reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
/*
 * Copyright 2013      Ecole Normale Superieure
 * Copyright 2015      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege,
 * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <string.h>

#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/val.h>
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>

#include "hybrid.h"
#include "schedule.h"

/* The hybrid tiling implemented in this file is based on
 * Grosser et al., "Hybrid Hexagonal/Classical Tiling for GPUs".
 */

/* Bounds on relative dependence distances in input to hybrid tiling.
 * upper is an upper bound on the relative dependence distances
 * in the first space dimension
 * -lower is a lower bound on the relative dependence distances
 * in all space dimensions.
 *
 * In particular,
 *
 *	d_i >= -lower_i d_0
 * and
 *	d_1 <= upper d_0
 *
 * for each dependence distance vector d, where d_1 is the component
 * corresponding to the first space dimension.
 *
 * upper and lower are always non-negative.
 * Some of the values may be NaN if no bound could be found.
 */
struct ppcg_ht_bounds {
	isl_val *upper;
	isl_multi_val *lower;
};

/* Free "bounds" along with all its fields.
 */
__isl_null ppcg_ht_bounds *ppcg_ht_bounds_free(
	__isl_take ppcg_ht_bounds *bounds)
{
	if (!bounds)
		return NULL;
	isl_val_free(bounds->upper);
	isl_multi_val_free(bounds->lower);
	free(bounds);

	return NULL;
}

/* Create a ppcg_ht_bounds object for a band living in "space".
 * The bounds are initialized to NaN.
 */
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_alloc(__isl_take isl_space *space)
{
	int i, n;
	isl_ctx *ctx;
	ppcg_ht_bounds *bounds;

	if (!space)
		return NULL;

	ctx = isl_space_get_ctx(space);
	bounds = isl_alloc_type(ctx, struct ppcg_ht_bounds);
	if (!bounds)
		goto error;
	bounds->upper = isl_val_nan(ctx);
	bounds->lower = isl_multi_val_zero(space);
	n = isl_multi_val_dim(bounds->lower, isl_dim_set);
	for (i = 0; i < n; ++i) {
		isl_val *v = isl_val_copy(bounds->upper);
		bounds->lower = isl_multi_val_set_val(bounds->lower, i, v);
	}

	if (!bounds->lower || !bounds->upper)
		return ppcg_ht_bounds_free(bounds);

	return bounds;
error:
	isl_space_free(space);
	return NULL;
}

void ppcg_ht_bounds_dump(__isl_keep ppcg_ht_bounds *bounds)
{
	if (!bounds)
		return;

	fprintf(stderr, "lower: ");
	isl_multi_val_dump(bounds->lower);
	fprintf(stderr, "upper: ");
	isl_val_dump(bounds->upper);
}

/* Return the upper bound on the relative dependence distances
 * in the first space dimension.
 */
__isl_give isl_val *ppcg_ht_bounds_get_upper(__isl_keep ppcg_ht_bounds *bounds)
{
	if (!bounds)
		return NULL;
	return isl_val_copy(bounds->upper);
}

/* Replace the upper bound on the relative dependence distances
 * in the first space dimension by "upper".
 */
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_upper(
	__isl_take ppcg_ht_bounds *bounds, __isl_take isl_val *upper)
{
	if (!bounds || !upper)
		goto error;
	isl_val_free(bounds->upper);
	bounds->upper = upper;
	return bounds;
error:
	ppcg_ht_bounds_free(bounds);
	isl_val_free(upper);
	return NULL;
}

/* Return the lower bound on the relative dependence distances
 * in space dimension "pos".
 */
__isl_give isl_val *ppcg_ht_bounds_get_lower(__isl_keep ppcg_ht_bounds *bounds,
	int pos)
{
	if (!bounds)
		return NULL;
	return isl_multi_val_get_val(bounds->lower, pos);
}

/* Replace the lower bound on the relative dependence distances
 * in space dimension "pos" by "lower".
 */
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_lower(
	__isl_take ppcg_ht_bounds *bounds, int pos, __isl_take isl_val *lower)
{
	if (!bounds || !lower)
		goto error;
	bounds->lower = isl_multi_val_set_val(bounds->lower, pos, lower);
	if (!bounds->lower)
		return ppcg_ht_bounds_free(bounds);
	return bounds;
error:
	ppcg_ht_bounds_free(bounds);
	isl_val_free(lower);
	return NULL;
}

/* Can the bounds on relative dependence distances recorded in "bounds"
 * be used to perform hybrid tiling?
 * In particular, have appropriate lower and upper bounds been found?
 * Any NaN indicates that no corresponding bound was found.
 */
isl_bool ppcg_ht_bounds_is_valid(__isl_keep ppcg_ht_bounds *bounds)
{
	isl_bool is_nan;
	int i, n;

	if (!bounds)
		return isl_bool_error;
	is_nan = isl_val_is_nan(bounds->upper);
	if (is_nan < 0)
		return isl_bool_error;
	if (is_nan)
		return isl_bool_false;

	n = isl_multi_val_dim(bounds->lower, isl_dim_set);
	for (i = 0; i < n; ++i) {
		isl_val *v;

		v = isl_multi_val_get_val(bounds->lower, i);
		is_nan = isl_val_is_nan(v);
		if (is_nan < 0)
			return isl_bool_error;
		if (is_nan)
			return isl_bool_false;
		isl_val_free(v);
	}

	return isl_bool_true;
}

/* Structure that represents the basic hexagonal tiling,
 * along with information that is needed to perform the hybrid tiling.
 *
 * "bounds" are the bounds on the dependence distances that
 * define the hexagonal shape and the required skewing in the remaining
 * space dimensions.
 *
 * "input_node" points to the input pair of band nodes.
 * "input_schedule" is the partial schedule of this input pair of band nodes.
 * The space of this schedule is [P -> C], where P is the space
 * of the parent node and C is the space of the child node.
 *
 * "space_sizes" represent the total size of a tile for the space
 * dimensions, i.e., those corresponding to the child node.
 * The space of "space_sizes" is C.
 * If S_0 is the original tile size in the first space dimension,
 * then the first entry of "space_sizes" is equal to
 * W = 2*S_0 + floor(d_l h) + floor(d_u h).
 * The remaining entries are the same as in the original tile sizes.
 *
 * The basic hexagonal tiling "hex" is defined
 * in a "ts" (time-space) space and corresponds to the phase-1 tiles.
 * "time_tile" maps the "ts" space to outer time tile.
 * Is is equal to ts[t, s] -> floor(t/(2 * S_t)), with S_t the original tile
 * size corresponding to the parent node.
 * "local_time" maps the "ts" space to the time dimension inside each tile.
 * It is equal to ts[t, s] -> t mod (2 S_t), with S_t the original tile
 * size corresponding to the parent node.
 * "shift_space" shifts the tiles at time tile T = floor(t/(2 S_t))
 * in the space dimension such that they align to a multiple of W.
 * It is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W,
 * with shift_s = S_0 + floor(d_u h).
 * "shift_phase" is the shift taken to go from phase 0 to phase 1
 * It is equal to ts[t, s] -> ts[t + S_t, s + shift_s],
 * with shift_s = S_0 + floor(d_u h).
 *
 * "project_ts" projects the space of the input schedule to the ts-space.
 * It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
 */
struct ppcg_ht_tiling {
	int ref;

	ppcg_ht_bounds *bounds;
	isl_schedule_node *input_node;
	isl_multi_union_pw_aff *input_schedule;

	isl_multi_val *space_sizes;

	isl_aff *time_tile;
	isl_aff *local_time;
	isl_aff *shift_space;
	isl_multi_aff *shift_phase;
	isl_set *hex;

	isl_multi_aff *project_ts;
};
typedef struct ppcg_ht_tiling ppcg_ht_tiling;

/* Return the space of the pair of band nodes that form the input
 * to the hybrid tiling.
 * In particular, return the space [P -> C], where P is the space
 * of the parent node and C is the space of the child node.
 */
__isl_give isl_space *ppcg_ht_tiling_get_input_space(
	__isl_keep ppcg_ht_tiling *tile)
{
	if (!tile)
		return NULL;

	return isl_multi_union_pw_aff_get_space(tile->input_schedule);
}

/* Remove a reference to "tile" and free "tile" along with all its fields
 * as soon as the reference count drops to zero.
 */
static __isl_null ppcg_ht_tiling *ppcg_ht_tiling_free(
	__isl_take ppcg_ht_tiling *tiling)
{
	if (!tiling)
		return NULL;
	if (--tiling->ref > 0)
		return NULL;

	ppcg_ht_bounds_free(tiling->bounds);
	isl_schedule_node_free(tiling->input_node);
	isl_multi_union_pw_aff_free(tiling->input_schedule);
	isl_multi_val_free(tiling->space_sizes);
	isl_aff_free(tiling->time_tile);
	isl_aff_free(tiling->local_time);
	isl_aff_free(tiling->shift_space);
	isl_multi_aff_free(tiling->shift_phase);
	isl_set_free(tiling->hex);
	isl_multi_aff_free(tiling->project_ts);
	free(tiling);

	return NULL;
}

/* Return a new reference to "tiling".
 */
__isl_give ppcg_ht_tiling *ppcg_ht_tiling_copy(
	__isl_keep ppcg_ht_tiling *tiling)
{
	if (!tiling)
		return NULL;

