reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2013      Ecole Normale Superieure
 * Copyright 2014      INRIA Rocquencourt
 * Copyright 2016      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 */

#include <isl_ctx_private.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include "isl_map_private.h"
#include "isl_tab.h"
#include <isl_seq.h>
#include <isl_config.h>

#include <bset_to_bmap.c>
#include <bset_from_bmap.c>

/*
 * The implementation of tableaus in this file was inspired by Section 8
 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
 * prover for program checking".
 */

struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
	unsigned n_row, unsigned n_var, unsigned M)
{
	int i;
	struct isl_tab *tab;
	unsigned off = 2 + M;

	tab = isl_calloc_type(ctx, struct isl_tab);
	if (!tab)
		return NULL;
	tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
	if (!tab->mat)
		goto error;
	tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
	if (n_var && !tab->var)
		goto error;
	tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
	if (n_row && !tab->con)
		goto error;
	tab->col_var = isl_alloc_array(ctx, int, n_var);
	if (n_var && !tab->col_var)
		goto error;
	tab->row_var = isl_alloc_array(ctx, int, n_row);
	if (n_row && !tab->row_var)
		goto error;
	for (i = 0; i < n_var; ++i) {
		tab->var[i].index = i;
		tab->var[i].is_row = 0;
		tab->var[i].is_nonneg = 0;
		tab->var[i].is_zero = 0;
		tab->var[i].is_redundant = 0;
		tab->var[i].frozen = 0;
		tab->var[i].negated = 0;
		tab->col_var[i] = i;
	}
	tab->n_row = 0;
	tab->n_con = 0;
	tab->n_eq = 0;
	tab->max_con = n_row;
	tab->n_col = n_var;
	tab->n_var = n_var;
	tab->max_var = n_var;
	tab->n_param = 0;
	tab->n_div = 0;
	tab->n_dead = 0;
	tab->n_redundant = 0;
	tab->strict_redundant = 0;
	tab->need_undo = 0;
	tab->rational = 0;
	tab->empty = 0;
	tab->in_undo = 0;
	tab->M = M;
	tab->cone = 0;
	tab->bottom.type = isl_tab_undo_bottom;
	tab->bottom.next = NULL;
	tab->top = &tab->bottom;

	tab->n_zero = 0;
	tab->n_unbounded = 0;
	tab->basis = NULL;

	return tab;
error:
	isl_tab_free(tab);
	return NULL;
}

isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
{
	return tab ? isl_mat_get_ctx(tab->mat) : NULL;
}

int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
{
	unsigned off;

	if (!tab)
		return -1;

	off = 2 + tab->M;

	if (tab->max_con < tab->n_con + n_new) {
		struct isl_tab_var *con;

		con = isl_realloc_array(tab->mat->ctx, tab->con,
				    struct isl_tab_var, tab->max_con + n_new);
		if (!con)
			return -1;
		tab->con = con;
		tab->max_con += n_new;
	}
	if (tab->mat->n_row < tab->n_row + n_new) {
		int *row_var;

		tab->mat = isl_mat_extend(tab->mat,
					tab->n_row + n_new, off + tab->n_col);
		if (!tab->mat)
			return -1;
		row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
					    int, tab->mat->n_row);
		if (!row_var)
			return -1;
		tab->row_var = row_var;
		if (tab->row_sign) {
			enum isl_tab_row_sign *s;
			s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
					enum isl_tab_row_sign, tab->mat->n_row);
			if (!s)
				return -1;
			tab->row_sign = s;
		}
	}
	return 0;
}

/* Make room for at least n_new extra variables.
 * Return -1 if anything went wrong.
 */
int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
{
	struct isl_tab_var *var;
	unsigned off = 2 + tab->M;

	if (tab->max_var < tab->n_var + n_new) {
		var = isl_realloc_array(tab->mat->ctx, tab->var,
				    struct isl_tab_var, tab->n_var + n_new);
		if (!var)
			return -1;
		tab->var = var;
		tab->max_var = tab->n_var + n_new;
	}

	if (tab->mat->n_col < off + tab->n_col + n_new) {
		int *p;

		tab->mat = isl_mat_extend(tab->mat,
				    tab->mat->n_row, off + tab->n_col + n_new);
		if (!tab->mat)
			return -1;
		p = isl_realloc_array(tab->mat->ctx, tab->col_var,
					    int, tab->n_col + n_new);
		if (!p)
			return -1;
		tab->col_var = p;
	}

	return 0;
}

static void free_undo_record(struct isl_tab_undo *undo)
{
	switch (undo->type) {
	case isl_tab_undo_saved_basis:
		free(undo->u.col_var);
		break;
	default:;
	}
	free(undo);
}

static void free_undo(struct isl_tab *tab)
{
	struct isl_tab_undo *undo, *next;

	for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
		next = undo->next;
		free_undo_record(undo);
	}
	tab->top = undo;
}

void isl_tab_free(struct isl_tab *tab)
{
	if (!tab)
		return;
	free_undo(tab);
	isl_mat_free(tab->mat);
	isl_vec_free(tab->dual);
	isl_basic_map_free(tab->bmap);
	free(tab->var);
	free(tab->con);
	free(tab->row_var);
	free(tab->col_var);
	free(tab->row_sign);
	isl_mat_free(tab->samples);
	free(tab->sample_index);
	isl_mat_free(tab->basis);
	free(tab);
}

struct isl_tab *isl_tab_dup(struct isl_tab *tab)
{
	int i;
	struct isl_tab *dup;
	unsigned off;

	if (!tab)
		return NULL;

	off = 2 + tab->M;
	dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
	if (!dup)
		return NULL;
	dup->mat = isl_mat_dup(tab->mat);
	if (!dup->mat)
		goto error;
	dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
	if (tab->max_var && !dup->var)
		goto error;
	for (i = 0; i < tab->n_var; ++i)
		dup->var[i] = tab->var[i];
	dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
	if (tab->max_con && !dup->con)
		goto error;
	for (i = 0; i < tab->n_con; ++i)
		dup->con[i] = tab->con[i];
	dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
	if ((tab->mat->n_col - off) && !dup->col_var)
		goto error;
	for (i = 0; i < tab->n_col; ++i)
		dup->col_var[i] = tab->col_var[i];
	dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
	if (tab->mat->n_row && !dup->row_var)
		goto error;
	for (i = 0; i < tab->n_row; ++i)
		dup->row_var[i] = tab->row_var[i];
	if (tab->row_sign) {
		dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
						tab->mat->n_row);
		if (tab->mat->n_row && !dup->row_sign)
			goto error;
		for (i = 0; i < tab->n_row; ++i)
			dup->row_sign[i] = tab->row_sign[i];
	}
	if (tab->samples) {
		dup->samples = isl_mat_dup(tab->samples);
		if (!dup->samples)
			goto error;
		dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
							tab->samples->n_row);
		if (tab->samples->n_row && !dup->sample_index)
			goto error;
		dup->n_sample = tab->n_sample;
		dup->n_outside = tab->n_outside;
	}
	dup->n_row = tab->n_row;
	dup->n_con = tab->n_con;
	dup->n_eq = tab->n_eq;
	dup->max_con = tab->max_con;
	dup->n_col = tab->n_col;
	dup->n_var = tab->n_var;
	dup->max_var = tab->max_var;
	dup->n_param = tab->n_param;
	dup->n_div = tab->n_div;
	dup->n_dead = tab->n_dead;
	dup->n_redundant = tab->n_redundant;
	dup->rational = tab->rational;
	dup->empty = tab->empty;
	dup->strict_redundant = 0;
	dup->need_undo = 0;
	dup->in_undo = 0;
	dup->M = tab->M;
	tab->cone = tab->cone;
	dup->bottom.type = isl_tab_undo_bottom;
	dup->bottom.next = NULL;
	dup->top = &dup->bottom;

	dup->n_zero = tab->n_zero;
	dup->n_unbounded = tab->n_unbounded;
	dup->basis = isl_mat_dup(tab->basis);

	return dup;
error:
	isl_tab_free(dup);
	return NULL;
}

/* Construct the coefficient matrix of the product tableau
 * of two tableaus.
 * mat{1,2} is the coefficient matrix of tableau {1,2}
 * row{1,2} is the number of rows in tableau {1,2}
 * col{1,2} is the number of columns in tableau {1,2}
 * off is the offset to the coefficient column (skipping the
 *	denominator, the constant term and the big parameter if any)
 * r{1,2} is the number of redundant rows in tableau {1,2}
 * d{1,2} is the number of dead columns in tableau {1,2}
 *
 * The order of the rows and columns in the result is as explained
 * in isl_tab_product.
 */
static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
	struct isl_mat *mat2, unsigned row1, unsigned row2,
	unsigned col1, unsigned col2,
	unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
{
	int i;
	struct isl_mat *prod;
	unsigned n;

	prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
					off + col1 + col2);
	if (!prod)
		return NULL;

	n = 0;
	for (i = 0; i < r1; ++i) {
		isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
		isl_seq_clr(prod->row[n + i] + off + d1, d2);
		isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
				mat1->row[i] + off + d1, col1 - d1);
		isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
	}

	n += r1;
	for (i = 0; i < r2; ++i) {
		isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
		isl_seq_clr(prod->row[n + i] + off, d1);
		isl_seq_cpy(prod->row[n + i] + off + d1,
			    mat2->row[i] + off, d2);
		isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
		isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
			    mat2->row[i] + off + d2, col2 - d2);
	}

	n += r2;
	for (i = 0; i < row1 - r1; ++i) {
		isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
		isl_seq_clr(prod->row[n + i] + off + d1, d2);
		isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
				mat1->row[r1 + i] + off + d1, col1 - d1);
		isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
	}

	n += row1 - r1;
	for (i = 0; i < row2 - r2; ++i) {
		isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
		isl_seq_clr(prod->row[n + i] + off, d1);
		isl_seq_cpy(prod->row[n + i] + off + d1,
			    mat2->row[r2 + i] + off, d2);
		isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
		isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
			    mat2->row[r2 + i] + off + d2, col2 - d2);
	}

	return prod;
}

/* Update the row or column index of a variable that corresponds
 * to a variable in the first input tableau.
 */
static void update_index1(struct isl_tab_var *var,
	unsigned r1, unsigned r2, unsigned d1, unsigned d2)
{
	if (var->index == -1)
		return;
	if (var->is_row && var->index >= r1)
		var->index += r2;
	if (!var->is_row && var->index >= d1)
		var->index += d2;
}

/* Update the row or column index of a variable that corresponds
 * to a variable in the second input tableau.
 */
static void update_index2(struct isl_tab_var *var,
	unsigned row1, unsigned col1,
	unsigned r1, unsigned r2, unsigned d1, unsigned d2)
{
	if (var->index == -1)
		return;
	if (var->is_row) {
		if (var->index < r2)
			var->index += r1;
		else
			var->index += row1;
	} else {
		if (var->index < d2)
			var->index += d1;
		else
			var->index += col1;
	}
}

/* Create a tableau that represents the Cartesian product of the sets
 * represented by tableaus tab1 and tab2.
 * The order of the rows in the product is
 *	- redundant rows of tab1
 *	- redundant rows of tab2
 *	- non-redundant rows of tab1
 *	- non-redundant rows of tab2
 * The order of the columns is
 *	- denominator
 *	- constant term
 *	- coefficient of big parameter, if any
 *	- dead columns of tab1
 *	- dead columns of tab2
 *	- live columns of tab1
 *	- live columns of tab2
 * The order of the variables and the constraints is a concatenation
 * of order in the two input tableaus.
 */
struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
{
	int i;
	struct isl_tab *prod;
	unsigned off;
	unsigned r1, r2, d1, d2;

	if (!tab1 || !tab2)
		return NULL;

	isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
	isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
	isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
	isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
	isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
	isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
	isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
	isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
	isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);

	off = 2 + tab1->M;
	r1 = tab1->n_redundant;
	r2 = tab2->n_redundant;
	d1 = tab1->n_dead;
	d2 = tab2->n_dead;
	prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
	if (!prod)
		return NULL;
	prod->mat = tab_mat_product(tab1->mat, tab2->mat,
				tab1->n_row, tab2->n_row,
				tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
	if (!prod->mat)
		goto error;
	prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
					tab1->max_var + tab2->max_var);
	if ((tab1->max_var + tab2->max_var) && !prod->var)
		goto error;
	for (i = 0; i < tab1->n_var; ++i) {
		prod->var[i] = tab1->var[i];
		update_index1(&prod->var[i], r1, r2, d1, d2);
	}
	for (i = 0; i < tab2->n_var; ++i) {
		prod->var[tab1->n_var + i] = tab2->var[i];
		update_index2(&prod->var[tab1->n_var + i],
				tab1->n_row, tab1->n_col,
				r1, r2, d1, d2);
	}
	prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
					tab1->max_con +  tab2->max_con);
	if ((tab1->max_con + tab2->max_con) && !prod->con)
		goto error;
	for (i = 0; i < tab1->n_con; ++i) {
		prod->con[i] = tab1->con[i];
		update_index1(&prod->con[i], r1, r2, d1, d2);
	}
	for (i = 0; i < tab2->n_con; ++i) {
		prod->con[tab1->n_con + i] = tab2->con[i];
		update_index2(&prod->con[tab1->n_con + i],
				tab1->n_row, tab1->n_col,
				r1, r2, d1, d2);
	}
	prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
					tab1->n_col + tab2->n_col);
	if ((tab1->n_col + tab2->n_col) && !prod->col_var)
		goto error;
	for (i = 0; i < tab1->n_col; ++i) {
		int pos = i < d1 ? i : i + d2;
		prod->col_var[pos] = tab1->col_var[i];
	}
	for (i = 0; i < tab2->n_col; ++i) {
		int pos = i < d2 ? d1 + i : tab1->n_col + i;
		int t = tab2->col_var[i];
		if (t >= 0)
			t += tab1->n_var;
		else
			t -= tab1->n_con;
		prod->col_var[pos] = t;
	}
	prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
					tab1->mat->n_row + tab2->mat->n_row);
	if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
		goto error;
	for (i = 0; i < tab1->n_row; ++i) {
		int pos = i < r1 ? i : i + r2;
		prod->row_var[pos] = tab1->row_var[i];
	}
	for (i = 0; i < tab2->n_row; ++i) {
		int pos = i < r2 ? r1 + i : tab1->n_row + i;
		int t = tab2->row_var[i];
		if (t >= 0)
			t += tab1->n_var;
		else
			t -= tab1->n_con;
		prod->row_var[pos] = t;
	}
	prod->samples = NULL;
	prod->sample_index = NULL;
	prod->n_row = tab1->n_row + tab2->n_row;
	prod->n_con = tab1->n_con + tab2->n_con;
	prod->n_eq = 0;
	prod->max_con = tab1->max_con + tab2->max_con;
	prod->n_col = tab1->n_col + tab2->n_col;
	prod->n_var = tab1->n_var + tab2->n_var;
	prod->max_var = tab1->max_var + tab2->max_var;
	prod->n_param = 0;
	prod->n_div = 0;
	prod->n_dead = tab1->n_dead + tab2->n_dead;
	prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
	prod->rational = tab1->rational;
	prod->empty = tab1->empty || tab2->empty;
	prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
	prod->need_undo = 0;
	prod->in_undo = 0;
	prod->M = tab1->M;
	prod->cone = tab1->cone;
	prod->bottom.type = isl_tab_undo_bottom;
	prod->bottom.next = NULL;
	prod->top = &prod->bottom;

	prod->n_zero = 0;
	prod->n_unbounded = 0;
	prod->basis = NULL;

	return prod;
error:
	isl_tab_free(prod);
	return NULL;
}

static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
{
	if (i >= 0)
		return &tab->var[i];
	else
		return &tab->con[~i];
}

struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
{
	return var_from_index(tab, tab->row_var[i]);
}

static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
{
	return var_from_index(tab, tab->col_var[i]);
}

