <cmath>
#include "check.h"
#include "complexity.h"

namespace benchmark {

// Internal function to calculate the different scalability forms
BigOFunc* FittingCurve(BigO complexity) {
  switch (complexity) {
    case oN:
      return [](int64_t n) -> double { return static_cast<double>(n); };
    case oNSquared:
      return [](int64_t n) -> double { return std::pow(n, 2); };
    case oNCubed:
      return [](int64_t n) -> double { return std::pow(n, 3); };
    case oLogN:
      return [](int64_t n) { return log2(n); };
    case oNLogN:
      return [](int64_t n) { return n * log2(n); };
    case o1:
    default:
      return [](int64_t) { return 1.0; };
  }
}

// Function to return an string for the calculated complexity
std::string GetBigOString(BigO complexity) {
  switch (complexity) {
    case oN:
      return "N";
    case oNSquared:
      return "N^2";
    case oNCubed:
      return "N^3";
    case oLogN:
      return "lgN";
    case oNLogN:
      return "NlgN";
    case o1:
      return "(1)";
    default:
      return "f(N)";
  }
}

// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error, for the fitting curve
// given by the lambda expression.
//   - n             : Vector containing the size of the benchmark tests.
//   - time          : Vector containing the times for the benchmark tests.
//   - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).

// For a deeper explanation on the algorithm logic, look the README file at
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit

LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
                       const std::vector<double>& time,
                       BigOFunc* fitting_curve) {
  double sigma_gn = 0.0;
  double sigma_gn_squared = 0.0;
  double sigma_time = 0.0;
  double sigma_time_gn = 0.0;

  // Calculate least square fitting parameter
  for (size_t i = 0; i < n.size(); ++i) {
    double gn_i = fitting_curve(n[i]);
    sigma_gn += gn_i;
    sigma_gn_squared += gn_i * gn_i;
    sigma_time += time[i];
    sigma_time_gn += time[i] * gn_i;
  }

  LeastSq result;
  result.complexity = oLambda;

  // Calculate complexity.
  result.coef = sigma_time_gn / sigma_gn_squared;

  // Calculate RMS
  double rms = 0.0;
  for (size_t i = 0; i < n.size(); ++i) {
    double fit = result.coef * fitting_curve(n[i]);
    rms += pow((time[i] - fit), 2);
  }

  // Normalized RMS by the mean of the observed values
  double mean = sigma_time / n.size();
  result.rms = sqrt(rms / n.size()) / mean;

  return result;
}

// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error.
//   - n          : Vector containing the size of the benchmark tests.
//   - time       : Vector containing the times for the benchmark tests.
//   - complexity : If different than oAuto, the fitting curve will stick to
//                  this one. If it is oAuto, it will be calculated the best
//                  fitting curve.
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
                       const std::vector<double>& time, const BigO complexity) {
  CHECK_EQ(n.size(), time.size());
  CHECK_GE(n.size(), 2);  // Do not compute fitting curve is less than two
                          // benchmark runs are given
  CHECK_NE(complexity, oNone);

  LeastSq best_fit;

  if (complexity == oAuto) {
    std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};

    // Take o1 as default best fitting curve
    best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
    best_fit.complexity = o1;

    // Compute all possible fitting curves and stick to the best one
    for (const auto& fit : fit_curves) {
      LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
      if (current_fit.rms < best_fit.rms) {
        best_fit = current_fit;
        best_fit.complexity = fit;
      }
    }
  } else {
    best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
    best_fit.complexity = complexity;
  }

  return best_fit;
}

std::vector<BenchmarkReporter::Run> ComputeBigO(
    const std::vector<BenchmarkReporter::Run>& reports) {
  typedef BenchmarkReporter::Run Run;
  std::vector<Run> results;

  if (reports.size() < 2) return results;

  // Accumulators.
  std::vector<int64_t> n;
  std::vector<double> real_time;
  std::vector<double> cpu_time;

  // Populate the accumulators.
  for (const Run& run : reports) {
    CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
    n.push_back(run.complexity_n);
    real_time.push_back(run.real_accumulated_time / run.iterations);
    cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
  }

  LeastSq result_cpu;
  LeastSq result_real;

  if (reports[0].complexity == oLambda) {
    result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
    result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
  } else {
    result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
    result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
  }
  std::string benchmark_name =
      reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));

  // Get the data from the accumulator to BenchmarkReporter::Run's.
  Run big_o;
  big_o.benchmark_name = benchmark_name + "_BigO";
  big_o.iterations = 0;
  big_o.real_accumulated_time = result_real.coef;
  big_o.cpu_accumulated_time = result_cpu.coef;
  big_o.report_big_o = true;
  big_o.complexity = result_cpu.complexity;

  // All the time results are reported after being multiplied by the
  // time unit multiplier. But since RMS is a relative quantity it
  // should not be multiplied at all. So, here, we _divide_ it by the
  // multiplier so that when it is multiplied later the result is the
  // correct one.
  double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);

  // Only add label to mean/stddev if it is same for all runs
  Run rms;
  big_o.report_label = reports[0].report_label;
  rms.benchmark_name = benchmark_name + "_RMS";
  rms.report_label = big_o.report_label;
  rms.iterations = 0;
  rms.real_accumulated_time = result_real.rms / multiplier;
  rms.cpu_accumulated_time = result_cpu.rms / multiplier;
  rms.report_rms = true;
  rms.complexity = result_cpu.complexity;
  // don't forget to keep the time unit, or we won't be able to
  // recover the correct value.
  rms.time_unit = reports[0].time_unit;

  results.push_back(big_o);
  results.push_back(rms);
  return results;
}

}  // end namespace benchmark