1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
| //===- IslAst.cpp - isl code generator interface --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The isl code generator interface takes a Scop and generates an isl_ast. This
// ist_ast can either be returned directly or it can be pretty printed to
// stdout.
//
// A typical isl_ast output looks like this:
//
// for (c2 = max(0, ceild(n + m, 2); c2 <= min(511, floord(5 * n, 3)); c2++) {
// bb2(c2);
// }
//
// An in-depth discussion of our AST generation approach can be found in:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/aff.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/id.h"
#include "isl/isl-noexceptions.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/val.h"
#include <cassert>
#include <cstdlib>
#define DEBUG_TYPE "polly-ast"
using namespace llvm;
using namespace polly;
using IslAstUserPayload = IslAstInfo::IslAstUserPayload;
static cl::opt<bool>
PollyParallel("polly-parallel",
cl::desc("Generate thread parallel code (isl codegen only)"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> PrintAccesses("polly-ast-print-accesses",
cl::desc("Print memory access functions"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> PollyParallelForce(
"polly-parallel-force",
cl::desc(
"Force generation of thread parallel code ignoring any cost model"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> UseContext("polly-ast-use-context",
cl::desc("Use context"), cl::Hidden,
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> DetectParallel("polly-ast-detect-parallel",
cl::desc("Detect parallelism"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of SCoPs processed");
STATISTIC(ScopsBeneficial, "Number of beneficial SCoPs");
STATISTIC(BeneficialAffineLoops, "Number of beneficial affine loops");
STATISTIC(BeneficialBoxedLoops, "Number of beneficial boxed loops");
STATISTIC(NumForLoops, "Number of for-loops");
STATISTIC(NumParallel, "Number of parallel for-loops");
STATISTIC(NumInnermostParallel, "Number of innermost parallel for-loops");
STATISTIC(NumOutermostParallel, "Number of outermost parallel for-loops");
STATISTIC(NumReductionParallel, "Number of reduction-parallel for-loops");
STATISTIC(NumExecutedInParallel, "Number of for-loops executed in parallel");
STATISTIC(NumIfConditions, "Number of if-conditions");
namespace polly {
/// Temporary information used when building the ast.
struct AstBuildUserInfo {
/// Construct and initialize the helper struct for AST creation.
AstBuildUserInfo() = default;
/// The dependence information used for the parallelism check.
const Dependences *Deps = nullptr;
/// Flag to indicate that we are inside a parallel for node.
bool InParallelFor = false;
/// Flag to indicate that we are inside an SIMD node.
bool InSIMD = false;
/// The last iterator id created for the current SCoP.
isl_id *LastForNodeId = nullptr;
};
} // namespace polly
/// Free an IslAstUserPayload object pointed to by @p Ptr.
static void freeIslAstUserPayload(void *Ptr) {
delete ((IslAstInfo::IslAstUserPayload *)Ptr);
}
IslAstInfo::IslAstUserPayload::~IslAstUserPayload() {
isl_ast_build_free(Build);
}
/// Print a string @p str in a single line using @p Printer.
static isl_printer *printLine(__isl_take isl_printer *Printer,
const std::string &str,
__isl_keep isl_pw_aff *PWA = nullptr) {
Printer = isl_printer_start_line(Printer);
Printer = isl_printer_print_str(Printer, str.c_str());
if (PWA)
Printer = isl_printer_print_pw_aff(Printer, PWA);
return isl_printer_end_line(Printer);
}
/// Return all broken reductions as a string of clauses (OpenMP style).
static const std::string getBrokenReductionsStr(__isl_keep isl_ast_node *Node) {
IslAstInfo::MemoryAccessSet *BrokenReductions;
std::string str;
BrokenReductions = IslAstInfo::getBrokenReductions(Node);
if (!BrokenReductions || BrokenReductions->empty())
return "";
// Map each type of reduction to a comma separated list of the base addresses.
std::map<MemoryAccess::ReductionType, std::string> Clauses;
for (MemoryAccess *MA : *BrokenReductions)
if (MA->isWrite())
Clauses[MA->getReductionType()] +=
", " + MA->getScopArrayInfo()->getName();
// Now print the reductions sorted by type. Each type will cause a clause
// like: reduction (+ : sum0, sum1, sum2)
for (const auto &ReductionClause : Clauses) {
str += " reduction (";
str += MemoryAccess::getReductionOperatorStr(ReductionClause.first);
// Remove the first two symbols (", ") to make the output look pretty.