/* Check if there are any upper bounds on column variable "var",
 * i.e., non-negative rows where var appears with a negative coefficient.
 * Return 1 if there are no such bounds.
 */
static int max_is_manifestly_unbounded(struct isl_tab *tab,
	struct isl_tab_var *var)
{
	int i;
	unsigned off = 2 + tab->M;

	if (var->is_row)
		return 0;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
			continue;
		if (isl_tab_var_from_row(tab, i)->is_nonneg)
			return 0;
	}
	return 1;
}

/* Check if there are any lower bounds on column variable "var",
 * i.e., non-negative rows where var appears with a positive coefficient.
 * Return 1 if there are no such bounds.
 */
static int min_is_manifestly_unbounded(struct isl_tab *tab,
	struct isl_tab_var *var)
{
	int i;
	unsigned off = 2 + tab->M;

	if (var->is_row)
		return 0;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
			continue;
		if (isl_tab_var_from_row(tab, i)->is_nonneg)
			return 0;
	}
	return 1;
}

static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
{
	unsigned off = 2 + tab->M;

	if (tab->M) {
		int s;
		isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
		isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
		s = isl_int_sgn(*t);
		if (s)
			return s;
	}
	isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
	isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
	return isl_int_sgn(*t);
}

/* Given the index of a column "c", return the index of a row
 * that can be used to pivot the column in, with either an increase
 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
 * If "var" is not NULL, then the row returned will be different from
 * the one associated with "var".
 *
 * Each row in the tableau is of the form
 *
 *	x_r = a_r0 + \sum_i a_ri x_i
 *
 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
 * impose any limit on the increase or decrease in the value of x_c
 * and this bound is equal to a_r0 / |a_rc|.  We are therefore looking
 * for the row with the smallest (most stringent) such bound.
 * Note that the common denominator of each row drops out of the fraction.
 * To check if row j has a smaller bound than row r, i.e.,
 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
 * where -sign(a_jc) is equal to "sgn".
 */
static int pivot_row(struct isl_tab *tab,
	struct isl_tab_var *var, int sgn, int c)
{
	int j, r, tsgn;
	isl_int t;
	unsigned off = 2 + tab->M;

	isl_int_init(t);
	r = -1;
	for (j = tab->n_redundant; j < tab->n_row; ++j) {
		if (var && j == var->index)
			continue;
		if (!isl_tab_var_from_row(tab, j)->is_nonneg)
			continue;
		if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
			continue;
		if (r < 0) {
			r = j;
			continue;
		}
		tsgn = sgn * row_cmp(tab, r, j, c, &t);
		if (tsgn < 0 || (tsgn == 0 &&
					    tab->row_var[j] < tab->row_var[r]))
			r = j;
	}
	isl_int_clear(t);
	return r;
}

/* Find a pivot (row and col) that will increase (sgn > 0) or decrease
 * (sgn < 0) the value of row variable var.
 * If not NULL, then skip_var is a row variable that should be ignored
 * while looking for a pivot row.  It is usually equal to var.
 *
 * As the given row in the tableau is of the form
 *
 *	x_r = a_r0 + \sum_i a_ri x_i
 *
 * we need to find a column such that the sign of a_ri is equal to "sgn"
 * (such that an increase in x_i will have the desired effect) or a
 * column with a variable that may attain negative values.
 * If a_ri is positive, then we need to move x_i in the same direction
 * to obtain the desired effect.  Otherwise, x_i has to move in the
 * opposite direction.
 */
static void find_pivot(struct isl_tab *tab,
	struct isl_tab_var *var, struct isl_tab_var *skip_var,
	int sgn, int *row, int *col)
{
	int j, r, c;
	isl_int *tr;

	*row = *col = -1;

	isl_assert(tab->mat->ctx, var->is_row, return);
	tr = tab->mat->row[var->index] + 2 + tab->M;

	c = -1;
	for (j = tab->n_dead; j < tab->n_col; ++j) {
		if (isl_int_is_zero(tr[j]))
			continue;
		if (isl_int_sgn(tr[j]) != sgn &&
		    var_from_col(tab, j)->is_nonneg)
			continue;
		if (c < 0 || tab->col_var[j] < tab->col_var[c])
			c = j;
	}
	if (c < 0)
		return;

	sgn *= isl_int_sgn(tr[c]);
	r = pivot_row(tab, skip_var, sgn, c);
	*row = r < 0 ? var->index : r;
	*col = c;
}

/* Return 1 if row "row" represents an obviously redundant inequality.
 * This means
 *	- it represents an inequality or a variable
 *	- that is the sum of a non-negative sample value and a positive
 *	  combination of zero or more non-negative constraints.
 */
int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
{
	int i;
	unsigned off = 2 + tab->M;

	if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
		return 0;

	if (isl_int_is_neg(tab->mat->row[row][1]))
		return 0;
	if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
		return 0;
	if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
		return 0;

	for (i = tab->n_dead; i < tab->n_col; ++i) {
		if (isl_int_is_zero(tab->mat->row[row][off + i]))
			continue;
		if (tab->col_var[i] >= 0)
			return 0;
		if (isl_int_is_neg(tab->mat->row[row][off + i]))
			return 0;
		if (!var_from_col(tab, i)->is_nonneg)
			return 0;
	}
	return 1;
}

static void swap_rows(struct isl_tab *tab, int row1, int row2)
{
	int t;
	enum isl_tab_row_sign s;

	t = tab->row_var[row1];
	tab->row_var[row1] = tab->row_var[row2];
	tab->row_var[row2] = t;
	isl_tab_var_from_row(tab, row1)->index = row1;
	isl_tab_var_from_row(tab, row2)->index = row2;
	tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);

	if (!tab->row_sign)
		return;
	s = tab->row_sign[row1];
	tab->row_sign[row1] = tab->row_sign[row2];
	tab->row_sign[row2] = s;
}

static isl_stat push_union(struct isl_tab *tab,
	enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;

/* Push record "u" onto the undo stack of "tab", provided "tab"
 * keeps track of undo information.
 *
 * If the record cannot be pushed, then mark the undo stack as invalid
 * such that a later rollback attempt will not try to undo earlier
 * records without having been able to undo the current record.
 */
static isl_stat push_union(struct isl_tab *tab,
	enum isl_tab_undo_type type, union isl_tab_undo_val u)
{
	struct isl_tab_undo *undo;

	if (!tab)
		return isl_stat_error;
	if (!tab->need_undo)
		return isl_stat_ok;

	undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
	if (!undo)
		goto error;
	undo->type = type;
	undo->u = u;
	undo->next = tab->top;
	tab->top = undo;

	return isl_stat_ok;
error:
	free_undo(tab);
	tab->top = NULL;
	return isl_stat_error;
}

isl_stat isl_tab_push_var(struct isl_tab *tab,
	enum isl_tab_undo_type type, struct isl_tab_var *var)
{
	union isl_tab_undo_val u;
	if (var->is_row)
		u.var_index = tab->row_var[var->index];
	else
		u.var_index = tab->col_var[var->index];
	return push_union(tab, type, u);
}

isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
{
	union isl_tab_undo_val u = { 0 };
	return push_union(tab, type, u);
}

/* Push a record on the undo stack describing the current basic
 * variables, so that the this state can be restored during rollback.
 */
isl_stat isl_tab_push_basis(struct isl_tab *tab)
{
	int i;
	union isl_tab_undo_val u;

	u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
	if (tab->n_col && !u.col_var)
		return isl_stat_error;
	for (i = 0; i < tab->n_col; ++i)
		u.col_var[i] = tab->col_var[i];
	return push_union(tab, isl_tab_undo_saved_basis, u);
}

isl_stat isl_tab_push_callback(struct isl_tab *tab,
	struct isl_tab_callback *callback)
{
	union isl_tab_undo_val u;
	u.callback = callback;
	return push_union(tab, isl_tab_undo_callback, u);
}

struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
{
	if (!tab)
		return NULL;

	tab->n_sample = 0;
	tab->n_outside = 0;
	tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
	if (!tab->samples)
		goto error;
	tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
	if (!tab->sample_index)
		goto error;
	return tab;
error:
	isl_tab_free(tab);
	return NULL;
}

int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
{
	if (!tab || !sample)
		goto error;

	if (tab->n_sample + 1 > tab->samples->n_row) {
		int *t = isl_realloc_array(tab->mat->ctx,
			    tab->sample_index, int, tab->n_sample + 1);
		if (!t)
			goto error;
		tab->sample_index = t;
	}

	tab->samples = isl_mat_extend(tab->samples,
				tab->n_sample + 1, tab->samples->n_col);
	if (!tab->samples)
		goto error;

	isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
	isl_vec_free(sample);
	tab->sample_index[tab->n_sample] = tab->n_sample;
	tab->n_sample++;

	return 0;
error:
	isl_vec_free(sample);
	return -1;
}

struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
{
	if (s != tab->n_outside) {
		int t = tab->sample_index[tab->n_outside];
		tab->sample_index[tab->n_outside] = tab->sample_index[s];
		tab->sample_index[s] = t;
		isl_mat_swap_rows(tab->samples, tab->n_outside, s);
	}
	tab->n_outside++;
	if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
		isl_tab_free(tab);
		return NULL;
	}

	return tab;
}

/* Record the current number of samples so that we can remove newer
 * samples during a rollback.
 */
isl_stat isl_tab_save_samples(struct isl_tab *tab)
{
	union isl_tab_undo_val u;

	if (!tab)
		return isl_stat_error;

	u.n = tab->n_sample;
	return push_union(tab, isl_tab_undo_saved_samples, u);
}

/* Mark row with index "row" as being redundant.
 * If we may need to undo the operation or if the row represents
 * a variable of the original problem, the row is kept,
 * but no longer considered when looking for a pivot row.
 * Otherwise, the row is simply removed.
 *
 * The row may be interchanged with some other row.  If it
 * is interchanged with a later row, return 1.  Otherwise return 0.
 * If the rows are checked in order in the calling function,
 * then a return value of 1 means that the row with the given
 * row number may now contain a different row that hasn't been checked yet.
 */
int isl_tab_mark_redundant(struct isl_tab *tab, int row)
{
	struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
	var->is_redundant = 1;
	isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
	if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
		if (tab->row_var[row] >= 0 && !var->is_nonneg) {
			var->is_nonneg = 1;
			if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
				return -1;
		}
		if (row != tab->n_redundant)
			swap_rows(tab, row, tab->n_redundant);
		tab->n_redundant++;
		return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
	} else {
		if (row != tab->n_row - 1)
			swap_rows(tab, row, tab->n_row - 1);
		isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
		tab->n_row--;
		return 1;
	}
}

/* Mark "tab" as a rational tableau.
 * If it wasn't marked as a rational tableau already and if we may
 * need to undo changes, then arrange for the marking to be undone
 * during the undo.
 */
int isl_tab_mark_rational(struct isl_tab *tab)
{
	if (!tab)
		return -1;
	if (!tab->rational && tab->need_undo)
		if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
			return -1;
	tab->rational = 1;
	return 0;
}

isl_stat isl_tab_mark_empty(struct isl_tab *tab)
{
	if (!tab)
		return isl_stat_error;
	if (!tab->empty && tab->need_undo)
		if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
			return isl_stat_error;
	tab->empty = 1;
	return isl_stat_ok;
}

int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
{
	struct isl_tab_var *var;

	if (!tab)
		return -1;

	var = &tab->con[con];
	if (var->frozen)
		return 0;
	if (var->index < 0)
		return 0;
	var->frozen = 1;

	if (tab->need_undo)
		return isl_tab_push_var(tab, isl_tab_undo_freeze, var);

	return 0;
}

/* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
 * the original sign of the pivot element.
 * We only keep track of row signs during PILP solving and in this case
 * we only pivot a row with negative sign (meaning the value is always
 * non-positive) using a positive pivot element.
 *
 * For each row j, the new value of the parametric constant is equal to
 *
 *	a_j0 - a_jc a_r0/a_rc
 *
 * where a_j0 is the original parametric constant, a_rc is the pivot element,
 * a_r0 is the parametric constant of the pivot row and a_jc is the
 * pivot column entry of the row j.
 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
 * remains the same if a_jc has the same sign as the row j or if
 * a_jc is zero.  In all other cases, we reset the sign to "unknown".
 */
static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
{
	int i;
	struct isl_mat *mat = tab->mat;
	unsigned off = 2 + tab->M;

	if (!tab->row_sign)
		return;

	if (tab->row_sign[row] == 0)
		return;
	isl_assert(mat->ctx, row_sgn > 0, return);
	isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
	tab->row_sign[row] = isl_tab_row_pos;
	for (i = 0; i < tab->n_row; ++i) {
		int s;
		if (i == row)
			continue;
		s = isl_int_sgn(mat->row[i][off + col]);
		if (!s)
			continue;
		if (!tab->row_sign[i])
			continue;
		if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
			continue;
		if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
			continue;
		tab->row_sign[i] = isl_tab_row_unknown;
	}
}