	tiling->ref++;
	return tiling;
}

/* Return the isl_ctx to which "tiling" belongs.
 */
isl_ctx *ppcg_ht_tiling_get_ctx(__isl_keep ppcg_ht_tiling *tiling)
{
	if (!tiling)
		return NULL;

	return isl_multi_union_pw_aff_get_ctx(tiling->input_schedule);
}

/* Representation of one of the two phases of hybrid tiling.
 *
 * "tiling" points to the shared tiling data.
 *
 * "time_tile", "local_time" and "shift_space" are equal to the corresponding
 * fields of "tiling", pulled back to the input space.
 * In case of phase 0, these expressions have also been moved
 * from phase 1 to phase 0.
 *
 * "domain" contains the hexagonal tiling of this phase.
 *
 * "space_shift" is the shift that should be added to the space band
 * in order to be able to apply rectangular tiling to the space.
 * For phase 1, it is equal to
 *
 *	[P[t] -> C[s_0, s_i]] -> C[(-(2 * shift_s)*T) % W, dl_i * u]
 *
 * with shift_s = S_0 + floor(d_u h),
 * T equal to "time_tile" and u equal to "local_time".
 * For phase 0, it is equal to
 *
 *	[P[t] -> C[s_0, s_i]] -> C[shift_s + (-(2 * shift_s)*T) % W, dl_i * u]
 *
 * "space_tile" is the space tiling.  It is equal to
 *
 *	[P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
 */
struct ppcg_ht_phase {
	ppcg_ht_tiling *tiling;

	isl_aff *time_tile;
	isl_aff *local_time;
	isl_aff *shift_space;
	isl_set *domain;

	isl_multi_aff *space_shift;
	isl_multi_aff *space_tile;
};

/* Free "phase" along with all its fields.
 */
static __isl_null ppcg_ht_phase *ppcg_ht_phase_free(
	__isl_take ppcg_ht_phase *phase)
{
	if (!phase)
		return NULL;

	ppcg_ht_tiling_free(phase->tiling);
	isl_aff_free(phase->time_tile);
	isl_aff_free(phase->local_time);
	isl_aff_free(phase->shift_space);
	isl_set_free(phase->domain);
	isl_multi_aff_free(phase->space_shift);
	isl_multi_aff_free(phase->space_tile);
	free(phase);

	return NULL;
}

/* Wrapper around ppcg_ht_phase_free for use as an argument
 * to isl_id_set_free_user.
 */
static void ppcg_ht_phase_free_wrap(void *user)
{
	ppcg_ht_phase *phase = user;

	ppcg_ht_phase_free(phase);
}

/* Return the domain of hybrid tiling phase "phase".
 */
static __isl_give isl_set *ppcg_ht_phase_get_domain(ppcg_ht_phase *phase)
{
	if (!phase)
		return NULL;

	return isl_set_copy(phase->domain);
}

/* Return the space of the pair of band nodes that form the input
 * to the hybrid tiling of which "phase" is a phase.
 * In particular, return the space [P -> C], where P is the space
 * of the parent node and C is the space of the child node.
 */
static __isl_give isl_space *ppcg_ht_phase_get_input_space(
	__isl_keep ppcg_ht_phase *phase)
{
	if (!phase)
		return NULL;

	return ppcg_ht_tiling_get_input_space(phase->tiling);
}

/* Construct the lower left constraint of the hexagonal tile, i.e.,
 *
 *	du a - b <= (2h+1) du - duh
 *	-du a + b + (2h+1) du - duh >= 0
 *
 * where duh = floor(du * h).
 *
 * This constraint corresponds to (6) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_lower_left(__isl_take isl_local_space *ls,
	__isl_keep isl_val *h, __isl_keep isl_val *du, __isl_keep isl_val *duh)
{
	isl_val *v;
	isl_aff *aff;

	v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
	v = isl_val_mul(v, isl_val_copy(du));
	v = isl_val_sub(v, isl_val_copy(duh));
	aff = isl_aff_val_on_domain(ls, v);
	v = isl_val_neg(isl_val_copy(du));
	aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
	aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);

	return isl_inequality_from_aff(aff);
}

/* Construct the lower constraint of the hexagonal tile, i.e.,
 *
 *	a <= 2h+1
 *	-a + 2h+1 >= 0
 *
 * This constraint corresponds to (7) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_lower(__isl_take isl_local_space *ls,
	__isl_keep isl_val *h)
{
	isl_val *v;
	isl_aff *aff;

	v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
	aff = isl_aff_val_on_domain(ls, v);
	aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 0, -1);

	return isl_inequality_from_aff(aff);
}

/* Construct the lower right constraint of the hexagonal tile, i.e.,
 *
 *	dl a + b <= (2h+1) dl + duh + (s0-1)
 *	-dl a - b + (2h+1) dl + duh + (s0-1) >= 0
 *
 * where duh = floor(du * h).
 *
 * This constraint corresponds to (8) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_lower_right(
	__isl_take isl_local_space *ls, __isl_keep isl_val *h,
	__isl_keep isl_val *s0, __isl_keep isl_val *dl, __isl_keep isl_val *duh)
{
	isl_val *v;
	isl_aff *aff;

	v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
	v = isl_val_mul(v, isl_val_copy(dl));
	v = isl_val_add(v, isl_val_copy(duh));
	v = isl_val_add(v, isl_val_copy(s0));
	v = isl_val_sub_ui(v, 1);
	aff = isl_aff_val_on_domain(ls, v);
	v = isl_val_neg(isl_val_copy(dl));
	aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
	aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);

	return isl_inequality_from_aff(aff);
}

/* Construct the upper left constraint of the hexagonal tile, i.e.,
 *
 *	dl a + b >= h dl - (d - 1)/d				with d = den(dl)
 *	dl a + b - h dl + (d - 1)/d >= 0
 *
 * This constraint corresponds to (10) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_upper_left(__isl_take isl_local_space *ls,
	__isl_keep isl_val *h, __isl_keep isl_val *dl)
{
	isl_val *v, *d;
	isl_aff *aff;

	d = isl_val_get_den_val(dl);
	v = isl_val_sub_ui(isl_val_copy(d), 1);
	v = isl_val_div(v, d);
	v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(dl)));
	aff = isl_aff_val_on_domain(ls, v);
	aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(dl));
	aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);

	return isl_inequality_from_aff(aff);
}

/* Construct the upper right constraint of the hexagonal tile, i.e.,
 *
 *	du a - b >= du h - duh - (s0-1) - dlh - (d - 1)/d	with d = den(du)
 *	du a - b - du h + duh + (s0-1) + dlh + (d - 1)/d >= 0
 *
 * where dlh = floor(dl * h) and duh = floor(du * h).
 *
 * This constraint corresponds to (12) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_upper_right(
	__isl_take isl_local_space *ls, __isl_keep isl_val *h,
	__isl_keep isl_val *s0, __isl_keep isl_val *du,
	__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
	isl_val *v, *d;
	isl_aff *aff;

	d = isl_val_get_den_val(du);
	v = isl_val_sub_ui(isl_val_copy(d), 1);
	v = isl_val_div(v, d);
	v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(du)));
	v = isl_val_add(v, isl_val_copy(duh));
	v = isl_val_add(v, isl_val_copy(dlh));
	v = isl_val_add(v, isl_val_copy(s0));
	v = isl_val_sub_ui(v, 1);
	aff = isl_aff_val_on_domain(ls, v);
	aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(du));
	aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);

	return isl_inequality_from_aff(aff);
}

/* Construct the uppper constraint of the hexagonal tile, i.e.,
 *
 *	a >= 0
 *
 * This constraint corresponds to (13) in
 * "Hybrid Hexagonal/Classical Tiling for GPUs".
 */
static __isl_give isl_constraint *hex_upper(__isl_take isl_local_space *ls)
{
	isl_aff *aff;

	aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);

	return isl_inequality_from_aff(aff);
}

/* Construct the basic hexagonal tile shape.
 * "space" is the 2D space in which the hexagon should be constructed.
 * h is st-1, with st the tile size in the time dimension
 * s0 is the tile size in the space dimension
 * dl is a bound on the negative relative dependence distances, i.e.,
 *
 *	d_s >= -dl d_t
 *
 * du is a bound on the positive relative dependence distances, i.e.,
 *
 *	d_s <= du d_t
 *
 * with (d_t,d_s) any dependence distance vector.
 * dlh = floor(dl * h)
 * duh = floor(du * h)
 *
 * The shape of the hexagon is as follows:
 *
 *		0 dlh   dlh+s0-1
 *		   ______                __
 * 0		  /      \_             /
 *		 /         \_          /
 * h		/            \ ______ /
 * h+1		\_           //      \\_
 *		  \_        //         \\_
 * 2h+1		    \______//            \\
 *		0   duh   duh+s0-1
 *		             duh+s0-1+dlh
 *		                  duh+s0-1+dlh+1+s0+1
 *
 * The next hexagon is shifted by duh + dlh + 2 * s0.
 *
 * The slope of the "/" constraints is dl.
 * The slope of the "\_" constraints is du.
 */
static __isl_give isl_set *compute_hexagon(__isl_take isl_space *space,
	__isl_keep isl_val *h, __isl_keep isl_val *s0,
	__isl_keep isl_val *dl, __isl_keep isl_val *du,
	__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
	isl_local_space *ls;
	isl_constraint *c;
	isl_basic_set *bset;

	ls = isl_local_space_from_space(space);

	c = hex_lower_left(isl_local_space_copy(ls), h, du, duh);
	bset = isl_basic_set_from_constraint(c);

	c = hex_lower(isl_local_space_copy(ls), h);
	bset = isl_basic_set_add_constraint(bset, c);

	c = hex_lower_right(isl_local_space_copy(ls), h, s0, dl, duh);
	bset = isl_basic_set_add_constraint(bset, c);

	c = hex_upper_left(isl_local_space_copy(ls), h, dl);
	bset = isl_basic_set_add_constraint(bset, c);

	c = hex_upper_right(isl_local_space_copy(ls), h, s0, du, dlh, duh);
	bset = isl_basic_set_add_constraint(bset, c);

	c = hex_upper(ls);
	bset = isl_basic_set_add_constraint(bset, c);

	return isl_set_from_basic_set(bset);
}

/* Name of the ts-space.
 */
static const char *ts_space_name = "ts";