str += " : " + ReductionClause.second.substr(2) + ")";
}
return str;
}
/// Callback executed for each for node in the ast in order to print it.
static isl_printer *cbPrintFor(__isl_take isl_printer *Printer,
__isl_take isl_ast_print_options *Options,
__isl_keep isl_ast_node *Node, void *) {
isl_pw_aff *DD = IslAstInfo::getMinimalDependenceDistance(Node);
const std::string BrokenReductionsStr = getBrokenReductionsStr(Node);
const std::string KnownParallelStr = "#pragma known-parallel";
const std::string DepDisPragmaStr = "#pragma minimal dependence distance: ";
const std::string SimdPragmaStr = "#pragma simd";
const std::string OmpPragmaStr = "#pragma omp parallel for";
if (DD)
Printer = printLine(Printer, DepDisPragmaStr, DD);
if (IslAstInfo::isInnermostParallel(Node))
Printer = printLine(Printer, SimdPragmaStr + BrokenReductionsStr);
if (IslAstInfo::isExecutedInParallel(Node))
Printer = printLine(Printer, OmpPragmaStr);
else if (IslAstInfo::isOutermostParallel(Node))
Printer = printLine(Printer, KnownParallelStr + BrokenReductionsStr);
isl_pw_aff_free(DD);
return isl_ast_node_for_print(Node, Printer, Options);
}
/// Check if the current scheduling dimension is parallel.
///
/// In case the dimension is parallel we also check if any reduction
/// dependences is broken when we exploit this parallelism. If so,
/// @p IsReductionParallel will be set to true. The reduction dependences we use
/// to check are actually the union of the transitive closure of the initial
/// reduction dependences together with their reversal. Even though these
/// dependences connect all iterations with each other (thus they are cyclic)
/// we can perform the parallelism check as we are only interested in a zero
/// (or non-zero) dependence distance on the dimension in question.
static bool astScheduleDimIsParallel(__isl_keep isl_ast_build *Build,
const Dependences *D,
IslAstUserPayload *NodeInfo) {
if (!D->hasValidDependences())
return false;
isl_union_map *Schedule = isl_ast_build_get_schedule(Build);
isl_union_map *Deps =
D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_WAW |
Dependences::TYPE_WAR)
.release();
if (!D->isParallel(Schedule, Deps)) {
isl_union_map *DepsAll =
D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_WAW |
Dependences::TYPE_WAR | Dependences::TYPE_TC_RED)
.release();
isl_pw_aff *MinimalDependenceDistance = nullptr;
D->isParallel(Schedule, DepsAll, &MinimalDependenceDistance);
NodeInfo->MinimalDependenceDistance =
isl::manage(MinimalDependenceDistance);
isl_union_map_free(Schedule);
return false;
}
isl_union_map *RedDeps =
D->getDependences(Dependences::TYPE_TC_RED).release();
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->IsReductionParallel = true;
if (!NodeInfo->IsReductionParallel && !isl_union_map_free(Schedule))
return true;
// Annotate reduction parallel nodes with the memory accesses which caused the
// reduction dependences parallel execution of the node conflicts with.
for (const auto &MaRedPair : D->getReductionDependences()) {
if (!MaRedPair.second)
continue;
RedDeps = isl_union_map_from_map(isl_map_copy(MaRedPair.second));
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->BrokenReductions.insert(MaRedPair.first);
}
isl_union_map_free(Schedule);
return true;
}
// This method is executed before the construction of a for node. It creates
// an isl_id that is used to annotate the subsequently generated ast for nodes.
//
// In this function we also run the following analyses:
//
// - Detection of openmp parallel loops
//
static __isl_give isl_id *astBuildBeforeFor(__isl_keep isl_ast_build *Build,
void *User) {
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
BuildInfo->LastForNodeId = Id;
Payload->IsParallel =
astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload);
// Test for parallelism only if we are not already inside a parallel loop
if (!BuildInfo->InParallelFor && !BuildInfo->InSIMD)
BuildInfo->InParallelFor = Payload->IsOutermostParallel =
Payload->IsParallel;
return Id;
}
// This method is executed after the construction of a for node.