/* Given a row number "row" and a column number "col", pivot the tableau
 * such that the associated variables are interchanged.
 * The given row in the tableau expresses
 *
 *	x_r = a_r0 + \sum_i a_ri x_i
 *
 * or
 *
 *	x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
 *
 * Substituting this equality into the other rows
 *
 *	x_j = a_j0 + \sum_i a_ji x_i
 *
 * with a_jc \ne 0, we obtain
 *
 *	x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc 
 *
 * The tableau
 *
 *	n_rc/d_r		n_ri/d_r
 *	n_jc/d_j		n_ji/d_j
 *
 * where i is any other column and j is any other row,
 * is therefore transformed into
 *
 * s(n_rc)d_r/|n_rc|		-s(n_rc)n_ri/|n_rc|
 * s(n_rc)d_r n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
 *
 * The transformation is performed along the following steps
 *
 *	d_r/n_rc		n_ri/n_rc
 *	n_jc/d_j		n_ji/d_j
 *
 *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
 *	n_jc/d_j		n_ji/d_j
 *
 *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
 *	n_jc/(|n_rc| d_j)	n_ji/(|n_rc| d_j)
 *
 *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
 *	n_jc/(|n_rc| d_j)	(n_ji |n_rc|)/(|n_rc| d_j)
 *
 *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
 *	n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
 *
 * s(n_rc)d_r/|n_rc|		-s(n_rc)n_ri/|n_rc|
 * s(n_rc)d_r n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
 *
 */
int isl_tab_pivot(struct isl_tab *tab, int row, int col)
{
	int i, j;
	int sgn;
	int t;
	isl_ctx *ctx;
	struct isl_mat *mat = tab->mat;
	struct isl_tab_var *var;
	unsigned off = 2 + tab->M;

	ctx = isl_tab_get_ctx(tab);
	if (isl_ctx_next_operation(ctx) < 0)
		return -1;

	isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
	sgn = isl_int_sgn(mat->row[row][0]);
	if (sgn < 0) {
		isl_int_neg(mat->row[row][0], mat->row[row][0]);
		isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
	} else
		for (j = 0; j < off - 1 + tab->n_col; ++j) {
			if (j == off - 1 + col)
				continue;
			isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
		}
	if (!isl_int_is_one(mat->row[row][0]))
		isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
	for (i = 0; i < tab->n_row; ++i) {
		if (i == row)
			continue;
		if (isl_int_is_zero(mat->row[i][off + col]))
			continue;
		isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
		for (j = 0; j < off - 1 + tab->n_col; ++j) {
			if (j == off - 1 + col)
				continue;
			isl_int_mul(mat->row[i][1 + j],
				    mat->row[i][1 + j], mat->row[row][0]);
			isl_int_addmul(mat->row[i][1 + j],
				    mat->row[i][off + col], mat->row[row][1 + j]);
		}
		isl_int_mul(mat->row[i][off + col],
			    mat->row[i][off + col], mat->row[row][off + col]);
		if (!isl_int_is_one(mat->row[i][0]))
			isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
	}
	t = tab->row_var[row];
	tab->row_var[row] = tab->col_var[col];
	tab->col_var[col] = t;
	var = isl_tab_var_from_row(tab, row);
	var->is_row = 1;
	var->index = row;
	var = var_from_col(tab, col);
	var->is_row = 0;
	var->index = col;
	update_row_sign(tab, row, col, sgn);
	if (tab->in_undo)
		return 0;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		if (isl_int_is_zero(mat->row[i][off + col]))
			continue;
		if (!isl_tab_var_from_row(tab, i)->frozen &&
		    isl_tab_row_is_redundant(tab, i)) {
			int redo = isl_tab_mark_redundant(tab, i);
			if (redo < 0)
				return -1;
			if (redo)
				--i;
		}
	}
	return 0;
}

/* If "var" represents a column variable, then pivot is up (sgn > 0)
 * or down (sgn < 0) to a row.  The variable is assumed not to be
 * unbounded in the specified direction.
 * If sgn = 0, then the variable is unbounded in both directions,
 * and we pivot with any row we can find.
 */
static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
{
	int r;
	unsigned off = 2 + tab->M;

	if (var->is_row)
		return 0;

	if (sign == 0) {
		for (r = tab->n_redundant; r < tab->n_row; ++r)
			if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
				break;
		isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
	} else {
		r = pivot_row(tab, NULL, sign, var->index);
		isl_assert(tab->mat->ctx, r >= 0, return -1);
	}

	return isl_tab_pivot(tab, r, var->index);
}

/* Check whether all variables that are marked as non-negative
 * also have a non-negative sample value.  This function is not
 * called from the current code but is useful during debugging.
 */
static void check_table(struct isl_tab *tab) __attribute__ ((unused));
static void check_table(struct isl_tab *tab)
{
	int i;

	if (tab->empty)
		return;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		struct isl_tab_var *var;
		var = isl_tab_var_from_row(tab, i);
		if (!var->is_nonneg)
			continue;
		if (tab->M) {
			isl_assert(tab->mat->ctx,
				!isl_int_is_neg(tab->mat->row[i][2]), abort());
			if (isl_int_is_pos(tab->mat->row[i][2]))
				continue;
		}
		isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
				abort());
	}
}

/* Return the sign of the maximal value of "var".
 * If the sign is not negative, then on return from this function,
 * the sample value will also be non-negative.
 *
 * If "var" is manifestly unbounded wrt positive values, we are done.
 * Otherwise, we pivot the variable up to a row if needed
 * Then we continue pivoting down until either
 *	- no more down pivots can be performed
 *	- the sample value is positive
 *	- the variable is pivoted into a manifestly unbounded column
 */
static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;

	if (max_is_manifestly_unbounded(tab, var))
		return 1;
	if (to_row(tab, var, 1) < 0)
		return -2;
	while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
		find_pivot(tab, var, var, 1, &row, &col);
		if (row == -1)
			return isl_int_sgn(tab->mat->row[var->index][1]);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -2;
		if (!var->is_row) /* manifestly unbounded */
			return 1;
	}
	return 1;
}

int isl_tab_sign_of_max(struct isl_tab *tab, int con)
{
	struct isl_tab_var *var;

	if (!tab)
		return -2;

	var = &tab->con[con];
	isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
	isl_assert(tab->mat->ctx, !var->is_zero, return -2);

	return sign_of_max(tab, var);
}

static int row_is_neg(struct isl_tab *tab, int row)
{
	if (!tab->M)
		return isl_int_is_neg(tab->mat->row[row][1]);
	if (isl_int_is_pos(tab->mat->row[row][2]))
		return 0;
	if (isl_int_is_neg(tab->mat->row[row][2]))
		return 1;
	return isl_int_is_neg(tab->mat->row[row][1]);
}

static int row_sgn(struct isl_tab *tab, int row)
{
	if (!tab->M)
		return isl_int_sgn(tab->mat->row[row][1]);
	if (!isl_int_is_zero(tab->mat->row[row][2]))
		return isl_int_sgn(tab->mat->row[row][2]);
	else
		return isl_int_sgn(tab->mat->row[row][1]);
}

/* Perform pivots until the row variable "var" has a non-negative
 * sample value or until no more upward pivots can be performed.
 * Return the sign of the sample value after the pivots have been
 * performed.
 */
static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;

	while (row_is_neg(tab, var->index)) {
		find_pivot(tab, var, var, 1, &row, &col);
		if (row == -1)
			break;
		if (isl_tab_pivot(tab, row, col) < 0)
			return -2;
		if (!var->is_row) /* manifestly unbounded */
			return 1;
	}
	return row_sgn(tab, var->index);
}

/* Perform pivots until we are sure that the row variable "var"
 * can attain non-negative values.  After return from this
 * function, "var" is still a row variable, but its sample
 * value may not be non-negative, even if the function returns 1.
 */
static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;

	while (isl_int_is_neg(tab->mat->row[var->index][1])) {
		find_pivot(tab, var, var, 1, &row, &col);
		if (row == -1)
			break;
		if (row == var->index) /* manifestly unbounded */
			return 1;
		if (isl_tab_pivot(tab, row, col) < 0)
			return -1;
	}
	return !isl_int_is_neg(tab->mat->row[var->index][1]);
}

/* Return a negative value if "var" can attain negative values.
 * Return a non-negative value otherwise.
 *
 * If "var" is manifestly unbounded wrt negative values, we are done.
 * Otherwise, if var is in a column, we can pivot it down to a row.
 * Then we continue pivoting down until either
 *	- the pivot would result in a manifestly unbounded column
 *	  => we don't perform the pivot, but simply return -1
 *	- no more down pivots can be performed
 *	- the sample value is negative
 * If the sample value becomes negative and the variable is supposed
 * to be nonnegative, then we undo the last pivot.
 * However, if the last pivot has made the pivoting variable
 * obviously redundant, then it may have moved to another row.
 * In that case we look for upward pivots until we reach a non-negative
 * value again.
 */
static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;
	struct isl_tab_var *pivot_var = NULL;

	if (min_is_manifestly_unbounded(tab, var))
		return -1;
	if (!var->is_row) {
		col = var->index;
		row = pivot_row(tab, NULL, -1, col);
		pivot_var = var_from_col(tab, col);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -2;
		if (var->is_redundant)
			return 0;
		if (isl_int_is_neg(tab->mat->row[var->index][1])) {
			if (var->is_nonneg) {
				if (!pivot_var->is_redundant &&
				    pivot_var->index == row) {
					if (isl_tab_pivot(tab, row, col) < 0)
						return -2;
				} else
					if (restore_row(tab, var) < -1)
						return -2;
			}
			return -1;
		}
	}
	if (var->is_redundant)
		return 0;
	while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
		find_pivot(tab, var, var, -1, &row, &col);
		if (row == var->index)
			return -1;
		if (row == -1)
			return isl_int_sgn(tab->mat->row[var->index][1]);
		pivot_var = var_from_col(tab, col);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -2;
		if (var->is_redundant)
			return 0;
	}
	if (pivot_var && var->is_nonneg) {
		/* pivot back to non-negative value */
		if (!pivot_var->is_redundant && pivot_var->index == row) {
			if (isl_tab_pivot(tab, row, col) < 0)
				return -2;
		} else
			if (restore_row(tab, var) < -1)
				return -2;
	}
	return -1;
}

static int row_at_most_neg_one(struct isl_tab *tab, int row)
{
	if (tab->M) {
		if (isl_int_is_pos(tab->mat->row[row][2]))
			return 0;
		if (isl_int_is_neg(tab->mat->row[row][2]))
			return 1;
	}
	return isl_int_is_neg(tab->mat->row[row][1]) &&
	       isl_int_abs_ge(tab->mat->row[row][1],
			      tab->mat->row[row][0]);
}

/* Return 1 if "var" can attain values <= -1.
 * Return 0 otherwise.
 *
 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
 * then the sample value of "var" is assumed to be non-negative when the
 * the function is called.  If 1 is returned then the constraint
 * is not redundant and the sample value is made non-negative again before
 * the function returns.
 */
int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;
	struct isl_tab_var *pivot_var;

	if (min_is_manifestly_unbounded(tab, var))
		return 1;
	if (!var->is_row) {
		col = var->index;
		row = pivot_row(tab, NULL, -1, col);
		pivot_var = var_from_col(tab, col);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -1;
		if (var->is_redundant)
			return 0;
		if (row_at_most_neg_one(tab, var->index)) {
			if (var->is_nonneg) {
				if (!pivot_var->is_redundant &&
				    pivot_var->index == row) {
					if (isl_tab_pivot(tab, row, col) < 0)
						return -1;
				} else
					if (restore_row(tab, var) < -1)
						return -1;
			}
			return 1;
		}
	}
	if (var->is_redundant)
		return 0;
	do {
		find_pivot(tab, var, var, -1, &row, &col);
		if (row == var->index) {
			if (var->is_nonneg && restore_row(tab, var) < -1)
				return -1;
			return 1;
		}
		if (row == -1)
			return 0;
		pivot_var = var_from_col(tab, col);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -1;
		if (var->is_redundant)
			return 0;
	} while (!row_at_most_neg_one(tab, var->index));
	if (var->is_nonneg) {
		/* pivot back to non-negative value */
		if (!pivot_var->is_redundant && pivot_var->index == row)
			if (isl_tab_pivot(tab, row, col) < 0)
				return -1;
		if (restore_row(tab, var) < -1)
			return -1;
	}
	return 1;
}