/* Construct and return the space ts[t, s].
 */
static __isl_give isl_space *construct_ts_space(isl_ctx *ctx)
{
	isl_space *s;

	s = isl_space_set_alloc(ctx, 0, 2);
	s = isl_space_set_tuple_name(s, isl_dim_set, ts_space_name);

	return s;
}

/* Name of the local ts-space.
 */
static const char *local_ts_space_name = "local_ts";

/* Construct and return the space local_ts[t, s].
 */
static __isl_give isl_space *construct_local_ts_space(isl_ctx *ctx)
{
	isl_space *s;

	s = isl_space_set_alloc(ctx, 0, 2);
	s = isl_space_set_tuple_name(s, isl_dim_set, local_ts_space_name);

	return s;
}

/* Compute the total size of a tile for the space dimensions,
 * i.e., those corresponding to the child node
 * of the input pattern.
 * If S_0 is the original tile size in the first space dimension,
 * then the first entry of "space_sizes" is equal to
 * W = 2*S_0 + floor(d_l h) + floor(d_u h).
 * The remaining entries are the same as in the original tile sizes.
 * "tile_sizes" contains the original tile sizes, including
 * the tile size corresponding to the parent node.
 * "dlh" is equal to floor(d_l h).
 * "duh" is equal to floor(d_u h).
 */
static __isl_give isl_multi_val *compute_space_sizes(
	__isl_keep isl_multi_val *tile_sizes,
	__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
	isl_val *size;
	isl_multi_val *space_sizes;

	space_sizes = isl_multi_val_copy(tile_sizes);
	space_sizes = isl_multi_val_factor_range(space_sizes);
	size = isl_multi_val_get_val(space_sizes, 0);
	size = isl_val_mul_ui(size, 2);
	size = isl_val_add(size, isl_val_copy(duh));
	size = isl_val_add(size, isl_val_copy(dlh));
	space_sizes = isl_multi_val_set_val(space_sizes, 0, size);

	return space_sizes;
}

/* Compute the offset of phase 1 with respect to phase 0
 * in the ts-space ("space").
 * In particular, return
 *
 *	ts[st, s0 + duh]
 */
static __isl_give isl_multi_val *compute_phase_shift(
	__isl_keep isl_space *space, __isl_keep isl_val *st,
	__isl_keep isl_val *s0, __isl_keep isl_val *duh)
{
	isl_val *v;
	isl_multi_val *phase_shift;

	phase_shift = isl_multi_val_zero(isl_space_copy(space));
	phase_shift = isl_multi_val_set_val(phase_shift, 0, isl_val_copy(st));
	v = isl_val_add(isl_val_copy(duh), isl_val_copy(s0));
	phase_shift = isl_multi_val_set_val(phase_shift, 1, v);

	return phase_shift;
}

/* Return the function
 *
 *	ts[t, s] -> floor(t/(2 * st))
 *
 * representing the time tile.
 * "space" is the space ts[t, s].
 */
static __isl_give isl_aff *compute_time_tile(__isl_keep isl_space *space,
	__isl_keep isl_val *st)
{
	isl_val *v;
	isl_aff *t;
	isl_local_space *ls;

	ls = isl_local_space_from_space(isl_space_copy(space));
	t = isl_aff_var_on_domain(ls, isl_dim_set, 0);
	v = isl_val_mul_ui(isl_val_copy(st), 2);
	t = isl_aff_floor(isl_aff_scale_down_val(t, v));

	return t;
}

/* Compute a shift in the space dimension for tiles
 * at time tile T = floor(t/(2 * S_t))
 * such that they align to a multiple of the total space tile dimension W.
 * In particular, compute
 *
 *	ts[t, s] -> s + (-(2 * shift_s)*T) % W
 *
 * where shift_s is the shift of phase 1 with respect to phase 0
 * in the space dimension (the first element of "phase_shift").
 * W is stored in the first element of "space_sizes".
 * "time_tile" is the function
 *
 *	ts[t, s] -> floor(t/(2 * S_T))
 *
 * Since phase 1 is shifted by shift_s with respect to phase 0,
 * the next line of phase 0 (at T+1) is shifted by 2*shift_s
 * with respect to the previous line (at T).
 * A shift of -(2 * shift_s)*T therefore allows the basic pattern
 * (which starts at 0) to be applied.
 * However, this shift will be used to obtain the tile coordinate
 * in the first space dimension and if the original values
 * in the space dimension are non-negative, then the shift should
 * not make them negative.  Moreover, the shift should be as minimal
 * as possible.
 * Since the pattern repeats itself with a period of W in the space
 * dimension, the shift can be replaced by (-(2 * shift_s)*T) % W.
 */
static __isl_give isl_aff *compute_shift_space(__isl_keep isl_aff *time_tile,
	__isl_keep isl_multi_val *space_sizes,
	__isl_keep isl_multi_val *phase_shift)
{
	isl_val *v;
	isl_aff *s, *t;
	isl_local_space *ls;

	ls = isl_local_space_from_space(isl_aff_get_domain_space(time_tile));
	t = isl_aff_copy(time_tile);
	v = isl_val_mul_ui(isl_multi_val_get_val(phase_shift, 1), 2);
	v = isl_val_neg(v);
	t = isl_aff_scale_val(t, v);
	v = isl_multi_val_get_val(space_sizes, 0);
	t = isl_aff_mod_val(t, v);
	s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
	s = isl_aff_add(s, t);

	return s;
}

/* Give the phase_shift ts[S_t, S_0 + floor(d_u h)],
 * compute a function that applies the shift, i.e.,
 *
 *	ts[t, s] -> ts[t + S_t, s + S_0 + floor(d_u h)],
 */
static __isl_give isl_multi_aff *compute_shift_phase(
	__isl_keep isl_multi_val *phase_shift)
{
	isl_space *space;
	isl_multi_aff *shift;

	space = isl_multi_val_get_space(phase_shift);
	shift = isl_multi_aff_multi_val_on_space(space,
					isl_multi_val_copy(phase_shift));
	space = isl_multi_aff_get_space(shift);
	shift = isl_multi_aff_add(shift, isl_multi_aff_identity(space));

	return shift;
}

/* Compute a mapping from the ts-space to the local coordinates
 * within each tile.  In particular, compute
 *
 *	ts[t, s] -> local_ts[t % (2 S_t), (s + (-(2 * shift_s)*T) % W) % W]
 *
 * "ts" is the space ts[t, s]
 * "local_ts" is the space local_ts[t, s]
 * "shift_space" is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W
 * "st" is the tile size in the time dimension S_t.
 * The first element of "space_sizes" is equal to W.
 */
static __isl_give isl_multi_aff *compute_localize(
	__isl_keep isl_space *local_ts, __isl_keep isl_aff *shift_space,
	__isl_keep isl_val *st, __isl_keep isl_multi_val *space_sizes)
{
	isl_val *v;
	isl_space *space;
	isl_aff *s, *t;
	isl_multi_aff *localize;

	space = isl_aff_get_domain_space(shift_space);
	local_ts = isl_space_copy(local_ts);
	space = isl_space_map_from_domain_and_range(space, local_ts);
	localize = isl_multi_aff_identity(space);
	t = isl_multi_aff_get_aff(localize, 0);
	v = isl_val_mul_ui(isl_val_copy(st), 2);
	t = isl_aff_mod_val(t, v);
	localize = isl_multi_aff_set_aff(localize, 0, t);
	s = isl_aff_copy(shift_space);
	v = isl_multi_val_get_val(space_sizes, 0);
	s = isl_aff_mod_val(s, v);
	localize = isl_multi_aff_set_aff(localize, 1, s);

	return localize;
}

/* Set the project_ts field of "tiling".
 *
 * This field projects the space of the input schedule to the ts-space.
 * It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
 */
static __isl_give ppcg_ht_tiling *ppcg_ht_tiling_set_project_ts(
	__isl_take ppcg_ht_tiling *tiling)
{
	int n;
	isl_space *space;
	isl_multi_aff *project;

	if (!tiling)
		return NULL;

	space = ppcg_ht_tiling_get_input_space(tiling);
	n = isl_space_dim(space, isl_dim_set);
	project = isl_multi_aff_project_out_map(space, isl_dim_set, 2, n - 2);
	project = isl_multi_aff_set_tuple_name(project,
						isl_dim_out, ts_space_name);
	if (!project)
		return ppcg_ht_tiling_free(tiling);

	tiling->project_ts = project;