//
// It performs the following actions:
//
// - Reset the 'InParallelFor' flag, as soon as we leave a for node,
// that is marked as openmp parallel.
//
static __isl_give isl_ast_node *
astBuildAfterFor(__isl_take isl_ast_node *Node, __isl_keep isl_ast_build *Build,
void *User) {
isl_id *Id = isl_ast_node_get_annotation(Node);
assert(Id && "Post order visit assumes annotated for nodes");
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
assert(Payload && "Post order visit assumes annotated for nodes");
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
assert(!Payload->Build && "Build environment already set");
Payload->Build = isl_ast_build_copy(Build);
Payload->IsInnermost = (Id == BuildInfo->LastForNodeId);
Payload->IsInnermostParallel =
Payload->IsInnermost && (BuildInfo->InSIMD || Payload->IsParallel);
if (Payload->IsOutermostParallel)
BuildInfo->InParallelFor = false;
isl_id_free(Id);
return Node;
}
static isl_stat astBuildBeforeMark(__isl_keep isl_id *MarkId,
__isl_keep isl_ast_build *Build,
void *User) {
if (!MarkId)
return isl_stat_error;
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
if (strcmp(isl_id_get_name(MarkId), "SIMD") == 0)
BuildInfo->InSIMD = true;
return isl_stat_ok;
}
static __isl_give isl_ast_node *
astBuildAfterMark(__isl_take isl_ast_node *Node,
__isl_keep isl_ast_build *Build, void *User) {
assert(isl_ast_node_get_type(Node) == isl_ast_node_mark);
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
auto *Id = isl_ast_node_mark_get_id(Node);
if (strcmp(isl_id_get_name(Id), "SIMD") == 0)
BuildInfo->InSIMD = false;
isl_id_free(Id);
return Node;
}
static __isl_give isl_ast_node *AtEachDomain(__isl_take isl_ast_node *Node,
__isl_keep isl_ast_build *Build,
void *User) {
assert(!isl_ast_node_get_annotation(Node) && "Node already annotated");
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
Payload->Build = isl_ast_build_copy(Build);
return isl_ast_node_set_annotation(Node, Id);
}
// Build alias check condition given a pair of minimal/maximal access.
static isl::ast_expr buildCondition(Scop &S, isl::ast_build Build,
const Scop::MinMaxAccessTy *It0,
const Scop::MinMaxAccessTy *It1) {
isl::pw_multi_aff AFirst = It0->first;
isl::pw_multi_aff ASecond = It0->second;
isl::pw_multi_aff BFirst = It1->first;
isl::pw_multi_aff BSecond = It1->second;
isl::id Left = AFirst.get_tuple_id(isl::dim::set);
isl::id Right = BFirst.get_tuple_id(isl::dim::set);
isl::ast_expr True =
isl::ast_expr::from_val(isl::val::int_from_ui(Build.get_ctx(), 1));
isl::ast_expr False =
isl::ast_expr::from_val(isl::val::int_from_ui(Build.get_ctx(), 0));
const ScopArrayInfo *BaseLeft =
ScopArrayInfo::getFromId(Left)->getBasePtrOriginSAI();
const ScopArrayInfo *BaseRight =
ScopArrayInfo::getFromId(Right)->getBasePtrOriginSAI();
if (BaseLeft && BaseLeft == BaseRight)
return True;
isl::set Params = S.getContext();
isl::ast_expr NonAliasGroup, MinExpr, MaxExpr;
// In the following, we first check if any accesses will be empty under
// the execution context of the scop and do not code generate them if this
// is the case as isl will fail to derive valid AST expressions for such
// accesses.