/* Return 1 if "var" can attain values >= 1.
 * Return 0 otherwise.
 */
static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
{
	int row, col;
	isl_int *r;

	if (max_is_manifestly_unbounded(tab, var))
		return 1;
	if (to_row(tab, var, 1) < 0)
		return -1;
	r = tab->mat->row[var->index];
	while (isl_int_lt(r[1], r[0])) {
		find_pivot(tab, var, var, 1, &row, &col);
		if (row == -1)
			return isl_int_ge(r[1], r[0]);
		if (row == var->index) /* manifestly unbounded */
			return 1;
		if (isl_tab_pivot(tab, row, col) < 0)
			return -1;
	}
	return 1;
}

static void swap_cols(struct isl_tab *tab, int col1, int col2)
{
	int t;
	unsigned off = 2 + tab->M;
	t = tab->col_var[col1];
	tab->col_var[col1] = tab->col_var[col2];
	tab->col_var[col2] = t;
	var_from_col(tab, col1)->index = col1;
	var_from_col(tab, col2)->index = col2;
	tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
}

/* Mark column with index "col" as representing a zero variable.
 * If we may need to undo the operation the column is kept,
 * but no longer considered.
 * Otherwise, the column is simply removed.
 *
 * The column may be interchanged with some other column.  If it
 * is interchanged with a later column, return 1.  Otherwise return 0.
 * If the columns are checked in order in the calling function,
 * then a return value of 1 means that the column with the given
 * column number may now contain a different column that
 * hasn't been checked yet.
 */
int isl_tab_kill_col(struct isl_tab *tab, int col)
{
	var_from_col(tab, col)->is_zero = 1;
	if (tab->need_undo) {
		if (isl_tab_push_var(tab, isl_tab_undo_zero,
					    var_from_col(tab, col)) < 0)
			return -1;
		if (col != tab->n_dead)
			swap_cols(tab, col, tab->n_dead);
		tab->n_dead++;
		return 0;
	} else {
		if (col != tab->n_col - 1)
			swap_cols(tab, col, tab->n_col - 1);
		var_from_col(tab, tab->n_col - 1)->index = -1;
		tab->n_col--;
		return 1;
	}
}

static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
{
	unsigned off = 2 + tab->M;

	if (tab->M && !isl_int_eq(tab->mat->row[row][2],
				  tab->mat->row[row][0]))
		return 0;
	if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
				    tab->n_col - tab->n_dead) != -1)
		return 0;

	return !isl_int_is_divisible_by(tab->mat->row[row][1],
					tab->mat->row[row][0]);
}

/* For integer tableaus, check if any of the coordinates are stuck
 * at a non-integral value.
 */
static int tab_is_manifestly_empty(struct isl_tab *tab)
{
	int i;

	if (tab->empty)
		return 1;
	if (tab->rational)
		return 0;

	for (i = 0; i < tab->n_var; ++i) {
		if (!tab->var[i].is_row)
			continue;
		if (row_is_manifestly_non_integral(tab, tab->var[i].index))
			return 1;
	}

	return 0;
}

/* Row variable "var" is non-negative and cannot attain any values
 * larger than zero.  This means that the coefficients of the unrestricted
 * column variables are zero and that the coefficients of the non-negative
 * column variables are zero or negative.
 * Each of the non-negative variables with a negative coefficient can
 * then also be written as the negative sum of non-negative variables
 * and must therefore also be zero.
 *
 * If "temp_var" is set, then "var" is a temporary variable that
 * will be removed after this function returns and for which
 * no information is recorded on the undo stack.
 * Do not add any undo records involving this variable in this case
 * since the variable will have been removed before any future undo
 * operations.  Also avoid marking the variable as redundant,
 * since that either adds an undo record or needlessly removes the row
 * (the caller will take care of removing the row).
 */
static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
	int temp_var) WARN_UNUSED;
static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
	int temp_var)
{
	int j;
	struct isl_mat *mat = tab->mat;
	unsigned off = 2 + tab->M;

	if (!var->is_nonneg)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"expecting non-negative variable",
			return isl_stat_error);
	var->is_zero = 1;
	if (!temp_var && tab->need_undo)
		if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
			return isl_stat_error;
	for (j = tab->n_dead; j < tab->n_col; ++j) {
		int recheck;
		if (isl_int_is_zero(mat->row[var->index][off + j]))
			continue;
		if (isl_int_is_pos(mat->row[var->index][off + j]))
			isl_die(isl_tab_get_ctx(tab), isl_error_internal,
				"row cannot have positive coefficients",
				return isl_stat_error);
		recheck = isl_tab_kill_col(tab, j);
		if (recheck < 0)
			return isl_stat_error;
		if (recheck)
			--j;
	}
	if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
		return isl_stat_error;
	if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Add a constraint to the tableau and allocate a row for it.
 * Return the index into the constraint array "con".
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
int isl_tab_allocate_con(struct isl_tab *tab)
{
	int r;

	isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
	isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);

	r = tab->n_con;
	tab->con[r].index = tab->n_row;
	tab->con[r].is_row = 1;
	tab->con[r].is_nonneg = 0;
	tab->con[r].is_zero = 0;
	tab->con[r].is_redundant = 0;
	tab->con[r].frozen = 0;
	tab->con[r].negated = 0;
	tab->row_var[tab->n_row] = ~r;

	tab->n_row++;
	tab->n_con++;
	if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
		return -1;

	return r;
}

/* Move the entries in tab->var up one position, starting at "first",
 * creating room for an extra entry at position "first".
 * Since some of the entries of tab->row_var and tab->col_var contain
 * indices into this array, they have to be updated accordingly.
 */
static int var_insert_entry(struct isl_tab *tab, int first)
{
	int i;

	if (tab->n_var >= tab->max_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"not enough room for new variable", return -1);
	if (first > tab->n_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"invalid initial position", return -1);

	for (i = tab->n_var - 1; i >= first; --i) {
		tab->var[i + 1] = tab->var[i];
		if (tab->var[i + 1].is_row)
			tab->row_var[tab->var[i + 1].index]++;
		else
			tab->col_var[tab->var[i + 1].index]++;
	}

	tab->n_var++;

	return 0;
}

/* Drop the entry at position "first" in tab->var, moving all
 * subsequent entries down.
 * Since some of the entries of tab->row_var and tab->col_var contain
 * indices into this array, they have to be updated accordingly.
 */
static int var_drop_entry(struct isl_tab *tab, int first)
{
	int i;

	if (first >= tab->n_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"invalid initial position", return -1);

	tab->n_var--;

	for (i = first; i < tab->n_var; ++i) {
		tab->var[i] = tab->var[i + 1];
		if (tab->var[i + 1].is_row)
			tab->row_var[tab->var[i].index]--;
		else
			tab->col_var[tab->var[i].index]--;
	}

	return 0;
}

/* Add a variable to the tableau at position "r" and allocate a column for it.
 * Return the index into the variable array "var", i.e., "r",
 * or -1 on error.
 */
int isl_tab_insert_var(struct isl_tab *tab, int r)
{
	int i;
	unsigned off = 2 + tab->M;

	isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);

	if (var_insert_entry(tab, r) < 0)
		return -1;

	tab->var[r].index = tab->n_col;
	tab->var[r].is_row = 0;
	tab->var[r].is_nonneg = 0;
	tab->var[r].is_zero = 0;
	tab->var[r].is_redundant = 0;
	tab->var[r].frozen = 0;
	tab->var[r].negated = 0;
	tab->col_var[tab->n_col] = r;

	for (i = 0; i < tab->n_row; ++i)
		isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);

	tab->n_col++;
	if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
		return -1;

	return r;
}

/* Add a variable to the tableau and allocate a column for it.
 * Return the index into the variable array "var".
 */
int isl_tab_allocate_var(struct isl_tab *tab)
{
	if (!tab)
		return -1;

	return isl_tab_insert_var(tab, tab->n_var);
}

/* Add a row to the tableau.  The row is given as an affine combination
 * of the original variables and needs to be expressed in terms of the
 * column variables.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 *
 * We add each term in turn.
 * If r = n/d_r is the current sum and we need to add k x, then
 * 	if x is a column variable, we increase the numerator of
 *		this column by k d_r
 *	if x = f/d_x is a row variable, then the new representation of r is
 *
 *		 n    k f   d_x/g n + d_r/g k f   m/d_r n + m/d_g k f
 *		--- + --- = ------------------- = -------------------
 *		d_r   d_r        d_r d_x/g                m
 *
 *	with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
 *
 * If tab->M is set, then, internally, each variable x is represented
 * as x' - M.  We then also need no subtract k d_r from the coefficient of M.
 */
int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
{
	int i;
	int r;
	isl_int *row;
	isl_int a, b;
	unsigned off = 2 + tab->M;

	r = isl_tab_allocate_con(tab);
	if (r < 0)
		return -1;

	isl_int_init(a);
	isl_int_init(b);
	row = tab->mat->row[tab->con[r].index];
	isl_int_set_si(row[0], 1);
	isl_int_set(row[1], line[0]);
	isl_seq_clr(row + 2, tab->M + tab->n_col);
	for (i = 0; i < tab->n_var; ++i) {
		if (tab->var[i].is_zero)
			continue;
		if (tab->var[i].is_row) {
			isl_int_lcm(a,
				row[0], tab->mat->row[tab->var[i].index][0]);
			isl_int_swap(a, row[0]);
			isl_int_divexact(a, row[0], a);
			isl_int_divexact(b,
				row[0], tab->mat->row[tab->var[i].index][0]);
			isl_int_mul(b, b, line[1 + i]);
			isl_seq_combine(row + 1, a, row + 1,
			    b, tab->mat->row[tab->var[i].index] + 1,
			    1 + tab->M + tab->n_col);
		} else
			isl_int_addmul(row[off + tab->var[i].index],
							line[1 + i], row[0]);
		if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
			isl_int_submul(row[2], line[1 + i], row[0]);
	}
	isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
	isl_int_clear(a);
	isl_int_clear(b);

	if (tab->row_sign)
		tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;

	return r;
}

static isl_stat drop_row(struct isl_tab *tab, int row)
{
	isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,
		return isl_stat_error);
	if (row != tab->n_row - 1)
		swap_rows(tab, row, tab->n_row - 1);
	tab->n_row--;
	tab->n_con--;
	return isl_stat_ok;
}

/* Drop the variable in column "col" along with the column.
 * The column is removed first because it may need to be moved
 * into the last position and this process requires
 * the contents of the col_var array in a state
 * before the removal of the variable.
 */
static isl_stat drop_col(struct isl_tab *tab, int col)
{
	int var;

	var = tab->col_var[col];
	if (col != tab->n_col - 1)
		swap_cols(tab, col, tab->n_col - 1);
	tab->n_col--;
	if (var_drop_entry(tab, var) < 0)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Add inequality "ineq" and check if it conflicts with the
 * previously added constraints or if it is obviously redundant.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
{
	int r;
	int sgn;
	isl_int cst;

	if (!tab)
		return isl_stat_error;
	if (tab->bmap) {
		struct isl_basic_map *bmap = tab->bmap;

		isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,
			return isl_stat_error);
		isl_assert(tab->mat->ctx,
			    tab->n_con == bmap->n_eq + bmap->n_ineq,
			    return isl_stat_error);
		tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
			return isl_stat_error;
		if (!tab->bmap)
			return isl_stat_error;
	}
	if (tab->cone) {
		isl_int_init(cst);
		isl_int_set_si(cst, 0);
		isl_int_swap(ineq[0], cst);
	}
	r = isl_tab_add_row(tab, ineq);
	if (tab->cone) {
		isl_int_swap(ineq[0], cst);
		isl_int_clear(cst);
	}
	if (r < 0)
		return isl_stat_error;
	tab->con[r].is_nonneg = 1;
	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
		return isl_stat_error;
	if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
			return isl_stat_error;
		return isl_stat_ok;
	}

	sgn = restore_row(tab, &tab->con[r]);
	if (sgn < -1)
		return isl_stat_error;
	if (sgn < 0)
		return isl_tab_mark_empty(tab);
	if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
			return isl_stat_error;
	return isl_stat_ok;
}

/* Pivot a non-negative variable down until it reaches the value zero
 * and then pivot the variable into a column position.
 */
static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
{
	int i;
	int row, col;
	unsigned off = 2 + tab->M;

	if (!var->is_row)
		return 0;

	while (isl_int_is_pos(tab->mat->row[var->index][1])) {
		find_pivot(tab, var, NULL, -1, &row, &col);
		isl_assert(tab->mat->ctx, row != -1, return -1);
		if (isl_tab_pivot(tab, row, col) < 0)
			return -1;
		if (!var->is_row)
			return 0;
	}

	for (i = tab->n_dead; i < tab->n_col; ++i)
		if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
			break;

	isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
	if (isl_tab_pivot(tab, var->index, i) < 0)
		return -1;

	return 0;
}

/* We assume Gaussian elimination has been performed on the equalities.
 * The equalities can therefore never conflict.
 * Adding the equalities is currently only really useful for a later call
 * to isl_tab_ineq_type.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
{
	int i;
	int r;

	if (!tab)
		return NULL;
	r = isl_tab_add_row(tab, eq);
	if (r < 0)
		goto error;

	r = tab->con[r].index;
	i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
					tab->n_col - tab->n_dead);
	isl_assert(tab->mat->ctx, i >= 0, goto error);
	i += tab->n_dead;
	if (isl_tab_pivot(tab, r, i) < 0)
		goto error;
	if (isl_tab_kill_col(tab, i) < 0)
		goto error;
	tab->n_eq++;

	return tab;
error:
	isl_tab_free(tab);
	return NULL;
}

/* Does the sample value of row "row" of "tab" involve the big parameter,
 * if any?
 */
static int row_is_big(struct isl_tab *tab, int row)
{
	return tab->M && !isl_int_is_zero(tab->mat->row[row][2]);
}

static int row_is_manifestly_zero(struct isl_tab *tab, int row)
{
	unsigned off = 2 + tab->M;

	if (!isl_int_is_zero(tab->mat->row[row][1]))
		return 0;
	if (row_is_big(tab, row))
		return 0;
	return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
					tab->n_col - tab->n_dead) == -1;
}