	return tiling;
}

/* Construct a hybrid tiling description from bounds on the dependence
 * distances "bounds".
 * "input_node" points to the original parent node.
 * "input_schedule" is the combined schedule of the parent and child
 * node in the input.
 * "tile_sizes" are the original, user specified tile sizes.
 */
static __isl_give ppcg_ht_tiling *ppcg_ht_bounds_construct_tiling(
	__isl_take ppcg_ht_bounds *bounds,
	__isl_keep isl_schedule_node *input_node,
	__isl_keep isl_multi_union_pw_aff *input_schedule,
	__isl_keep isl_multi_val *tile_sizes)
{
	isl_ctx *ctx;
	ppcg_ht_tiling *tiling;
	isl_multi_val *space_sizes, *phase_shift;
	isl_aff *time_tile, *shift_space;
	isl_multi_aff *localize;
	isl_val *h, *duh, *dlh;
	isl_val *st, *s0, *du, *dl;
	isl_space *ts, *local_ts;

	if (!bounds || !input_node || !input_schedule || !tile_sizes)
		goto error;

	ctx = isl_multi_union_pw_aff_get_ctx(input_schedule);
	tiling = isl_calloc_type(ctx, struct ppcg_ht_tiling);
	if (!tiling)
		goto error;
	tiling->ref = 1;

	st = isl_multi_val_get_val(tile_sizes, 0);
	h = isl_val_sub_ui(isl_val_copy(st), 1);
	s0 = isl_multi_val_get_val(tile_sizes, 1);
	du = ppcg_ht_bounds_get_upper(bounds);
	dl = ppcg_ht_bounds_get_lower(bounds, 0);

	duh = isl_val_floor(isl_val_mul(isl_val_copy(du), isl_val_copy(h)));
	dlh = isl_val_floor(isl_val_mul(isl_val_copy(dl), isl_val_copy(h)));

	ts = construct_ts_space(ctx);
	local_ts = construct_local_ts_space(ctx);

	space_sizes = compute_space_sizes(tile_sizes, dlh, duh);
	phase_shift = compute_phase_shift(ts, st, s0, duh);
	time_tile = compute_time_tile(ts, st);
	shift_space = compute_shift_space(time_tile, space_sizes, phase_shift);
	localize = compute_localize(local_ts, shift_space, st, space_sizes);
	isl_space_free(ts);

	tiling->input_node = isl_schedule_node_copy(input_node);
	tiling->input_schedule = isl_multi_union_pw_aff_copy(input_schedule);
	tiling->space_sizes = space_sizes;
	tiling->bounds = bounds;
	tiling->local_time = isl_multi_aff_get_aff(localize, 0);
	tiling->hex = compute_hexagon(local_ts, h, s0, dl, du, dlh, duh);
	tiling->hex = isl_set_preimage_multi_aff(tiling->hex, localize);
	tiling->time_tile = time_tile;
	tiling->shift_space = shift_space;
	tiling->shift_phase = compute_shift_phase(phase_shift);
	isl_multi_val_free(phase_shift);

	isl_val_free(duh);
	isl_val_free(dlh);
	isl_val_free(du);
	isl_val_free(dl);
	isl_val_free(s0);
	isl_val_free(st);
	isl_val_free(h);

	if (!tiling->input_schedule || !tiling->local_time || !tiling->hex ||
	    !tiling->shift_space || !tiling->shift_phase)
		return ppcg_ht_tiling_free(tiling);

	tiling = ppcg_ht_tiling_set_project_ts(tiling);

	return tiling;
error:
	ppcg_ht_bounds_free(bounds);
	return NULL;
}

/* Are all members of the band node "node" coincident?
 */
static isl_bool all_coincident(__isl_keep isl_schedule_node *node)
{
	int i, n;

	n = isl_schedule_node_band_n_member(node);
	for (i = 0; i < n; ++i) {
		isl_bool c;

		c = isl_schedule_node_band_member_get_coincident(node, i);
		if (c < 0 || !c)
			return c;
	}

	return isl_bool_true;
}

/* Does "node" satisfy the properties of the inner node in the input
 * pattern for hybrid tiling?
 * That is, is it a band node with only coincident members, of which
 * there is at least one?
 */
static isl_bool has_child_properties(__isl_keep isl_schedule_node *node)
{
	if (!node)
		return isl_bool_error;
	if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
		return isl_bool_false;
	if (isl_schedule_node_band_n_member(node) < 1)
		return isl_bool_false;
	return all_coincident(node);
}

/* Does "node" satisfy the properties of the outer node in the input
 * pattern for hybrid tiling?
 * That is, is it a band node with a single member?
 */
static isl_bool has_parent_properties(__isl_keep isl_schedule_node *node)
{
	if (!node)
		return isl_bool_error;
	if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
		return isl_bool_false;
	if (isl_schedule_node_band_n_member(node) != 1)
		return isl_bool_false;
	return isl_bool_true;
}

/* Does the parent of "node" satisfy the input patttern for hybrid tiling?
 * That is, does "node" satisfy the properties of the inner node and
 * does the parent of "node" satisfy the properties of the outer node?
 */
isl_bool ppcg_ht_parent_has_input_pattern(__isl_keep isl_schedule_node *node)
{
	isl_bool has_pattern;

	has_pattern = has_child_properties(node);
	if (has_pattern < 0 || !has_pattern)
		return has_pattern;

	node = isl_schedule_node_copy(node);
	node = isl_schedule_node_parent(node);
	has_pattern = has_parent_properties(node);
	isl_schedule_node_free(node);

	return has_pattern;
}

/* Does "node" satisfy the input patttern for hybrid tiling?
 * That is, does "node" satisfy the properties of the outer node and
 * does the child of "node" satisfy the properties of the inner node?
 */
isl_bool ppcg_ht_has_input_pattern(__isl_keep isl_schedule_node *node)
{
	isl_bool has_pattern;

	has_pattern = has_parent_properties(node);
	if (has_pattern < 0 || !has_pattern)
		return has_pattern;

	node = isl_schedule_node_get_child(node, 0);
	has_pattern = has_child_properties(node);
	isl_schedule_node_free(node);

	return has_pattern;
}

/* Check that "node" satisfies the input pattern for hybrid tiling.
 * Error out if it does not.
 */
static isl_stat check_input_pattern(__isl_keep isl_schedule_node *node)
{
	isl_bool has_pattern;

	has_pattern = ppcg_ht_has_input_pattern(node);
	if (has_pattern < 0)
		return isl_stat_error;
	if (!has_pattern)
		isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
			"invalid input pattern for hybrid tiling",
			return isl_stat_error);

	return isl_stat_ok;
}

/* Extract the input schedule from "node", i.e., the product
 * of the partial schedules of the parent and child nodes
 * in the input pattern.
 */
static __isl_give isl_multi_union_pw_aff *extract_input_schedule(
	__isl_keep isl_schedule_node *node)
{
	isl_multi_union_pw_aff *partial, *partial2;

	partial = isl_schedule_node_band_get_partial_schedule(node);
	node = isl_schedule_node_get_child(node, 0);
	partial2 = isl_schedule_node_band_get_partial_schedule(node);
	isl_schedule_node_free(node);

	return isl_multi_union_pw_aff_range_product(partial, partial2);
}

/* Collect all dependences from "scop" that are relevant for performing
 * hybrid tiling on "node" and its child and map them to the schedule
 * space of this pair of nodes.
 *
 * In case live range reordering is not used,
 * the flow and the false dependences are collected.
 * In case live range reordering is used,
 * the flow and the forced dependences are collected, as well
 * as the order dependences that are adjacent to non-local
 * flow dependences.
 *
 * In all cases, only dependences that map to the same instance
 * of the outer part of the schedule are considered.
 */
static __isl_give isl_map *collect_deps(struct ppcg_scop *scop,
	__isl_keep isl_schedule_node *node)
{
	isl_space *space;
	isl_multi_union_pw_aff *prefix, *partial;
	isl_union_map *flow, *other, *dep, *umap;
	isl_map *map;

	prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
	partial = extract_input_schedule(node);
	space = isl_multi_union_pw_aff_get_space(partial);

	flow = isl_union_map_copy(scop->dep_flow);
	flow = isl_union_map_eq_at_multi_union_pw_aff(flow,
					isl_multi_union_pw_aff_copy(prefix));
	if (!scop->options->live_range_reordering) {
		other = isl_union_map_copy(scop->dep_false);
		other = isl_union_map_eq_at_multi_union_pw_aff(other, prefix);
	} else {
		isl_union_map *local, *non_local, *order, *adj;
		isl_union_set *domain, *range;

		other = isl_union_map_copy(scop->dep_forced);
		other = isl_union_map_eq_at_multi_union_pw_aff(other,
					isl_multi_union_pw_aff_copy(prefix));
		local = isl_union_map_copy(flow);
		local = isl_union_map_eq_at_multi_union_pw_aff(local,
					isl_multi_union_pw_aff_copy(partial));
		non_local = isl_union_map_copy(flow);
		non_local = isl_union_map_subtract(non_local, local);

		order = isl_union_map_copy(scop->dep_order);
		order = isl_union_map_eq_at_multi_union_pw_aff(order, prefix);
		adj = isl_union_map_copy(order);
		domain = isl_union_map_domain(isl_union_map_copy(non_local));
		domain = isl_union_set_coalesce(domain);
		adj = isl_union_map_intersect_range(adj, domain);
		other = isl_union_map_union(other, adj);