if (!AFirst.intersect_params(Params).domain().is_empty() &&
!BSecond.intersect_params(Params).domain().is_empty()) {
MinExpr = Build.access_from(AFirst).address_of();
MaxExpr = Build.access_from(BSecond).address_of();
NonAliasGroup = MaxExpr.le(MinExpr);
}
if (!BFirst.intersect_params(Params).domain().is_empty() &&
!ASecond.intersect_params(Params).domain().is_empty()) {
MinExpr = Build.access_from(BFirst).address_of();
MaxExpr = Build.access_from(ASecond).address_of();
isl::ast_expr Result = MaxExpr.le(MinExpr);
if (!NonAliasGroup.is_null())
NonAliasGroup = isl::manage(
isl_ast_expr_or(NonAliasGroup.release(), Result.release()));
else
NonAliasGroup = Result;
}
if (NonAliasGroup.is_null())
NonAliasGroup = True;
return NonAliasGroup;
}
__isl_give isl_ast_expr *
IslAst::buildRunCondition(Scop &S, __isl_keep isl_ast_build *Build) {
isl_ast_expr *RunCondition;
// The conditions that need to be checked at run-time for this scop are
// available as an isl_set in the runtime check context from which we can
// directly derive a run-time condition.
auto *PosCond =
isl_ast_build_expr_from_set(Build, S.getAssumedContext().release());
if (S.hasTrivialInvalidContext()) {
RunCondition = PosCond;
} else {
auto *ZeroV = isl_val_zero(isl_ast_build_get_ctx(Build));
auto *NegCond =
isl_ast_build_expr_from_set(Build, S.getInvalidContext().release());
auto *NotNegCond = isl_ast_expr_eq(isl_ast_expr_from_val(ZeroV), NegCond);
RunCondition = isl_ast_expr_and(PosCond, NotNegCond);
}
// Create the alias checks from the minimal/maximal accesses in each alias
// group which consists of read only and non read only (read write) accesses.
// This operation is by construction quadratic in the read-write pointers and
// linear in the read only pointers in each alias group.
for (const Scop::MinMaxVectorPairTy &MinMaxAccessPair : S.getAliasGroups()) {
auto &MinMaxReadWrite = MinMaxAccessPair.first;
auto &MinMaxReadOnly = MinMaxAccessPair.second;
auto RWAccEnd = MinMaxReadWrite.end();
for (auto RWAccIt0 = MinMaxReadWrite.begin(); RWAccIt0 != RWAccEnd;
++RWAccIt0) {
for (auto RWAccIt1 = RWAccIt0 + 1; RWAccIt1 != RWAccEnd; ++RWAccIt1)
RunCondition = isl_ast_expr_and(
RunCondition,
buildCondition(S, isl::manage_copy(Build), RWAccIt0, RWAccIt1)
.release());
for (const Scop::MinMaxAccessTy &ROAccIt : MinMaxReadOnly)
RunCondition = isl_ast_expr_and(
RunCondition,
buildCondition(S, isl::manage_copy(Build), RWAccIt0, &ROAccIt)
.release());
}
}
return RunCondition;
}
/// Simple cost analysis for a given SCoP.
///
/// TODO: Improve this analysis and extract it to make it usable in other
/// places too.
/// In order to improve the cost model we could either keep track of
/// performed optimizations (e.g., tiling) or compute properties on the
/// original as well as optimized SCoP (e.g., #stride-one-accesses).
static bool benefitsFromPolly(Scop &Scop, bool PerformParallelTest) {
if (PollyProcessUnprofitable)
return true;
// Check if nothing interesting happened.
if (!PerformParallelTest && !Scop.isOptimized() &&
Scop.getAliasGroups().empty())
return false;
// The default assumption is that Polly improves the code.
return true;
}
/// Collect statistics for the syntax tree rooted at @p Ast.
static void walkAstForStatistics(__isl_keep isl_ast_node *Ast) {
assert(Ast);
isl_ast_node_foreach_descendant_top_down(
Ast,
[](__isl_keep isl_ast_node *Node, void *User) -> isl_bool {
switch (isl_ast_node_get_type(Node)) {
case isl_ast_node_for:
NumForLoops++;
if (IslAstInfo::isParallel(Node))
NumParallel++;
if (IslAstInfo::isInnermostParallel(Node))
NumInnermostParallel++;
if (IslAstInfo::isOutermostParallel(Node))
NumOutermostParallel++;
if (IslAstInfo::isReductionParallel(Node))
NumReductionParallel++;
if (IslAstInfo::isExecutedInParallel(Node))
NumExecutedInParallel++;
break;
case isl_ast_node_if:
NumIfConditions++;
break;
default:
break;
}
// Continue traversing subtrees.