/* Add an equality that is known to be valid for the given tableau.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
{
	struct isl_tab_var *var;
	int r;

	if (!tab)
		return -1;
	r = isl_tab_add_row(tab, eq);
	if (r < 0)
		return -1;

	var = &tab->con[r];
	r = var->index;
	if (row_is_manifestly_zero(tab, r)) {
		var->is_zero = 1;
		if (isl_tab_mark_redundant(tab, r) < 0)
			return -1;
		return 0;
	}

	if (isl_int_is_neg(tab->mat->row[r][1])) {
		isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
			    1 + tab->n_col);
		var->negated = 1;
	}
	var->is_nonneg = 1;
	if (to_col(tab, var) < 0)
		return -1;
	var->is_nonneg = 0;
	if (isl_tab_kill_col(tab, var->index) < 0)
		return -1;

	return 0;
}

/* Add a zero row to "tab" and return the corresponding index
 * in the constraint array.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static int add_zero_row(struct isl_tab *tab)
{
	int r;
	isl_int *row;

	r = isl_tab_allocate_con(tab);
	if (r < 0)
		return -1;

	row = tab->mat->row[tab->con[r].index];
	isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
	isl_int_set_si(row[0], 1);

	return r;
}

/* Add equality "eq" and check if it conflicts with the
 * previously added constraints or if it is obviously redundant.
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 * If tab->bmap is set, then two rows are needed instead of one.
 */
int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
{
	struct isl_tab_undo *snap = NULL;
	struct isl_tab_var *var;
	int r;
	int row;
	int sgn;
	isl_int cst;

	if (!tab)
		return -1;
	isl_assert(tab->mat->ctx, !tab->M, return -1);

	if (tab->need_undo)
		snap = isl_tab_snap(tab);

	if (tab->cone) {
		isl_int_init(cst);
		isl_int_set_si(cst, 0);
		isl_int_swap(eq[0], cst);
	}
	r = isl_tab_add_row(tab, eq);
	if (tab->cone) {
		isl_int_swap(eq[0], cst);
		isl_int_clear(cst);
	}
	if (r < 0)
		return -1;

	var = &tab->con[r];
	row = var->index;
	if (row_is_manifestly_zero(tab, row)) {
		if (snap)
			return isl_tab_rollback(tab, snap);
		return drop_row(tab, row);
	}

	if (tab->bmap) {
		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
			return -1;
		isl_seq_neg(eq, eq, 1 + tab->n_var);
		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
		isl_seq_neg(eq, eq, 1 + tab->n_var);
		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
			return -1;
		if (!tab->bmap)
			return -1;
		if (add_zero_row(tab) < 0)
			return -1;
	}

	sgn = isl_int_sgn(tab->mat->row[row][1]);

	if (sgn > 0) {
		isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
			    1 + tab->n_col);
		var->negated = 1;
		sgn = -1;
	}

	if (sgn < 0) {
		sgn = sign_of_max(tab, var);
		if (sgn < -1)
			return -1;
		if (sgn < 0) {
			if (isl_tab_mark_empty(tab) < 0)
				return -1;
			return 0;
		}
	}

	var->is_nonneg = 1;
	if (to_col(tab, var) < 0)
		return -1;
	var->is_nonneg = 0;
	if (isl_tab_kill_col(tab, var->index) < 0)
		return -1;

	return 0;
}

/* Construct and return an inequality that expresses an upper bound
 * on the given div.
 * In particular, if the div is given by
 *
 *	d = floor(e/m)
 *
 * then the inequality expresses
 *
 *	m d <= e
 */
static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
{
	unsigned total;
	unsigned div_pos;
	struct isl_vec *ineq;

	if (!bmap)
		return NULL;

	total = isl_basic_map_total_dim(bmap);
	div_pos = 1 + total - bmap->n_div + div;

	ineq = isl_vec_alloc(bmap->ctx, 1 + total);
	if (!ineq)
		return NULL;

	isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
	isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
	return ineq;
}

/* For a div d = floor(f/m), add the constraints
 *
 *		f - m d >= 0
 *		-(f-(m-1)) + m d >= 0
 *
 * Note that the second constraint is the negation of
 *
 *		f - m d >= m
 *
 * If add_ineq is not NULL, then this function is used
 * instead of isl_tab_add_ineq to effectively add the inequalities.
 *
 * This function assumes that at least two more rows and at least
 * two more elements in the constraint array are available in the tableau.
 */
static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
	isl_stat (*add_ineq)(void *user, isl_int *), void *user)
{
	unsigned total;
	unsigned div_pos;
	struct isl_vec *ineq;

	total = isl_basic_map_total_dim(tab->bmap);
	div_pos = 1 + total - tab->bmap->n_div + div;

	ineq = ineq_for_div(tab->bmap, div);
	if (!ineq)
		goto error;

	if (add_ineq) {
		if (add_ineq(user, ineq->el) < 0)
			goto error;
	} else {
		if (isl_tab_add_ineq(tab, ineq->el) < 0)
			goto error;
	}

	isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
	isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
	isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
	isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);

	if (add_ineq) {
		if (add_ineq(user, ineq->el) < 0)
			goto error;
	} else {
		if (isl_tab_add_ineq(tab, ineq->el) < 0)
			goto error;
	}

	isl_vec_free(ineq);

	return isl_stat_ok;
error:
	isl_vec_free(ineq);
	return isl_stat_error;
}

/* Check whether the div described by "div" is obviously non-negative.
 * If we are using a big parameter, then we will encode the div
 * as div' = M + div, which is always non-negative.
 * Otherwise, we check whether div is a non-negative affine combination
 * of non-negative variables.
 */
static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
{
	int i;

	if (tab->M)
		return 1;

	if (isl_int_is_neg(div->el[1]))
		return 0;

	for (i = 0; i < tab->n_var; ++i) {
		if (isl_int_is_neg(div->el[2 + i]))
			return 0;
		if (isl_int_is_zero(div->el[2 + i]))
			continue;
		if (!tab->var[i].is_nonneg)
			return 0;
	}

	return 1;
}

/* Insert an extra div, prescribed by "div", to the tableau and
 * the associated bmap (which is assumed to be non-NULL).
 * The extra integer division is inserted at (tableau) position "pos".
 * Return "pos" or -1 if an error occurred.
 *
 * If add_ineq is not NULL, then this function is used instead
 * of isl_tab_add_ineq to add the div constraints.
 * This complication is needed because the code in isl_tab_pip
 * wants to perform some extra processing when an inequality
 * is added to the tableau.
 */
int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
	isl_stat (*add_ineq)(void *user, isl_int *), void *user)
{
	int r;
	int nonneg;
	int n_div, o_div;

	if (!tab || !div)
		return -1;

	if (div->size != 1 + 1 + tab->n_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"unexpected size", return -1);

	isl_assert(tab->mat->ctx, tab->bmap, return -1);
	n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
	o_div = tab->n_var - n_div;
	if (pos < o_div || pos > tab->n_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"invalid position", return -1);

	nonneg = div_is_nonneg(tab, div);

	if (isl_tab_extend_cons(tab, 3) < 0)
		return -1;
	if (isl_tab_extend_vars(tab, 1) < 0)
		return -1;
	r = isl_tab_insert_var(tab, pos);
	if (r < 0)
		return -1;

	if (nonneg)
		tab->var[r].is_nonneg = 1;

	tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
	if (!tab->bmap)
		return -1;
	if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
		return -1;

	if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
		return -1;

	return r;
}

/* Add an extra div, prescribed by "div", to the tableau and
 * the associated bmap (which is assumed to be non-NULL).
 */
int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
{
	if (!tab)
		return -1;
	return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL);
}

/* If "track" is set, then we want to keep track of all constraints in tab
 * in its bmap field.  This field is initialized from a copy of "bmap",
 * so we need to make sure that all constraints in "bmap" also appear
 * in the constructed tab.
 */
__isl_give struct isl_tab *isl_tab_from_basic_map(
	__isl_keep isl_basic_map *bmap, int track)
{
	int i;
	struct isl_tab *tab;

	if (!bmap)
		return NULL;
	tab = isl_tab_alloc(bmap->ctx,
			    isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
			    isl_basic_map_total_dim(bmap), 0);
	if (!tab)
		return NULL;
	tab->preserve = track;
	tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
		if (isl_tab_mark_empty(tab) < 0)
			goto error;
		goto done;
	}
	for (i = 0; i < bmap->n_eq; ++i) {
		tab = add_eq(tab, bmap->eq[i]);
		if (!tab)
			return tab;
	}
	for (i = 0; i < bmap->n_ineq; ++i) {
		if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
			goto error;
		if (tab->empty)
			goto done;
	}
done:
	if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
		goto error;
	return tab;
error:
	isl_tab_free(tab);
	return NULL;
}

__isl_give struct isl_tab *isl_tab_from_basic_set(
	__isl_keep isl_basic_set *bset, int track)
{
	return isl_tab_from_basic_map(bset, track);
}

/* Construct a tableau corresponding to the recession cone of "bset".
 */
struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
	int parametric)
{
	isl_int cst;
	int i;
	struct isl_tab *tab;
	unsigned offset = 0;

	if (!bset)
		return NULL;
	if (parametric)
		offset = isl_basic_set_dim(bset, isl_dim_param);
	tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
				isl_basic_set_total_dim(bset) - offset, 0);
	if (!tab)
		return NULL;
	tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
	tab->cone = 1;

	isl_int_init(cst);
	isl_int_set_si(cst, 0);
	for (i = 0; i < bset->n_eq; ++i) {
		isl_int_swap(bset->eq[i][offset], cst);
		if (offset > 0) {
			if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
				goto error;
		} else
			tab = add_eq(tab, bset->eq[i]);
		isl_int_swap(bset->eq[i][offset], cst);
		if (!tab)
			goto done;
	}
	for (i = 0; i < bset->n_ineq; ++i) {
		int r;
		isl_int_swap(bset->ineq[i][offset], cst);
		r = isl_tab_add_row(tab, bset->ineq[i] + offset);
		isl_int_swap(bset->ineq[i][offset], cst);
		if (r < 0)
			goto error;
		tab->con[r].is_nonneg = 1;
		if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
			goto error;
	}
done:
	isl_int_clear(cst);
	return tab;
error:
	isl_int_clear(cst);
	isl_tab_free(tab);
	return NULL;
}

/* Assuming "tab" is the tableau of a cone, check if the cone is
 * bounded, i.e., if it is empty or only contains the origin.
 */
isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
{
	int i;

	if (!tab)
		return isl_bool_error;
	if (tab->empty)
		return isl_bool_true;
	if (tab->n_dead == tab->n_col)
		return isl_bool_true;

	for (;;) {
		for (i = tab->n_redundant; i < tab->n_row; ++i) {
			struct isl_tab_var *var;
			int sgn;
			var = isl_tab_var_from_row(tab, i);
			if (!var->is_nonneg)
				continue;
			sgn = sign_of_max(tab, var);
			if (sgn < -1)
				return isl_bool_error;
			if (sgn != 0)
				return isl_bool_false;
			if (close_row(tab, var, 0) < 0)
				return isl_bool_error;
			break;
		}
		if (tab->n_dead == tab->n_col)
			return isl_bool_true;
		if (i == tab->n_row)
			return isl_bool_false;
	}
}

int isl_tab_sample_is_integer(struct isl_tab *tab)
{
	int i;

	if (!tab)
		return -1;

	for (i = 0; i < tab->n_var; ++i) {
		int row;
		if (!tab->var[i].is_row)
			continue;
		row = tab->var[i].index;
		if (!isl_int_is_divisible_by(tab->mat->row[row][1],
						tab->mat->row[row][0]))
			return 0;
	}
	return 1;
}

static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
{
	int i;
	struct isl_vec *vec;

	vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
	if (!vec)
		return NULL;

	isl_int_set_si(vec->block.data[0], 1);
	for (i = 0; i < tab->n_var; ++i) {
		if (!tab->var[i].is_row)
			isl_int_set_si(vec->block.data[1 + i], 0);
		else {
			int row = tab->var[i].index;
			isl_int_divexact(vec->block.data[1 + i],
				tab->mat->row[row][1], tab->mat->row[row][0]);
		}
	}

	return vec;
}

struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
{
	int i;
	struct isl_vec *vec;
	isl_int m;

	if (!tab)
		return NULL;

	vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
	if (!vec)
		return NULL;

	isl_int_init(m);

	isl_int_set_si(vec->block.data[0], 1);
	for (i = 0; i < tab->n_var; ++i) {
		int row;
		if (!tab->var[i].is_row) {
			isl_int_set_si(vec->block.data[1 + i], 0);
			continue;
		}
		row = tab->var[i].index;
		isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
		isl_int_divexact(m, tab->mat->row[row][0], m);
		isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
		isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
		isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
	}
	vec = isl_vec_normalize(vec);

	isl_int_clear(m);
	return vec;
}

/* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
 * or down (if sgn < 0) to the nearest integer in *v.
 */
static void get_rounded_sample_value(struct isl_tab *tab,
	struct isl_tab_var *var, int sgn, isl_int *v)
{
	if (!var->is_row)
		isl_int_set_si(*v, 0);
	else if (sgn > 0)
		isl_int_cdiv_q(*v, tab->mat->row[var->index][1],
				   tab->mat->row[var->index][0]);
	else
		isl_int_fdiv_q(*v, tab->mat->row[var->index][1],
				   tab->mat->row[var->index][0]);
}