		adj = order;
		range = isl_union_map_range(non_local);
		range = isl_union_set_coalesce(range);
		adj = isl_union_map_intersect_domain(adj, range);
		other = isl_union_map_union(other, adj);
	}
	dep = isl_union_map_union(flow, other);

	umap = isl_union_map_from_multi_union_pw_aff(partial);
	dep = isl_union_map_apply_domain(dep, isl_union_map_copy(umap));
	dep = isl_union_map_apply_range(dep, umap);

	space = isl_space_map_from_set(space);
	map = isl_union_map_extract_map(dep, space);
	isl_union_map_free(dep);

	map = isl_map_coalesce(map);

	return map;
}

/* Given a constraint of the form
 *
 *	a i_0 + b i_1 >= 0
 * or
 *	a i_0 + b i_1 = 0
 *
 * use it to update one or both of the non-negative bounds
 * in "list" = (min, max) such that
 *
 *	i_1 >= -min i_0
 * and
 *	i_1 <= max i_0
 *
 * If b = 0, then the constraint cannot be used.
 * Otherwise, the constraint is equivalent to
 *
 *	sgn(b) i_1 >= - a/abs(b) i_0
 * i.e.,
 *	i_1 >= - a/abs(b) i_0
 * or
 *	i_1 <= a/abs(b) i_0
 *
 * Set the first or second element of "list" to max(0, a/abs(b)),
 * according to the sign of "b".  Or set both in case the constraint
 * is an equality, taking into account the sign change.
 */
static __isl_give isl_val_list *list_set_min_max(__isl_take isl_val_list *list,
	__isl_keep isl_constraint *c)
{
	isl_val *a, *b;
	int sign;
	int pos;
	isl_bool eq, is_zero, is_neg;

	eq = isl_constraint_is_equality(c);
	if (eq < 0)
		return isl_val_list_free(list);

	b = isl_constraint_get_coefficient_val(c, isl_dim_set, 1);
	is_zero = isl_val_is_zero(b);
	if (is_zero == isl_bool_true) {
		isl_val_free(b);
		return list;
	}
	a = isl_constraint_get_coefficient_val(c, isl_dim_set, 0);
	sign = isl_val_sgn(b);
	b = isl_val_abs(b);
	a = isl_val_div(a, b);

	if (eq)
		b = isl_val_copy(a);

	pos = sign > 0 ? 0 : 1;
	is_neg = isl_val_is_neg(a);
	if (is_neg == isl_bool_true)
		a = isl_val_set_si(a, 0);
	list = isl_val_list_set_val(list, pos, a);

	if (!eq)
		return is_neg < 0 ? isl_val_list_free(list) : list;

	pos = 1 - pos;
	a = isl_val_neg(b);
	is_neg = isl_val_is_neg(a);
	if (is_neg == isl_bool_true)
		a = isl_val_set_si(a, 0);
	list = isl_val_list_set_val(list, pos, a);

	return is_neg < 0 ? isl_val_list_free(list) : list;
}

/* If constraint "c" passes through the origin, then try and use it
 * to update the non-negative bounds in "list" = (min, max) such that
 *
 *	i_1 >= -min i_0
 * and
 *	i_1 <= max i_0
 */
static isl_stat set_min_max(__isl_take isl_constraint *c, void *user)
{
	isl_val *v;
	isl_val_list **list = user;
	isl_bool is_zero;

	v = isl_constraint_get_constant_val(c);
	is_zero = isl_val_is_zero(v);
	isl_val_free(v);

	if (is_zero == isl_bool_true)
		*list = list_set_min_max(*list, c);

	isl_constraint_free(c);
	return is_zero < 0 ? isl_stat_error : isl_stat_ok;
}

/* Given a set of dependence distance vectors "dist", compute
 * pair of non-negative bounds min and max such that
 *
 *	d_pos >= -min d_0
 * and
 *	d_pos <= max d_0
 *
 * and return the pair (min, max).
 * If no bound can be found in either direction, then the bound
 * is replaced by NaN.
 *
 * The dependence distances are first projected onto the (d_0, d_pos).
 * Then the zero dependence distance is added and the convex hull is computed.
 * Finally, the bounds are extracted from the constraints of the convex hull
 * that pass through the origin.
 */
static __isl_give isl_val_list *min_max_dist(__isl_keep isl_set *dist, int pos)
{
	isl_space *space;
	isl_basic_set *hull;
	int dim;
	isl_ctx *ctx;
	isl_val *nan;
	isl_val_list *list;

	ctx = isl_set_get_ctx(dist);
	nan = isl_val_nan(ctx);
	list = isl_val_list_alloc(ctx, 2);
	list = isl_val_list_add(list, isl_val_copy(nan));
	list = isl_val_list_add(list, nan);

	dist = isl_set_copy(dist);
	dim = isl_set_dim(dist, isl_dim_set);
	if (dist && pos >= dim)
		isl_die(ctx, isl_error_internal, "position out of bounds",
			dist = isl_set_free(dist));
	dist = isl_set_project_out(dist, isl_dim_set, pos + 1, dim - (pos + 1));
	dist = isl_set_project_out(dist, isl_dim_set, 1, pos - 1);

	space = isl_set_get_space(dist);
	dist = isl_set_union(dist, isl_set_from_point(isl_point_zero(space)));
	dist = isl_set_remove_divs(dist);
	hull = isl_set_convex_hull(dist);

	if (isl_basic_set_foreach_constraint(hull, &set_min_max, &list) < 0)
		list = isl_val_list_free(list);
	isl_basic_set_free(hull);

	return list;
}

/* Given a schedule node "node" that, together with its child,
 * satisfies the input pattern for hybrid tiling, compute bounds
 * on the relative dependence distances of the child node with
 * respect to the parent node.  These bounds are needed to
 * construct a hybrid tiling.
 *
 * First all relevant dependences are collected and mapped
 * to the schedule space of the pair of nodes.  Then, the
 * dependence distances are computed in this space.
 *
 * These dependence distances are then projected onto a two-dimensional
 * space consisting of the single schedule dimension of the outer node
 * and one of the schedule dimensions of the inner node.
 * The maximal and minimal relative dependence distances are extracted
 * from these projections.
 * This process is repeated for each of the schedule dimensions
 * of the inner node.  For the first dimension, both minimal and
 * maximal relative dependence distances are stored in the result.
 * For the other dimensions, only the minimal relative dependence
 * distance is stored.
 */
__isl_give ppcg_ht_bounds *ppcg_ht_compute_bounds(struct ppcg_scop *scop,
	__isl_keep isl_schedule_node *node)
{
	ppcg_ht_bounds *bnd;
	isl_space *space;
	isl_map *map;
	isl_set *dist;
	isl_val_list *pair;
	isl_schedule_node *child;
	int n;
	int i, dim;

	if (!scop || !node || check_input_pattern(node) < 0)
		return NULL;

	child = isl_schedule_node_get_child(node, 0);
	space = isl_schedule_node_band_get_space(child);
	dim = isl_schedule_node_band_n_member(child);
	isl_schedule_node_free(child);
	bnd = ppcg_ht_bounds_alloc(space);
	if (!bnd)
		return NULL;

	map = collect_deps(scop, node);

	dist = isl_map_deltas(map);
	n = isl_set_dim(dist, isl_dim_param);
	dist = isl_set_project_out(dist, isl_dim_param, 0, n);

	pair = min_max_dist(dist, 1);
	bnd = ppcg_ht_bounds_set_lower(bnd, 0, isl_val_list_get_val(pair, 0));
	bnd = ppcg_ht_bounds_set_upper(bnd, isl_val_list_get_val(pair, 1));
	isl_val_list_free(pair);

	for (i = 1; i < dim; ++i) {
		pair = min_max_dist(dist, 1 + i);
		bnd = ppcg_ht_bounds_set_lower(bnd, i,
						isl_val_list_get_val(pair, 0));
		isl_val_list_free(pair);
	}

	isl_set_free(dist);

	return bnd;
}

/* Check if all the fields of "phase" are valid, freeing "phase"
 * if they are not.
 */
static __isl_give ppcg_ht_phase *check_phase(__isl_take ppcg_ht_phase *phase)
{
	if (!phase)
		return NULL;

	if (!phase->tiling || !phase->local_time ||
	    !phase->shift_space || !phase->domain)
		return ppcg_ht_phase_free(phase);

	return phase;
}

/* Construct a ppcg_ht_phase object, that simply copies
 * information from "tiling".
 * That is, the result is defined over the "ts" space and
 * corresponds to phase 1.
 */
static __isl_give ppcg_ht_phase *construct_phase(
	__isl_keep ppcg_ht_tiling *tiling)
{
	isl_ctx *ctx;
	ppcg_ht_phase *phase;

	if (!tiling)
		return NULL;

	ctx = ppcg_ht_tiling_get_ctx(tiling);
	phase = isl_calloc_type(ctx, struct ppcg_ht_phase);
	if (!phase)
		return NULL;
	phase->tiling = ppcg_ht_tiling_copy(tiling);
	phase->time_tile = isl_aff_copy(tiling->time_tile);
	phase->local_time = isl_aff_copy(tiling->local_time);
	phase->shift_space = isl_aff_copy(tiling->shift_space);
	phase->domain = isl_set_copy(tiling->hex);

	return check_phase(phase);
}

/* Align the parameters of the elements of "phase" to those of "space".
 */
static __isl_give ppcg_ht_phase *phase_align_params(
	__isl_take ppcg_ht_phase *phase, __isl_take isl_space *space)
{
	if (!phase)
		goto error;

	phase->time_tile = isl_aff_align_params(phase->time_tile,
							isl_space_copy(space));
	phase->local_time = isl_aff_align_params(phase->local_time,
							isl_space_copy(space));
	phase->shift_space = isl_aff_align_params(phase->shift_space,
							isl_space_copy(space));
	phase->domain = isl_set_align_params(phase->domain, space);

	return check_phase(phase);
error:
	isl_space_free(space);
	return NULL;
}

/* Pull back "phase" over "ma".
 * That is, take a phase defined over the range of "ma" and
 * turn it into a phase defined over the domain of "ma".
 */
static __isl_give ppcg_ht_phase *pullback_phase(__isl_take ppcg_ht_phase *phase,
	__isl_take isl_multi_aff *ma)
{
	phase = phase_align_params(phase, isl_multi_aff_get_space(ma));
	if (!phase)
		goto error;

	phase->time_tile = isl_aff_pullback_multi_aff(phase->time_tile,
							isl_multi_aff_copy(ma));
	phase->local_time = isl_aff_pullback_multi_aff(phase->local_time,
							isl_multi_aff_copy(ma));
	phase->shift_space = isl_aff_pullback_multi_aff(phase->shift_space,
							isl_multi_aff_copy(ma));
	phase->domain = isl_set_preimage_multi_aff(phase->domain, ma);

	return check_phase(phase);
error:
	isl_multi_aff_free(ma);
	return NULL;
}

/* Pullback "phase" over phase->tiling->shift_phase, which shifts
 * phase 0 to phase 1.  The pullback therefore takes a phase 1
 * description and turns it into a phase 0 description.
 */
static __isl_give ppcg_ht_phase *shift_phase(__isl_take ppcg_ht_phase *phase)
{
	ppcg_ht_tiling *tiling;

	if (!phase)
		return NULL;

	tiling = phase->tiling;
	return pullback_phase(phase, isl_multi_aff_copy(tiling->shift_phase));
}

/* Take a "phase" defined over the ts-space and plug in the projection
 * from the input schedule space to the ts-space.
 * The result is then defined over this input schedule space.
 */
static __isl_give ppcg_ht_phase *lift_phase(__isl_take ppcg_ht_phase *phase)
{
	ppcg_ht_tiling *tiling;

	if (!phase)
		return NULL;

	tiling = phase->tiling;
	return pullback_phase(phase, isl_multi_aff_copy(tiling->project_ts));
}

/* Compute the shift that should be added to the space band
 * in order to be able to apply rectangular tiling to the space.
 * Store the shift in phase->space_shift.
 *
 * In the first dimension, it is equal to shift_space - s.
 * For phase 1, this results in
 *
 *	(-(2 * shift_s)*T) % W
 *
 * In phase 0, the "s" in shift_space has been replaced by "s + shift_s",
 * so the result is
 *
 *	shift_s + (-(2 * shift_s)*T) % W
 *
 * In the other dimensions, the shift is equal to
 *
 *	dl_i * local_time.
 */
static __isl_give ppcg_ht_phase *compute_space_shift(
	__isl_take ppcg_ht_phase *phase)
{
	int i, n;
	isl_space *space;
	isl_local_space *ls;
	isl_aff *aff, *s;
	isl_multi_aff *space_shift;

	if (!phase)
		return NULL;

	space = ppcg_ht_phase_get_input_space(phase);
	space = isl_space_unwrap(space);
	space = isl_space_range_map(space);

	space_shift = isl_multi_aff_zero(space);
	aff = isl_aff_copy(phase->shift_space);
	ls = isl_local_space_from_space(isl_aff_get_domain_space(aff));
	s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
	aff = isl_aff_sub(aff, s);
	space_shift = isl_multi_aff_set_aff(space_shift, 0, aff);

	n = isl_multi_aff_dim(space_shift, isl_dim_out);
	for (i = 1; i < n; ++i) {
		isl_val *v;
		isl_aff *time;

		v = ppcg_ht_bounds_get_lower(phase->tiling->bounds, i);
		time = isl_aff_copy(phase->local_time);
		time = isl_aff_scale_val(time, v);
		space_shift = isl_multi_aff_set_aff(space_shift, i, time);
	}

	if (!space_shift)
		return ppcg_ht_phase_free(phase);
	phase->space_shift = space_shift;
	return phase;
}

/* Compute the space tiling and store the result in phase->space_tile.
 * The space tiling is of the form
 *
 *	[P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
 */
static __isl_give ppcg_ht_phase *compute_space_tile(
	__isl_take ppcg_ht_phase *phase)
{
	isl_space *space;
	isl_multi_val *space_sizes;
	isl_multi_aff *space_shift;
	isl_multi_aff *tile;

	if (!phase)
		return NULL;

	space = ppcg_ht_phase_get_input_space(phase);
	space = isl_space_unwrap(space);
	tile = isl_multi_aff_range_map(space);
	space_shift = isl_multi_aff_copy(phase->space_shift);
	tile = isl_multi_aff_add(space_shift, tile);
	space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
	tile = isl_multi_aff_scale_down_multi_val(tile, space_sizes);
	tile = isl_multi_aff_floor(tile);

	if (!tile)
		return ppcg_ht_phase_free(phase);
	phase->space_tile = tile;
	return phase;
}

/* Construct a representation for one of the two phase for hybrid tiling
 * "tiling".  If "shift" is not set, then the phase is constructed
 * directly from the hexagonal tile shape in "tiling", which represents
 * the phase-1 tiles.  If "shift" is set, then this tile shape is shifted
 * back over tiling->shift_phase to obtain the phase-0 tiles.
 *
 * First copy data from "tiling", then optionally shift the phase and
 * finally move the tiling from the "ts" space of "tiling" to
 * the space of the input pattern.
 *
 * After the basic phase has been computed, also compute
 * the corresponding space shift.
 */
static __isl_give ppcg_ht_phase *ppcg_ht_tiling_compute_phase(
	__isl_keep ppcg_ht_tiling *tiling, int shift)
{
	ppcg_ht_phase *phase;

	phase = construct_phase(tiling);
	if (shift)
		phase = shift_phase(phase);
	phase = lift_phase(phase);

	phase = compute_space_shift(phase);
	phase = compute_space_tile(phase);

	return phase;
}

/* Consruct a function that is equal to the time tile of "phase0"
 * on the domain of "phase0" and equal to the time tile of "phase1"
 * on the domain of "phase1".
 * The two domains are assumed to form a partition of the input
 * schedule space.
 */
static __isl_give isl_pw_multi_aff *combine_time_tile(
	__isl_keep ppcg_ht_phase *phase0, __isl_keep ppcg_ht_phase *phase1)
{
	isl_aff *T;
	isl_pw_aff *time, *time1;

	if (!phase0 || !phase1)
		return NULL;

	T = isl_aff_copy(phase0->time_tile);
	time = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase0), T);

	T = isl_aff_copy(phase1->time_tile);
	time1 = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase1), T);

	time = isl_pw_aff_union_add(time, time1);

	return isl_pw_multi_aff_from_pw_aff(time);
}

/* Name used in mark nodes that contain a pointer to a ppcg_ht_phase.
 */
static char *ppcg_phase_name = "phase";

/* Does "id" contain a pointer to a ppcg_ht_phase?
 * That is, is it called "phase"?
 */
static isl_bool is_phase_id(__isl_keep isl_id *id)
{
	const char *name;

	name = isl_id_get_name(id);
	if (!name)
		return isl_bool_error;

	return !strcmp(name, ppcg_phase_name);
}

/* Given a mark node with an identifier that points to a ppcg_ht_phase,
 * extract this ppcg_ht_phase pointer.
 */
__isl_keep ppcg_ht_phase *ppcg_ht_phase_extract_from_mark(
	__isl_keep isl_schedule_node *node)
{
	isl_bool is_phase;
	isl_id *id;
	void *p;

	if (!node)
		return NULL;
	if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
		isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
			"not a phase mark", return NULL);

	id = isl_schedule_node_mark_get_id(node);
	is_phase = is_phase_id(id);
	p = isl_id_get_user(id);
	isl_id_free(id);

	if (is_phase < 0)
		return NULL;
	if (!is_phase)
		isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
			"not a phase mark", return NULL);

	return p;
}

/* Insert a mark node at "node" holding a pointer to "phase".
 */
static __isl_give isl_schedule_node *insert_phase(
	__isl_take isl_schedule_node *node, __isl_take ppcg_ht_phase *phase)
{
	isl_ctx *ctx;
	isl_id *id;

	if (!node)
		goto error;
	ctx = isl_schedule_node_get_ctx(node);
	id = isl_id_alloc(ctx, ppcg_phase_name, phase);
	if (!id)
		goto error;
	id = isl_id_set_free_user(id, &ppcg_ht_phase_free_wrap);
	node = isl_schedule_node_insert_mark(node, id);

	return node;
error:
	ppcg_ht_phase_free(phase);
	isl_schedule_node_free(node);
	return NULL;
}