/* Update "bmap" based on the results of the tableau "tab".
 * In particular, implicit equalities are made explicit, redundant constraints
 * are removed and if the sample value happens to be integer, it is stored
 * in "bmap" (unless "bmap" already had an integer sample).
 *
 * The tableau is assumed to have been created from "bmap" using
 * isl_tab_from_basic_map.
 */
struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
	struct isl_tab *tab)
{
	int i;
	unsigned n_eq;

	if (!bmap)
		return NULL;
	if (!tab)
		return bmap;

	n_eq = tab->n_eq;
	if (tab->empty)
		bmap = isl_basic_map_set_to_empty(bmap);
	else
		for (i = bmap->n_ineq - 1; i >= 0; --i) {
			if (isl_tab_is_equality(tab, n_eq + i))
				isl_basic_map_inequality_to_equality(bmap, i);
			else if (isl_tab_is_redundant(tab, n_eq + i))
				isl_basic_map_drop_inequality(bmap, i);
		}
	if (bmap->n_eq != n_eq)
		bmap = isl_basic_map_gauss(bmap, NULL);
	if (!tab->rational &&
	    bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
		bmap->sample = extract_integer_sample(tab);
	return bmap;
}

struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
	struct isl_tab *tab)
{
	return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
								tab));
}

/* Drop the last constraint added to "tab" in position "r".
 * The constraint is expected to have remained in a row.
 */
static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
{
	if (!tab->con[r].is_row)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"row unexpectedly moved to column",
			return isl_stat_error);
	if (r + 1 != tab->n_con)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"additional constraints added", return isl_stat_error);
	if (drop_row(tab, tab->con[r].index) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Given a non-negative variable "var", temporarily add a new non-negative
 * variable that is the opposite of "var", ensuring that "var" can only attain
 * the value zero.  The new variable is removed again before this function
 * returns.  However, the effect of forcing "var" to be zero remains.
 * If var = n/d is a row variable, then the new variable = -n/d.
 * If var is a column variables, then the new variable = -var.
 * If the new variable cannot attain non-negative values, then
 * the resulting tableau is empty.
 * Otherwise, we know the value will be zero and we close the row.
 */
static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
{
	unsigned r;
	isl_int *row;
	int sgn;
	unsigned off = 2 + tab->M;

	if (var->is_zero)
		return isl_stat_ok;
	if (var->is_redundant || !var->is_nonneg)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"expecting non-redundant non-negative variable",
			return isl_stat_error);

	if (isl_tab_extend_cons(tab, 1) < 0)
		return isl_stat_error;

	r = tab->n_con;
	tab->con[r].index = tab->n_row;
	tab->con[r].is_row = 1;
	tab->con[r].is_nonneg = 0;
	tab->con[r].is_zero = 0;
	tab->con[r].is_redundant = 0;
	tab->con[r].frozen = 0;
	tab->con[r].negated = 0;
	tab->row_var[tab->n_row] = ~r;
	row = tab->mat->row[tab->n_row];

	if (var->is_row) {
		isl_int_set(row[0], tab->mat->row[var->index][0]);
		isl_seq_neg(row + 1,
			    tab->mat->row[var->index] + 1, 1 + tab->n_col);
	} else {
		isl_int_set_si(row[0], 1);
		isl_seq_clr(row + 1, 1 + tab->n_col);
		isl_int_set_si(row[off + var->index], -1);
	}

	tab->n_row++;
	tab->n_con++;

	sgn = sign_of_max(tab, &tab->con[r]);
	if (sgn < -1)
		return isl_stat_error;
	if (sgn < 0) {
		if (drop_last_con_in_row(tab, r) < 0)
			return isl_stat_error;
		if (isl_tab_mark_empty(tab) < 0)
			return isl_stat_error;
		return isl_stat_ok;
	}
	tab->con[r].is_nonneg = 1;
	/* sgn == 0 */
	if (close_row(tab, &tab->con[r], 1) < 0)
		return isl_stat_error;
	if (drop_last_con_in_row(tab, r) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Given a tableau "tab" and an inequality constraint "con" of the tableau,
 * relax the inequality by one.  That is, the inequality r >= 0 is replaced
 * by r' = r + 1 >= 0.
 * If r is a row variable, we simply increase the constant term by one
 * (taking into account the denominator).
 * If r is a column variable, then we need to modify each row that
 * refers to r = r' - 1 by substituting this equality, effectively
 * subtracting the coefficient of the column from the constant.
 * We should only do this if the minimum is manifestly unbounded,
 * however.  Otherwise, we may end up with negative sample values
 * for non-negative variables.
 * So, if r is a column variable with a minimum that is not
 * manifestly unbounded, then we need to move it to a row.
 * However, the sample value of this row may be negative,
 * even after the relaxation, so we need to restore it.
 * We therefore prefer to pivot a column up to a row, if possible.
 */
int isl_tab_relax(struct isl_tab *tab, int con)
{
	struct isl_tab_var *var;

	if (!tab)
		return -1;

	var = &tab->con[con];

	if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
		isl_die(tab->mat->ctx, isl_error_invalid,
			"cannot relax redundant constraint", return -1);
	if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
		isl_die(tab->mat->ctx, isl_error_invalid,
			"cannot relax dead constraint", return -1);

	if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
		if (to_row(tab, var, 1) < 0)
			return -1;
	if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
		if (to_row(tab, var, -1) < 0)
			return -1;

	if (var->is_row) {
		isl_int_add(tab->mat->row[var->index][1],
		    tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
		if (restore_row(tab, var) < 0)
			return -1;
	} else {
		int i;
		unsigned off = 2 + tab->M;

		for (i = 0; i < tab->n_row; ++i) {
			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
				continue;
			isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
			    tab->mat->row[i][off + var->index]);
		}

	}

	if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
		return -1;

	return 0;
}

/* Replace the variable v at position "pos" in the tableau "tab"
 * by v' = v + shift.
 *
 * If the variable is in a column, then we first check if we can
 * simply plug in v = v' - shift.  The effect on a row with
 * coefficient f/d for variable v is that the constant term c/d
 * is replaced by (c - f * shift)/d.  If shift is positive and
 * f is negative for each row that needs to remain non-negative,
 * then this is clearly safe.  In other words, if the minimum of v
 * is manifestly unbounded, then we can keep v in a column position.
 * Otherwise, we can pivot it down to a row.
 * Similarly, if shift is negative, we need to check if the maximum
 * of is manifestly unbounded.
 *
 * If the variable is in a row (from the start or after pivoting),
 * then the constant term c/d is replaced by (c + d * shift)/d.
 */
int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
{
	struct isl_tab_var *var;

	if (!tab)
		return -1;
	if (isl_int_is_zero(shift))
		return 0;

	var = &tab->var[pos];
	if (!var->is_row) {
		if (isl_int_is_neg(shift)) {
			if (!max_is_manifestly_unbounded(tab, var))
				if (to_row(tab, var, 1) < 0)
					return -1;
		} else {
			if (!min_is_manifestly_unbounded(tab, var))
				if (to_row(tab, var, -1) < 0)
					return -1;
		}
	}

	if (var->is_row) {
		isl_int_addmul(tab->mat->row[var->index][1],
				shift, tab->mat->row[var->index][0]);
	} else {
		int i;
		unsigned off = 2 + tab->M;

		for (i = 0; i < tab->n_row; ++i) {
			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
				continue;
			isl_int_submul(tab->mat->row[i][1],
				    shift, tab->mat->row[i][off + var->index]);
		}

	}

	return 0;
}

/* Remove the sign constraint from constraint "con".
 *
 * If the constraint variable was originally marked non-negative,
 * then we make sure we mark it non-negative again during rollback.
 */
int isl_tab_unrestrict(struct isl_tab *tab, int con)
{
	struct isl_tab_var *var;

	if (!tab)
		return -1;

	var = &tab->con[con];
	if (!var->is_nonneg)
		return 0;

	var->is_nonneg = 0;
	if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
		return -1;

	return 0;
}

int isl_tab_select_facet(struct isl_tab *tab, int con)
{
	if (!tab)
		return -1;

	return cut_to_hyperplane(tab, &tab->con[con]);
}

static int may_be_equality(struct isl_tab *tab, int row)
{
	return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
			     : isl_int_lt(tab->mat->row[row][1],
					    tab->mat->row[row][0]);
}

/* Return an isl_tab_var that has been marked or NULL if no such
 * variable can be found.
 * The marked field has only been set for variables that
 * appear in non-redundant rows or non-dead columns.
 *
 * Pick the last constraint variable that is marked and
 * that appears in either a non-redundant row or a non-dead columns.
 * Since the returned variable is tested for being a redundant constraint or
 * an implicit equality, there is no need to return any tab variable that
 * corresponds to a variable.
 */
static struct isl_tab_var *select_marked(struct isl_tab *tab)
{
	int i;
	struct isl_tab_var *var;

	for (i = tab->n_con - 1; i >= 0; --i) {
		var = &tab->con[i];
		if (var->index < 0)
			continue;
		if (var->is_row && var->index < tab->n_redundant)
			continue;
		if (!var->is_row && var->index < tab->n_dead)
			continue;
		if (var->marked)
			return var;
	}

	return NULL;
}

/* Check for (near) equalities among the constraints.
 * A constraint is an equality if it is non-negative and if
 * its maximal value is either
 *	- zero (in case of rational tableaus), or
 *	- strictly less than 1 (in case of integer tableaus)
 *
 * We first mark all non-redundant and non-dead variables that
 * are not frozen and not obviously not an equality.
 * Then we iterate over all marked variables if they can attain
 * any values larger than zero or at least one.
 * If the maximal value is zero, we mark any column variables
 * that appear in the row as being zero and mark the row as being redundant.
 * Otherwise, if the maximal value is strictly less than one (and the
 * tableau is integer), then we restrict the value to being zero
 * by adding an opposite non-negative variable.
 * The order in which the variables are considered is not important.
 */
int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
{
	int i;
	unsigned n_marked;

	if (!tab)
		return -1;
	if (tab->empty)
		return 0;
	if (tab->n_dead == tab->n_col)
		return 0;

	n_marked = 0;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
		var->marked = !var->frozen && var->is_nonneg &&
			may_be_equality(tab, i);
		if (var->marked)
			n_marked++;
	}
	for (i = tab->n_dead; i < tab->n_col; ++i) {
		struct isl_tab_var *var = var_from_col(tab, i);
		var->marked = !var->frozen && var->is_nonneg;
		if (var->marked)
			n_marked++;
	}
	while (n_marked) {
		struct isl_tab_var *var;
		int sgn;
		var = select_marked(tab);
		if (!var)
			break;
		var->marked = 0;
		n_marked--;
		sgn = sign_of_max(tab, var);
		if (sgn < 0)
			return -1;
		if (sgn == 0) {
			if (close_row(tab, var, 0) < 0)
				return -1;
		} else if (!tab->rational && !at_least_one(tab, var)) {
			if (cut_to_hyperplane(tab, var) < 0)
				return -1;
			return isl_tab_detect_implicit_equalities(tab);
		}
		for (i = tab->n_redundant; i < tab->n_row; ++i) {
			var = isl_tab_var_from_row(tab, i);
			if (!var->marked)
				continue;
			if (may_be_equality(tab, i))
				continue;
			var->marked = 0;
			n_marked--;
		}
	}

	return 0;
}

/* Update the element of row_var or col_var that corresponds to
 * constraint tab->con[i] to a move from position "old" to position "i".
 */
static int update_con_after_move(struct isl_tab *tab, int i, int old)
{
	int *p;
	int index;

	index = tab->con[i].index;
	if (index == -1)
		return 0;
	p = tab->con[i].is_row ? tab->row_var : tab->col_var;
	if (p[index] != ~old)
		isl_die(tab->mat->ctx, isl_error_internal,
			"broken internal state", return -1);
	p[index] = ~i;

	return 0;
}

/* Rotate the "n" constraints starting at "first" to the right,
 * putting the last constraint in the position of the first constraint.
 */
static int rotate_constraints(struct isl_tab *tab, int first, int n)
{
	int i, last;
	struct isl_tab_var var;

	if (n <= 1)
		return 0;

	last = first + n - 1;
	var = tab->con[last];
	for (i = last; i > first; --i) {
		tab->con[i] = tab->con[i - 1];
		if (update_con_after_move(tab, i, i - 1) < 0)
			return -1;
	}
	tab->con[first] = var;
	if (update_con_after_move(tab, first, last) < 0)
		return -1;

	return 0;
}

/* Make the equalities that are implicit in "bmap" but that have been
 * detected in the corresponding "tab" explicit in "bmap" and update
 * "tab" to reflect the new order of the constraints.
 *
 * In particular, if inequality i is an implicit equality then
 * isl_basic_map_inequality_to_equality will move the inequality
 * in front of the other equality and it will move the last inequality
 * in the position of inequality i.
 * In the tableau, the inequalities of "bmap" are stored after the equalities
 * and so the original order
 *
 *		E E E E E A A A I B B B B L
 *
 * is changed into
 *
 *		I E E E E E A A A L B B B B
 *
 * where I is the implicit equality, the E are equalities,
 * the A inequalities before I, the B inequalities after I and
 * L the last inequality.
 * We therefore need to rotate to the right two sets of constraints,
 * those up to and including I and those after I.
 *
 * If "tab" contains any constraints that are not in "bmap" then they
 * appear after those in "bmap" and they should be left untouched.
 *
 * Note that this function leaves "bmap" in a temporary state
 * as it does not call isl_basic_map_gauss.  Calling this function
 * is the responsibility of the caller.
 */
__isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
	__isl_take isl_basic_map *bmap)
{
	int i;

	if (!tab || !bmap)
		return isl_basic_map_free(bmap);
	if (tab->empty)
		return bmap;

	for (i = bmap->n_ineq - 1; i >= 0; --i) {
		if (!isl_tab_is_equality(tab, bmap->n_eq + i))
			continue;
		isl_basic_map_inequality_to_equality(bmap, i);
		if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
			return isl_basic_map_free(bmap);
		if (rotate_constraints(tab, tab->n_eq + i + 1,
					bmap->n_ineq - i) < 0)
			return isl_basic_map_free(bmap);
		tab->n_eq++;
	}

	return bmap;
}

static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
{
	if (!tab)
		return -1;
	if (tab->rational) {
		int sgn = sign_of_min(tab, var);
		if (sgn < -1)
			return -1;
		return sgn >= 0;
	} else {
		int irred = isl_tab_min_at_most_neg_one(tab, var);
		if (irred < 0)
			return -1;
		return !irred;
	}
}