/* Construct a mapping from the elements of the original pair of bands
 * to which tiling was applied that belong to a tile of "phase"
 * to that tile, preserving the values for the outer bands.
 *
 * The mapping is of the form
 *
 *	[[outer] -> [P -> C]] -> [[outer] -> [tile]]
 *
 * where tile is defined by a concatenation of the time_tile and
 * the space_tile.
 */
static __isl_give isl_map *construct_tile_map(__isl_keep ppcg_ht_phase *phase)
{
	int depth;
	isl_space *space;
	isl_multi_aff *ma;
	isl_multi_aff *tiling;
	isl_map *el2tile;

	depth = isl_schedule_node_get_schedule_depth(
						phase->tiling->input_node);
	space = isl_aff_get_space(phase->time_tile);
	space = isl_space_params(space);
	space = isl_space_set_from_params(space);
	space = isl_space_add_dims(space, isl_dim_set, depth);
	space = isl_space_map_from_set(space);
	ma = isl_multi_aff_identity(space);

	tiling = isl_multi_aff_flat_range_product(
		isl_multi_aff_from_aff(isl_aff_copy(phase->time_tile)),
		isl_multi_aff_copy(phase->space_tile));
	el2tile = isl_map_from_multi_aff(tiling);
	el2tile = isl_map_intersect_domain(el2tile,
						isl_set_copy(phase->domain));
	el2tile = isl_map_product(isl_map_from_multi_aff(ma), el2tile);

	return el2tile;
}

/* Return a description of the full tiles of "phase" at the point
 * in the original schedule tree where the tiling was applied.
 *
 * First construct a mapping from the input schedule dimensions
 * up to an including the original pair of bands to which hybrid tiling
 * was applied to schedule dimensions in which this original pair
 * has been replaced by the tiles.
 * This mapping is of the form
 *
 *	[[outer] -> [P -> C]] -> [[outer] -> [tile]]
 *
 * Apply this mapping to the set of all values for the input
 * schedule dimensions and then apply its inverse.
 * The result is the set of values for the input schedule dimensions
 * that would map to any of the tiles.  Subtracting from this set
 * the set of values that are actually executed produces the set
 * of values that belong to a tile but that are not executed.
 * Mapping these back to the tiles produces a description of
 * the partial tiles.  Subtracting these from the set of all tiles
 * produces a description of the full tiles in the form
 *
 *	[[outer] -> [tile]]
 */
static __isl_give isl_set *compute_full_tile(__isl_keep ppcg_ht_phase *phase)
{
	isl_schedule_node *node;
	isl_union_set *domain;
	isl_union_map *prefix, *schedule;
	isl_set *all, *partial, *all_el;
	isl_map *tile2el, *el2tile;
	isl_multi_union_pw_aff *mupa;

	el2tile = construct_tile_map(phase);
	tile2el = isl_map_reverse(isl_map_copy(el2tile));

	node = phase->tiling->input_node;
	prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
	domain = isl_schedule_node_get_domain(node);
	mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
	schedule = isl_union_map_from_multi_union_pw_aff(mupa);
	schedule = isl_union_map_range_product(prefix, schedule);
	all_el = isl_set_from_union_set(isl_union_set_apply(domain, schedule));
	all_el = isl_set_coalesce(all_el);

	all = isl_set_apply(isl_set_copy(all_el), isl_map_copy(el2tile));

	partial = isl_set_copy(all);
	partial = isl_set_apply(partial, tile2el);
	partial = isl_set_subtract(partial, all_el);
	partial = isl_set_apply(partial, el2tile);

	return isl_set_subtract(all, partial);
}

/* Copy the AST loop types of the non-isolated part to those
 * of the isolated part.
 */
static __isl_give isl_schedule_node *set_isolate_loop_type(
	__isl_take isl_schedule_node *node)
{
	int i, n;

	n = isl_schedule_node_band_n_member(node);
	for (i = 0; i < n; ++i) {
		enum isl_ast_loop_type type;

		type = isl_schedule_node_band_member_get_ast_loop_type(node, i);
		node = isl_schedule_node_band_member_set_isolate_ast_loop_type(
								node, i, type);
	}

	return node;
}

/* If options->isolate_full_tiles is set, then mark the full tiles
 * in "node" for isolation.  The full tiles are derived from "phase".
 * "node" may point to a part of the tiling, e.g., the space tiling.
 *
 * The full tiles are originally computed in the form
 *
 *	[[outer] -> [tile]]
 *
 * However, the band that "node" points to may only contain
 * subset of the tile dimensions.
 * The description above is therefore treated as
 *
 *	[[outer] -> [before; this; after]]
 *
 * before is of size "pos"; this is of size "dim"; and
 * after is of size "out - pos - dim".
 * The after part is first project out.  Then the range is split
 * into a before and this part and finally the before part is moved
 * to the domain, resulting in
 *
 *	[[outer; before] -> [this]]
 *
 * This description is then used as the isolate option.
 *
 * The AST loop type for the isolated part is set to be the same
 * as that of the non-isolated part.
 */
static __isl_give isl_schedule_node *ppcg_ht_phase_isolate_full_tile_node(
	__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
	struct ppcg_options *options)
{
	int in, out, pos, depth, dim;
	isl_space *space;
	isl_multi_aff *ma1, *ma2;
	isl_set *tile;
	isl_map *map;
	isl_set *set;
	isl_union_set *opt;

	if (!options->isolate_full_tiles)
		return node;

	depth = isl_schedule_node_get_schedule_depth(node);
	dim = isl_schedule_node_band_n_member(node);

	tile = compute_full_tile(phase);
	map = isl_set_unwrap(tile);
	in = isl_map_dim(map, isl_dim_in);
	out = isl_map_dim(map, isl_dim_out);
	pos = depth - in;
	map = isl_map_project_out(map, isl_dim_out, pos + dim,
				out - (pos + dim));
	space = isl_space_range(isl_map_get_space(map));
	ma1 = isl_multi_aff_project_out_map(isl_space_copy(space),
					   isl_dim_set, pos, dim);
	ma2 = isl_multi_aff_project_out_map(space, isl_dim_set, 0, pos);
	ma1 = isl_multi_aff_range_product(ma1, ma2);
	map = isl_map_apply_range(map, isl_map_from_multi_aff(ma1));
	map = isl_map_uncurry(map);
	map = isl_map_flatten_domain(map);
	set = isl_map_wrap(map);
	set = isl_set_set_tuple_name(set, "isolate");

	opt = isl_schedule_node_band_get_ast_build_options(node);
	opt = isl_union_set_add_set(opt, set);
	node = isl_schedule_node_band_set_ast_build_options(node, opt);
	node = set_isolate_loop_type(node);

	return node;
}

/* Insert a band node for performing the space tiling for "phase" at "node".
 * In particular, insert a band node with partial schedule
 *
 *	[P[t] -> C[s]] -> C[floor((s + space_shift)/space_size)]
 *
 * pulled back over the input schedule.
 * "options" determines whether full tiles should be separated
 * from partial tiles.
 *
 * The first tile dimension iterates over the hexagons in the same
 * phase, which are independent by construction.  The first dimension
 * is therefore marked coincident.
 * All dimensions are also marked for being generated as atomic loops
 * because separation is usually not desirable on tile loops.
 */
static __isl_give isl_schedule_node *insert_space_tiling(
	__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
	struct ppcg_options *options)
{
	isl_multi_aff *space_tile;
	isl_multi_union_pw_aff *mupa;

	if (!phase)
		return isl_schedule_node_free(node);

	space_tile = isl_multi_aff_copy(phase->space_tile);
	mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
	mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_tile);
	node = isl_schedule_node_insert_partial_schedule(node, mupa);
	node = ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
	node = ppcg_ht_phase_isolate_full_tile_node(phase, node, options);
	node = isl_schedule_node_band_member_set_coincident(node, 0, 1);

	return node;
}

/* Given a pointer "node" to (a copy of) the original child node
 * in the input pattern, adjust its partial schedule such that
 * it starts at zero within each tile.
 *
 * That is, replace "s" by (s + space_shift) % space_sizes.
 */
__isl_give isl_schedule_node *ppcg_ht_phase_shift_space_point(
	__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node)
{
	isl_multi_val *space_sizes;
	isl_multi_aff *space_shift;
	isl_multi_union_pw_aff *mupa;

	space_shift = isl_multi_aff_copy(phase->space_shift);
	mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
	mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_shift);
	node = isl_schedule_node_band_shift(node, mupa);
	space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
	node = isl_schedule_node_band_mod(node, space_sizes);

	return node;
}

/* Does
 *
 *	s0 > delta + 2 * {delta * h} - 1
 *
 * hold?
 */
static isl_bool wide_enough(__isl_keep isl_val *s0, __isl_keep isl_val *delta,
	__isl_keep isl_val *h)
{
	isl_val *v, *v2;
	isl_bool ok;

	v = isl_val_mul(isl_val_copy(delta), isl_val_copy(h));
	v2 = isl_val_floor(isl_val_copy(v));
	v = isl_val_sub(v, v2);
	v = isl_val_mul_ui(v, 2);
	v = isl_val_add(v, isl_val_copy(delta));
	v = isl_val_sub_ui(v, 1);
	ok = isl_val_gt(s0, v);
	isl_val_free(v);