/* Check for (near) redundant constraints.
 * A constraint is redundant if it is non-negative and if
 * its minimal value (temporarily ignoring the non-negativity) is either
 *	- zero (in case of rational tableaus), or
 *	- strictly larger than -1 (in case of integer tableaus)
 *
 * We first mark all non-redundant and non-dead variables that
 * are not frozen and not obviously negatively unbounded.
 * Then we iterate over all marked variables if they can attain
 * any values smaller than zero or at most negative one.
 * If not, we mark the row as being redundant (assuming it hasn't
 * been detected as being obviously redundant in the mean time).
 */
int isl_tab_detect_redundant(struct isl_tab *tab)
{
	int i;
	unsigned n_marked;

	if (!tab)
		return -1;
	if (tab->empty)
		return 0;
	if (tab->n_redundant == tab->n_row)
		return 0;

	n_marked = 0;
	for (i = tab->n_redundant; i < tab->n_row; ++i) {
		struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
		var->marked = !var->frozen && var->is_nonneg;
		if (var->marked)
			n_marked++;
	}
	for (i = tab->n_dead; i < tab->n_col; ++i) {
		struct isl_tab_var *var = var_from_col(tab, i);
		var->marked = !var->frozen && var->is_nonneg &&
			!min_is_manifestly_unbounded(tab, var);
		if (var->marked)
			n_marked++;
	}
	while (n_marked) {
		struct isl_tab_var *var;
		int red;
		var = select_marked(tab);
		if (!var)
			break;
		var->marked = 0;
		n_marked--;
		red = con_is_redundant(tab, var);
		if (red < 0)
			return -1;
		if (red && !var->is_redundant)
			if (isl_tab_mark_redundant(tab, var->index) < 0)
				return -1;
		for (i = tab->n_dead; i < tab->n_col; ++i) {
			var = var_from_col(tab, i);
			if (!var->marked)
				continue;
			if (!min_is_manifestly_unbounded(tab, var))
				continue;
			var->marked = 0;
			n_marked--;
		}
	}

	return 0;
}

int isl_tab_is_equality(struct isl_tab *tab, int con)
{
	int row;
	unsigned off;

	if (!tab)
		return -1;
	if (tab->con[con].is_zero)
		return 1;
	if (tab->con[con].is_redundant)
		return 0;
	if (!tab->con[con].is_row)
		return tab->con[con].index < tab->n_dead;

	row = tab->con[con].index;

	off = 2 + tab->M;
	return isl_int_is_zero(tab->mat->row[row][1]) &&
		!row_is_big(tab, row) &&
		isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
					tab->n_col - tab->n_dead) == -1;
}

/* Return the minimal value of the affine expression "f" with denominator
 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
 * the expression cannot attain arbitrarily small values.
 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
 * The return value reflects the nature of the result (empty, unbounded,
 * minimal value returned in *opt).
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
enum isl_lp_result isl_tab_min(struct isl_tab *tab,
	isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
	unsigned flags)
{
	int r;
	enum isl_lp_result res = isl_lp_ok;
	struct isl_tab_var *var;
	struct isl_tab_undo *snap;

	if (!tab)
		return isl_lp_error;

	if (tab->empty)
		return isl_lp_empty;

	snap = isl_tab_snap(tab);
	r = isl_tab_add_row(tab, f);
	if (r < 0)
		return isl_lp_error;
	var = &tab->con[r];
	for (;;) {
		int row, col;
		find_pivot(tab, var, var, -1, &row, &col);
		if (row == var->index) {
			res = isl_lp_unbounded;
			break;
		}
		if (row == -1)
			break;
		if (isl_tab_pivot(tab, row, col) < 0)
			return isl_lp_error;
	}
	isl_int_mul(tab->mat->row[var->index][0],
		    tab->mat->row[var->index][0], denom);
	if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
		int i;

		isl_vec_free(tab->dual);
		tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
		if (!tab->dual)
			return isl_lp_error;
		isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
		for (i = 0; i < tab->n_con; ++i) {
			int pos;
			if (tab->con[i].is_row) {
				isl_int_set_si(tab->dual->el[1 + i], 0);
				continue;
			}
			pos = 2 + tab->M + tab->con[i].index;
			if (tab->con[i].negated)
				isl_int_neg(tab->dual->el[1 + i],
					    tab->mat->row[var->index][pos]);
			else
				isl_int_set(tab->dual->el[1 + i],
					    tab->mat->row[var->index][pos]);
		}
	}
	if (opt && res == isl_lp_ok) {
		if (opt_denom) {
			isl_int_set(*opt, tab->mat->row[var->index][1]);
			isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
		} else
			get_rounded_sample_value(tab, var, 1, opt);
	}
	if (isl_tab_rollback(tab, snap) < 0)
		return isl_lp_error;
	return res;
}

/* Is the constraint at position "con" marked as being redundant?
 * If it is marked as representing an equality, then it is not
 * considered to be redundant.
 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
 * redundant and moves the corresponding row into the first
 * tab->n_redundant positions (or removes the row, assigning it index -1),
 * so the final test is actually redundant itself.
 */
int isl_tab_is_redundant(struct isl_tab *tab, int con)
{
	if (!tab)
		return -1;
	if (con < 0 || con >= tab->n_con)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"position out of bounds", return -1);
	if (tab->con[con].is_zero)
		return 0;
	if (tab->con[con].is_redundant)
		return 1;
	return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
}

/* Is variable "var" of "tab" fixed to a constant value by its row
 * in the tableau?
 * If so and if "value" is not NULL, then store this constant value
 * in "value".
 *
 * That is, is it a row variable that only has non-zero coefficients
 * for dead columns?
 */
static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
	isl_int *value)
{
	unsigned off = 2 + tab->M;
	isl_mat *mat = tab->mat;
	int n;
	int row;
	int pos;

	if (!var->is_row)
		return isl_bool_false;
	row = var->index;
	if (row_is_big(tab, row))
		return isl_bool_false;
	n = tab->n_col - tab->n_dead;
	pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
	if (pos != -1)
		return isl_bool_false;
	if (value)
		isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]);
	return isl_bool_true;
}

/* Has the variable "var' of "tab" reached a value that is greater than
 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
 * "tmp" has been initialized by the caller and can be used
 * to perform local computations.
 *
 * If the sample value involves the big parameter, then any value
 * is reached.
 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
 */
static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
	isl_int target, isl_int *tmp)
{
	if (row_is_big(tab, var->index))
		return 1;
	isl_int_mul(*tmp, tab->mat->row[var->index][0], target);
	if (sgn > 0)
		return isl_int_ge(tab->mat->row[var->index][1], *tmp);
	else
		return isl_int_le(tab->mat->row[var->index][1], *tmp);
}

/* Can variable "var" of "tab" attain the value "target" by
 * pivoting up (if sgn > 0) or down (if sgn < 0)?
 * If not, then pivot up [down] to the greatest [smallest]
 * rational value.
 * "tmp" has been initialized by the caller and can be used
 * to perform local computations.
 *
 * If the variable is manifestly unbounded in the desired direction,
 * then it can attain any value.
 * Otherwise, it can be moved to a row.
 * Continue pivoting until the target is reached.
 * If no more pivoting can be performed, the maximal [minimal]
 * rational value has been reached and the target cannot be reached.
 * If the variable would be pivoted into a manifestly unbounded column,
 * then the target can be reached.
 */
static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
	int sgn, isl_int target, isl_int *tmp)
{
	int row, col;

	if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
		return isl_bool_true;
	if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
		return isl_bool_true;
	if (to_row(tab, var, sgn) < 0)
		return isl_bool_error;
	while (!reached(tab, var, sgn, target, tmp)) {
		find_pivot(tab, var, var, sgn, &row, &col);
		if (row == -1)
			return isl_bool_false;
		if (row == var->index)
			return isl_bool_true;
		if (isl_tab_pivot(tab, row, col) < 0)
			return isl_bool_error;
	}

	return isl_bool_true;
}

/* Check if variable "var" of "tab" can only attain a single (integer)
 * value, and, if so, add an equality constraint to fix the variable
 * to this single value and store the result in "target".
 * "target" and "tmp" have been initialized by the caller.
 *
 * Given the current sample value, round it down and check
 * whether it is possible to attain a strictly smaller integer value.
 * If so, the variable is not restricted to a single integer value.
 * Otherwise, the search stops at the smallest rational value.
 * Round up this value and check whether it is possible to attain
 * a strictly greater integer value.
 * If so, the variable is not restricted to a single integer value.
 * Otherwise, the search stops at the greatest rational value.
 * If rounding down this value yields a value that is different
 * from rounding up the smallest rational value, then the variable
 * cannot attain any integer value.  Mark the tableau empty.
 * Otherwise, add an equality constraint that fixes the variable
 * to the single integer value found.
 */
static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
	struct isl_tab_var *var, isl_int *target, isl_int *tmp)
{
	isl_bool reached;
	isl_vec *eq;
	int pos;
	isl_stat r;

	get_rounded_sample_value(tab, var, -1, target);
	isl_int_sub_ui(*target, *target, 1);
	reached = var_reaches(tab, var, -1, *target, tmp);
	if (reached < 0 || reached)
		return isl_bool_not(reached);
	get_rounded_sample_value(tab, var, 1, target);
	isl_int_add_ui(*target, *target, 1);
	reached = var_reaches(tab, var, 1, *target, tmp);
	if (reached < 0 || reached)
		return isl_bool_not(reached);
	get_rounded_sample_value(tab, var, -1, tmp);
	isl_int_sub_ui(*target, *target, 1);
	if (isl_int_ne(*target, *tmp)) {
		if (isl_tab_mark_empty(tab) < 0)
			return isl_bool_error;
		return isl_bool_false;
	}

	if (isl_tab_extend_cons(tab, 1) < 0)
		return isl_bool_error;
	eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
	if (!eq)
		return isl_bool_error;
	pos = var - tab->var;
	isl_seq_clr(eq->el + 1, tab->n_var);
	isl_int_set_si(eq->el[1 + pos], -1);
	isl_int_set(eq->el[0], *target);
	r = isl_tab_add_eq(tab, eq->el);
	isl_vec_free(eq);

	return r < 0 ? isl_bool_error : isl_bool_true;
}

/* Check if variable "var" of "tab" can only attain a single (integer)
 * value, and, if so, add an equality constraint to fix the variable
 * to this single value and store the result in "value" (if "value"
 * is not NULL).
 *
 * If the current sample value involves the big parameter,
 * then the variable cannot have a fixed integer value.
 * If the variable is already fixed to a single value by its row, then
 * there is no need to add another equality constraint.
 *
 * Otherwise, allocate some temporary variables and continue
 * with detect_constant_with_tmp.
 */
static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
	isl_int *value)
{
	isl_int target, tmp;
	isl_bool is_cst;

	if (var->is_row && row_is_big(tab, var->index))
		return isl_bool_false;
	is_cst = is_constant(tab, var, value);
	if (is_cst < 0 || is_cst)
		return is_cst;

	if (!value)
		isl_int_init(target);
	isl_int_init(tmp);

	is_cst = detect_constant_with_tmp(tab, var,
					    value ? value : &target, &tmp);

	isl_int_clear(tmp);
	if (!value)
		isl_int_clear(target);

	return is_cst;
}

/* Check if variable "var" of "tab" can only attain a single (integer)
 * value, and, if so, add an equality constraint to fix the variable
 * to this single value and store the result in "value" (if "value"
 * is not NULL).
 *
 * For rational tableaus, nothing needs to be done.
 */
isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
{
	if (!tab)
		return isl_bool_error;
	if (var < 0 || var >= tab->n_var)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"position out of bounds", return isl_bool_error);
	if (tab->rational)
		return isl_bool_false;

	return get_constant(tab, &tab->var[var], value);
}

/* Check if any of the variables of "tab" can only attain a single (integer)
 * value, and, if so, add equality constraints to fix those variables
 * to these single values.
 *
 * For rational tableaus, nothing needs to be done.
 */
isl_stat isl_tab_detect_constants(struct isl_tab *tab)
{
	int i;

	if (!tab)
		return isl_stat_error;
	if (tab->rational)
		return isl_stat_ok;

	for (i = 0; i < tab->n_var; ++i) {
		if (get_constant(tab, &tab->var[i], NULL) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Take a snapshot of the tableau that can be restored by a call to
 * isl_tab_rollback.
 */
struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
{
	if (!tab)
		return NULL;
	tab->need_undo = 1;
	return tab->top;
}

/* Does "tab" need to keep track of undo information?
 * That is, was a snapshot taken that may need to be restored?
 */
isl_bool isl_tab_need_undo(struct isl_tab *tab)
{
	if (!tab)
		return isl_bool_error;

	return tab->need_undo;
}

/* Remove all tracking of undo information from "tab", invalidating
 * any snapshots that may have been taken of the tableau.
 * Since all snapshots have been invalidated, there is also
 * no need to start keeping track of undo information again.
 */
void isl_tab_clear_undo(struct isl_tab *tab)
{
	if (!tab)
		return;

	free_undo(tab);
	tab->need_undo = 0;
}

/* Undo the operation performed by isl_tab_relax.
 */
static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
	WARN_UNUSED;
static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
{
	unsigned off = 2 + tab->M;

	if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
		if (to_row(tab, var, 1) < 0)
			return isl_stat_error;

	if (var->is_row) {
		isl_int_sub(tab->mat->row[var->index][1],
		    tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
		if (var->is_nonneg) {
			int sgn = restore_row(tab, var);
			isl_assert(tab->mat->ctx, sgn >= 0,
				return isl_stat_error);
		}
	} else {
		int i;

		for (i = 0; i < tab->n_row; ++i) {
			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
				continue;
			isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
			    tab->mat->row[i][off + var->index]);
		}

	}

	return isl_stat_ok;
}

/* Undo the operation performed by isl_tab_unrestrict.
 *
 * In particular, mark the variable as being non-negative and make
 * sure the sample value respects this constraint.
 */
static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
{
	var->is_nonneg = 1;

	if (var->is_row && restore_row(tab, var) < -1)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Unmark the last redundant row in "tab" as being redundant.
 * This undoes part of the modifications performed by isl_tab_mark_redundant.
 * In particular, remove the redundant mark and make
 * sure the sample value respects the constraint again.
 * A variable that is marked non-negative by isl_tab_mark_redundant
 * is covered by a separate undo record.
 */
static isl_stat restore_last_redundant(struct isl_tab *tab)
{
	struct isl_tab_var *var;

	if (tab->n_redundant < 1)
		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
			"no redundant rows", return isl_stat_error);

	var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
	var->is_redundant = 0;
	tab->n_redundant--;
	restore_row(tab, var);

	return isl_stat_ok;
}

static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
	WARN_UNUSED;
static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
{
	struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
	switch (undo->type) {
	case isl_tab_undo_nonneg:
		var->is_nonneg = 0;
		break;
	case isl_tab_undo_redundant:
		if (!var->is_row || var->index != tab->n_redundant - 1)
			isl_die(isl_tab_get_ctx(tab), isl_error_internal,
				"not undoing last redundant row",
				return isl_stat_error);
		return restore_last_redundant(tab);
	case isl_tab_undo_freeze:
		var->frozen = 0;
		break;
	case isl_tab_undo_zero:
		var->is_zero = 0;
		if (!var->is_row)
			tab->n_dead--;
		break;
	case isl_tab_undo_allocate:
		if (undo->u.var_index >= 0) {
			isl_assert(tab->mat->ctx, !var->is_row,
				return isl_stat_error);
			return drop_col(tab, var->index);
		}
		if (!var->is_row) {
			if (!max_is_manifestly_unbounded(tab, var)) {
				if (to_row(tab, var, 1) < 0)
					return isl_stat_error;
			} else if (!min_is_manifestly_unbounded(tab, var)) {
				if (to_row(tab, var, -1) < 0)
					return isl_stat_error;
			} else
				if (to_row(tab, var, 0) < 0)
					return isl_stat_error;
		}
		return drop_row(tab, var->index);
	case isl_tab_undo_relax:
		return unrelax(tab, var);
	case isl_tab_undo_unrestrict:
		return ununrestrict(tab, var);
	default:
		isl_die(tab->mat->ctx, isl_error_internal,
			"perform_undo_var called on invalid undo record",
			return isl_stat_error);
	}

	return isl_stat_ok;
}

/* Restore all rows that have been marked redundant by isl_tab_mark_redundant
 * and that have been preserved in the tableau.
 * Note that isl_tab_mark_redundant may also have marked some variables
 * as being non-negative before marking them redundant.  These need
 * to be removed as well as otherwise some constraints could end up
 * getting marked redundant with respect to the variable.
 */
isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
{
	if (!tab)
		return isl_stat_error;

	if (tab->need_undo)
		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
			"manually restoring redundant constraints "
			"interferes with undo history",
			return isl_stat_error);

	while (tab->n_redundant > 0) {
		if (tab->row_var[tab->n_redundant - 1] >= 0) {
			struct isl_tab_var *var;

			var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
			var->is_nonneg = 0;
		}
		restore_last_redundant(tab);
	}
	return isl_stat_ok;
}

/* Undo the addition of an integer division to the basic map representation
 * of "tab" in position "pos".
 */
static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
{
	int off;

	off = tab->n_var - isl_basic_map_dim(tab->bmap, isl_dim_div);
	if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0)
		return isl_stat_error;
	if (tab->samples) {
		tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
		if (!tab->samples)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Restore the tableau to the state where the basic variables
 * are those in "col_var".
 * We first construct a list of variables that are currently in
 * the basis, but shouldn't.  Then we iterate over all variables
 * that should be in the basis and for each one that is currently
 * not in the basis, we exchange it with one of the elements of the
 * list constructed before.
 * We can always find an appropriate variable to pivot with because
 * the current basis is mapped to the old basis by a non-singular
 * matrix and so we can never end up with a zero row.
 */
static int restore_basis(struct isl_tab *tab, int *col_var)
{
	int i, j;
	int n_extra = 0;
	int *extra = NULL;	/* current columns that contain bad stuff */
	unsigned off = 2 + tab->M;

	extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
	if (tab->n_col && !extra)
		goto error;
	for (i = 0; i < tab->n_col; ++i) {
		for (j = 0; j < tab->n_col; ++j)
			if (tab->col_var[i] == col_var[j])
				break;
		if (j < tab->n_col)
			continue;
		extra[n_extra++] = i;
	}
	for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
		struct isl_tab_var *var;
		int row;

		for (j = 0; j < tab->n_col; ++j)
			if (col_var[i] == tab->col_var[j])
				break;
		if (j < tab->n_col)
			continue;
		var = var_from_index(tab, col_var[i]);
		row = var->index;
		for (j = 0; j < n_extra; ++j)
			if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
				break;
		isl_assert(tab->mat->ctx, j < n_extra, goto error);
		if (isl_tab_pivot(tab, row, extra[j]) < 0)
			goto error;
		extra[j] = extra[--n_extra];
	}

	free(extra);
	return 0;
error:
	free(extra);
	return -1;
}

/* Remove all samples with index n or greater, i.e., those samples
 * that were added since we saved this number of samples in
 * isl_tab_save_samples.
 */
static void drop_samples_since(struct isl_tab *tab, int n)
{
	int i;

	for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
		if (tab->sample_index[i] < n)
			continue;

		if (i != tab->n_sample - 1) {
			int t = tab->sample_index[tab->n_sample-1];
			tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
			tab->sample_index[i] = t;
			isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
		}
		tab->n_sample--;
	}
}

static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
	WARN_UNUSED;
static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
{
	switch (undo->type) {
	case isl_tab_undo_rational:
		tab->rational = 0;
		break;
	case isl_tab_undo_empty:
		tab->empty = 0;
		break;
	case isl_tab_undo_nonneg:
	case isl_tab_undo_redundant:
	case isl_tab_undo_freeze:
	case isl_tab_undo_zero:
	case isl_tab_undo_allocate:
	case isl_tab_undo_relax:
	case isl_tab_undo_unrestrict:
		return perform_undo_var(tab, undo);
	case isl_tab_undo_bmap_eq:
		return isl_basic_map_free_equality(tab->bmap, 1);
	case isl_tab_undo_bmap_ineq:
		return isl_basic_map_free_inequality(tab->bmap, 1);
	case isl_tab_undo_bmap_div:
		return drop_bmap_div(tab, undo->u.var_index);
	case isl_tab_undo_saved_basis:
		if (restore_basis(tab, undo->u.col_var) < 0)
			return isl_stat_error;
		break;
	case isl_tab_undo_drop_sample:
		tab->n_outside--;
		break;
	case isl_tab_undo_saved_samples:
		drop_samples_since(tab, undo->u.n);
		break;
	case isl_tab_undo_callback:
		return undo->u.callback->run(undo->u.callback);
	default:
		isl_assert(tab->mat->ctx, 0, return isl_stat_error);
	}
	return isl_stat_ok;
}

/* Return the tableau to the state it was in when the snapshot "snap"
 * was taken.
 */
int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
{
	struct isl_tab_undo *undo, *next;

	if (!tab)
		return -1;

	tab->in_undo = 1;
	for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
		next = undo->next;
		if (undo == snap)
			break;
		if (perform_undo(tab, undo) < 0) {
			tab->top = undo;
			free_undo(tab);
			tab->in_undo = 0;
			return -1;
		}
		free_undo_record(undo);
	}
	tab->in_undo = 0;
	tab->top = undo;
	if (!undo)
		return -1;
	return 0;
}

/* The given row "row" represents an inequality violated by all
 * points in the tableau.  Check for some special cases of such
 * separating constraints.
 * In particular, if the row has been reduced to the constant -1,
 * then we know the inequality is adjacent (but opposite) to
 * an equality in the tableau.
 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
 * of the tableau and c a positive constant, then the inequality
 * is adjacent (but opposite) to the inequality r'.
 */
static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
{
	int pos;
	unsigned off = 2 + tab->M;

	if (tab->rational)
		return isl_ineq_separate;

	if (!isl_int_is_one(tab->mat->row[row][0]))
		return isl_ineq_separate;

	pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
					tab->n_col - tab->n_dead);
	if (pos == -1) {
		if (isl_int_is_negone(tab->mat->row[row][1]))
			return isl_ineq_adj_eq;
		else
			return isl_ineq_separate;
	}

	if (!isl_int_eq(tab->mat->row[row][1],
			tab->mat->row[row][off + tab->n_dead + pos]))
		return isl_ineq_separate;

	pos = isl_seq_first_non_zero(
			tab->mat->row[row] + off + tab->n_dead + pos + 1,
			tab->n_col - tab->n_dead - pos - 1);

	return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
}

/* Check the effect of inequality "ineq" on the tableau "tab".
 * The result may be
 *	isl_ineq_redundant:	satisfied by all points in the tableau
 *	isl_ineq_separate:	satisfied by no point in the tableau
 *	isl_ineq_cut:		satisfied by some by not all points
 *	isl_ineq_adj_eq:	adjacent to an equality
 *	isl_ineq_adj_ineq:	adjacent to an inequality.
 */
enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
{
	enum isl_ineq_type type = isl_ineq_error;
	struct isl_tab_undo *snap = NULL;
	int con;
	int row;

	if (!tab)
		return isl_ineq_error;

	if (isl_tab_extend_cons(tab, 1) < 0)
		return isl_ineq_error;

	snap = isl_tab_snap(tab);

	con = isl_tab_add_row(tab, ineq);
	if (con < 0)
		goto error;

	row = tab->con[con].index;
	if (isl_tab_row_is_redundant(tab, row))
		type = isl_ineq_redundant;
	else if (isl_int_is_neg(tab->mat->row[row][1]) &&
		 (tab->rational ||
		    isl_int_abs_ge(tab->mat->row[row][1],
				   tab->mat->row[row][0]))) {
		int nonneg = at_least_zero(tab, &tab->con[con]);
		if (nonneg < 0)
			goto error;
		if (nonneg)
			type = isl_ineq_cut;
		else
			type = separation_type(tab, row);
	} else {
		int red = con_is_redundant(tab, &tab->con[con]);
		if (red < 0)
			goto error;
		if (!red)
			type = isl_ineq_cut;
		else
			type = isl_ineq_redundant;
	}

	if (isl_tab_rollback(tab, snap))
		return isl_ineq_error;
	return type;
error:
	return isl_ineq_error;
}

isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
{
	bmap = isl_basic_map_cow(bmap);
	if (!tab || !bmap)
		goto error;

	if (tab->empty) {
		bmap = isl_basic_map_set_to_empty(bmap);
		if (!bmap)
			goto error;
		tab->bmap = bmap;
		return isl_stat_ok;
	}

	isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
	isl_assert(tab->mat->ctx,
		    tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);

	tab->bmap = bmap;

	return isl_stat_ok;
error:
	isl_basic_map_free(bmap);
	return isl_stat_error;
}

isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
{
	return isl_tab_track_bmap(tab, bset_to_bmap(bset));
}

__isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
{
	if (!tab)
		return NULL;

	return bset_from_bmap(tab->bmap);
}

static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
	FILE *out, int indent)
{
	unsigned r, c;
	int i;

	if (!tab) {
		fprintf(out, "%*snull tab\n", indent, "");
		return;
	}
	fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
		tab->n_redundant, tab->n_dead);
	if (tab->rational)
		fprintf(out, ", rational");
	if (tab->empty)
		fprintf(out, ", empty");
	fprintf(out, "\n");
	fprintf(out, "%*s[", indent, "");
	for (i = 0; i < tab->n_var; ++i) {
		if (i)
			fprintf(out, (i == tab->n_param ||
				      i == tab->n_var - tab->n_div) ? "; "
								    : ", ");
		fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
					tab->var[i].index,
					tab->var[i].is_zero ? " [=0]" :
					tab->var[i].is_redundant ? " [R]" : "");
	}
	fprintf(out, "]\n");
	fprintf(out, "%*s[", indent, "");
	for (i = 0; i < tab->n_con; ++i) {
		if (i)
			fprintf(out, ", ");
		fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
					tab->con[i].index,
					tab->con[i].is_zero ? " [=0]" :
					tab->con[i].is_redundant ? " [R]" : "");
	}
	fprintf(out, "]\n");
	fprintf(out, "%*s[", indent, "");
	for (i = 0; i < tab->n_row; ++i) {
		const char *sign = "";
		if (i)
			fprintf(out, ", ");
		if (tab->row_sign) {
			if (tab->row_sign[i] == isl_tab_row_unknown)
				sign = "?";
			else if (tab->row_sign[i] == isl_tab_row_neg)
				sign = "-";
			else if (tab->row_sign[i] == isl_tab_row_pos)
				sign = "+";
			else
				sign = "+-";
		}
		fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
		    isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
	}
	fprintf(out, "]\n");
	fprintf(out, "%*s[", indent, "");
	for (i = 0; i < tab->n_col; ++i) {
		if (i)
			fprintf(out, ", ");
		fprintf(out, "c%d: %d%s", i, tab->col_var[i],
		    var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
	}
	fprintf(out, "]\n");
	r = tab->mat->n_row;
	tab->mat->n_row = tab->n_row;
	c = tab->mat->n_col;
	tab->mat->n_col = 2 + tab->M + tab->n_col;
	isl_mat_print_internal(tab->mat, out, indent);
	tab->mat->n_row = r;
	tab->mat->n_col = c;
	if (tab->bmap)
		isl_basic_map_print_internal(tab->bmap, out, indent);
}

void isl_tab_dump(__isl_keep struct isl_tab *tab)
{
	isl_tab_print_internal(tab, stderr, 0);
}