	return ok;
}

/* Is the tile size specified by "sizes" wide enough in the first space
 * dimension, i.e., the base of the hexagon?  This ensures that,
 * after hybrid tiling using "bounds" and these sizes,
 * neighboring hexagons in the same phase are far enough apart
 * that they do not depend on each other.
 * The test is only meaningful if the bounds are valid.
 *
 * Let st be (half) the size in the time dimension and s0 the base
 * size in the first space dimension.  Let delta be the dependence
 * distance in either positive or negative direction.  In principle,
 * it should be enough to have s0 + 1 > delta, i.e., s0 >= delta.
 * However, in case of fractional delta, the tile is not extended
 * with delta * (st - 1), but instead with floor(delta * (st - 1)).
 * The condition therefore needs to be adjusted to
 *
 *	s0 + 1 > delta + 2 {delta * (st - 1)}
 *
 * (with {} the fractional part) to account for the two slanted sides.
 * The condition in the paper "Hybrid Hexagonal/Classical Tiling for GPUs"
 * translates to
 *
 *	s0 >= delta + {delta * (st - 1)}
 *
 * Since 1 > frac(delta * (st - 1)), this condition implies
 * the condition above.
 *
 * The condition is checked for both directions.
 */
isl_bool ppcg_ht_bounds_supports_sizes(__isl_keep ppcg_ht_bounds *bounds,
	__isl_keep isl_multi_val *sizes)
{
	isl_val *s0, *h;
	isl_val *delta;
	isl_bool ok;

	ok = ppcg_ht_bounds_is_valid(bounds);
	if (ok < 0 || !ok)
		return ok;

	h = isl_val_sub_ui(isl_multi_val_get_val(sizes, 0), 1);
	s0 = isl_multi_val_get_val(sizes, 1);

	delta = ppcg_ht_bounds_get_lower(bounds, 0);
	ok = wide_enough(s0, delta, h);
	isl_val_free(delta);

	delta = ppcg_ht_bounds_get_upper(bounds);
	if (ok == isl_bool_true)
		ok = wide_enough(s0, delta, h);
	isl_val_free(delta);

	isl_val_free(s0);
	isl_val_free(h);

	return ok;
}

/* Check that the tile will be wide enough in the first space
 * dimension, i.e., the base of the hexagon.  This ensures that
 * neighboring hexagons in the same phase are far enough apart
 * that they do not depend on each other.
 *
 * Error out if the condition fails to hold.
 */
static isl_stat check_width(__isl_keep ppcg_ht_bounds *bounds,
	__isl_keep isl_multi_val *sizes)
{
	isl_bool ok;

	ok = ppcg_ht_bounds_supports_sizes(bounds, sizes);

	if (ok < 0)
		return isl_stat_error;
	if (!ok)
		isl_die(isl_multi_val_get_ctx(sizes), isl_error_invalid,
			"base of hybrid tiling hexagon not sufficiently wide",
			return isl_stat_error);

	return isl_stat_ok;
}

/* Given valid bounds on the relative dependence distances for
 * the pair of nested nodes that "node" point to, as well as sufficiently
 * wide tile sizes "sizes", insert the corresponding time and space tiling
 * at "node", along with a pair of phase nodes that can be used
 * to make further changes.
 * The space of "sizes" should be the product of the spaces
 * of the schedules of the pair of parent and child nodes.
 * "options" determines whether full tiles should be separated
 * from partial tiles.
 *
 * In particular, given an input of the form
 *
 *	P - C - ...
 *
 * the output has the form
 *
 *	        /- F0 - M0 - CT0 - P - C - ...
 *	PT - seq
 *	        \- F1 - M1 - CT1 - P - C - ...
 *
 * PT is the global time tiling.  Within each of these tiles,
 * two phases are executed in order.  Within each phase, the schedule
 * space is further subdivided into tiles through CT0 and CT1.
 * The first dimension of each of these iterates over the hexagons
 * within a phase and these are independent by construction.
 * The F0 and F1 filters filter the statement instances that belong
 * to the corresponding phase.  The M0 and M1 marks contain a pointer
 * to a ppcg_ht_phase object that can be used to perform further changes.
 *
 * After checking that input satisfies the requirements,
 * a data structure is constructed that represents the tiling and
 * two additional data structures are constructed for the two phases
 * of the tiling.  These are then used to define the filters F0 and F1 and
 * combined to construct the time tiling PT.
 * Then the time tiling node PT is inserted, followed by
 * the sequence with the two filters, the CT space tiling nodes and
 * the phase markers M.
 */
__isl_give isl_schedule_node *ppcg_ht_bounds_insert_tiling(
	__isl_take ppcg_ht_bounds *bounds, __isl_take isl_multi_val *sizes,
	__isl_take isl_schedule_node *node, struct ppcg_options *options)
{
	isl_ctx *ctx;
	isl_union_set *phase0;
	isl_union_set *phase1;
	isl_multi_union_pw_aff *input, *dom_time;
	isl_union_pw_multi_aff *upma;
	isl_pw_multi_aff *time;
	isl_union_set_list *phases;
	ppcg_ht_tiling *tiling;
	ppcg_ht_phase *phase_0;
	ppcg_ht_phase *phase_1;

	if (!node || !sizes || !bounds)
		goto error;
	if (check_input_pattern(node) < 0 || check_width(bounds, sizes) < 0)
		goto error;

	ctx = isl_schedule_node_get_ctx(node);

	input = extract_input_schedule(node);

	tiling = ppcg_ht_bounds_construct_tiling(bounds, node, input, sizes);
	phase_0 = ppcg_ht_tiling_compute_phase(tiling, 1);
	phase_1 = ppcg_ht_tiling_compute_phase(tiling, 0);
	time = combine_time_tile(phase_0, phase_1);
	ppcg_ht_tiling_free(tiling);

	upma = isl_union_pw_multi_aff_from_multi_union_pw_aff(
					isl_multi_union_pw_aff_copy(input));
	phase0 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_0));
	phase0 = isl_union_set_preimage_union_pw_multi_aff(phase0,
					isl_union_pw_multi_aff_copy(upma));
	phase1 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_1));
	phase1 = isl_union_set_preimage_union_pw_multi_aff(phase1, upma);

	phases = isl_union_set_list_alloc(ctx, 2);
	phases = isl_union_set_list_add(phases, phase0);
	phases = isl_union_set_list_add(phases, phase1);

	dom_time = isl_multi_union_pw_aff_apply_pw_multi_aff(input, time);
	node = isl_schedule_node_insert_partial_schedule(node, dom_time);

	node = isl_schedule_node_child(node, 0);

	node = isl_schedule_node_insert_sequence(node, phases);
	node = isl_schedule_node_child(node, 0);
	node = isl_schedule_node_child(node, 0);
	node = insert_space_tiling(phase_0, node, options);
	node = insert_phase(node, phase_0);
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_next_sibling(node);
	node = isl_schedule_node_child(node, 0);
	node = insert_space_tiling(phase_1, node, options);
	node = insert_phase(node, phase_1);
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_parent(node);

	node = isl_schedule_node_parent(node);

	isl_multi_val_free(sizes);
	return node;
error:
	isl_multi_val_free(sizes);
	isl_schedule_node_free(node);
	ppcg_ht_bounds_free(bounds);
	return NULL;
}

/* Given a branch "node" that contains a sequence node with two phases
 * of hybrid tiling as input, call "fn" on each of the two phase marker
 * nodes.
 *
 * That is, the input is as follows
 *
 *	         /- F0 - M0 - ...
 *	... - seq
 *	         \- F1 - M1 - ...
 *
 * and "fn" is called on M0 and on M1.
 */
__isl_give isl_schedule_node *hybrid_tile_foreach_phase(
	__isl_take isl_schedule_node *node,
	__isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
		void *user), void *user)
{
	int depth0, depth;

	depth0 = isl_schedule_node_get_tree_depth(node);

	while (node &&
	    isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
		node = isl_schedule_node_child(node, 0);

	node = isl_schedule_node_child(node, 0);
	node = isl_schedule_node_child(node, 0);
	if (!node)
		return NULL;
	node = fn(node, user);
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_next_sibling(node);
	node = isl_schedule_node_child(node, 0);
	if (!node)
		return NULL;
	node = fn(node, user);
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_parent(node);

	depth = isl_schedule_node_get_tree_depth(node);
	node = isl_schedule_node_ancestor(node, depth - depth0);

	return node;
}

/* This function is called on each of the two phase marks
 * in a hybrid tiling tree.
 * Drop the phase mark at "node".
 */
static __isl_give isl_schedule_node *drop_phase_mark(
	__isl_take isl_schedule_node *node, void *user)
{
	isl_id *id;
	isl_bool is_phase;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
		return node;

	id = isl_schedule_node_mark_get_id(node);
	is_phase = is_phase_id(id);
	isl_id_free(id);

	if (is_phase < 0)
		return isl_schedule_node_free(node);
	if (is_phase)
		node = isl_schedule_node_delete(node);

	return node;
}

/* Given a branch "node" that contains a sequence node with two phases
 * of hybrid tiling as input, remove the two phase marker nodes.
 *
 * That is, the input is as follows
 *
 *	         /- F0 - M0 - ...
 *	... - seq
 *	         \- F1 - M1 - ...
 *
 * and the output is
 *
 *	         /- F0 - ...
 *	... - seq
 *	         \- F1 - ...
 */
__isl_give isl_schedule_node *hybrid_tile_drop_phase_marks(
	__isl_take isl_schedule_node *node)
{
	return hybrid_tile_foreach_phase(node, &drop_phase_mark, NULL);
}