return isl_bool_true;
},
nullptr);
}
IslAst::IslAst(Scop &Scop) : S(Scop), Ctx(Scop.getSharedIslCtx()) {}
IslAst::IslAst(IslAst &&O)
: S(O.S), Root(O.Root), RunCondition(O.RunCondition), Ctx(O.Ctx) {
O.Root = nullptr;
O.RunCondition = nullptr;
}
IslAst::~IslAst() {
isl_ast_node_free(Root);
isl_ast_expr_free(RunCondition);
}
void IslAst::init(const Dependences &D) {
bool PerformParallelTest = PollyParallel || DetectParallel ||
PollyVectorizerChoice != VECTORIZER_NONE;
auto ScheduleTree = S.getScheduleTree();
// Skip AST and code generation if there was no benefit achieved.
if (!benefitsFromPolly(S, PerformParallelTest))
return;
auto ScopStats = S.getStatistics();
ScopsBeneficial++;
BeneficialAffineLoops += ScopStats.NumAffineLoops;
BeneficialBoxedLoops += ScopStats.NumBoxedLoops;
auto Ctx = S.getIslCtx();
isl_options_set_ast_build_atomic_upper_bound(Ctx.get(), true);
isl_options_set_ast_build_detect_min_max(Ctx.get(), true);
isl_ast_build *Build;
AstBuildUserInfo BuildInfo;
if (UseContext)
Build = isl_ast_build_from_context(S.getContext().release());
else
Build = isl_ast_build_from_context(
isl_set_universe(S.getParamSpace().release()));
Build = isl_ast_build_set_at_each_domain(Build, AtEachDomain, nullptr);
if (PerformParallelTest) {
BuildInfo.Deps = &D;
BuildInfo.InParallelFor = false;
BuildInfo.InSIMD = false;
Build = isl_ast_build_set_before_each_for(Build, &astBuildBeforeFor,
&BuildInfo);
Build =
isl_ast_build_set_after_each_for(Build, &astBuildAfterFor, &BuildInfo);
Build = isl_ast_build_set_before_each_mark(Build, &astBuildBeforeMark,
&BuildInfo);
Build = isl_ast_build_set_after_each_mark(Build, &astBuildAfterMark,
&BuildInfo);
}
RunCondition = buildRunCondition(S, Build);
Root = isl_ast_build_node_from_schedule(Build, S.getScheduleTree().release());
walkAstForStatistics(Root);
isl_ast_build_free(Build);
}
IslAst IslAst::create(Scop &Scop, const Dependences &D) {
IslAst Ast{Scop};
Ast.init(D);
return Ast;
}
__isl_give isl_ast_node *IslAst::getAst() { return isl_ast_node_copy(Root); }
__isl_give isl_ast_expr *IslAst::getRunCondition() {
return isl_ast_expr_copy(RunCondition);
}
__isl_give isl_ast_node *IslAstInfo::getAst() { return Ast.getAst(); }
__isl_give isl_ast_expr *IslAstInfo::getRunCondition() {
return Ast.getRunCondition();
}
IslAstUserPayload *IslAstInfo::getNodePayload(__isl_keep isl_ast_node *Node) {
isl_id *Id = isl_ast_node_get_annotation(Node);
if (!Id)
return nullptr;
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
isl_id_free(Id);
return Payload;
}
bool IslAstInfo::isInnermost(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermost;
}
bool IslAstInfo::isParallel(__isl_keep isl_ast_node *Node) {
return IslAstInfo::isInnermostParallel(Node) ||
IslAstInfo::isOutermostParallel(Node);
}
bool IslAstInfo::isInnermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermostParallel;
}
bool IslAstInfo::isOutermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsOutermostParallel;
}
bool IslAstInfo::isReductionParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsReductionParallel;
}
bool IslAstInfo::isExecutedInParallel(__isl_keep isl_ast_node *Node) {
if (!PollyParallel)
return false;
// Do not parallelize innermost loops.
//
// Parallelizing innermost loops is often not profitable, especially if
// they have a low number of iterations.
//
// TODO: Decide this based on the number of loop iterations that will be
// executed. This can possibly require run-time checks, which again
// raises the question of both run-time check overhead and code size
// costs.
if (!PollyParallelForce && isInnermost(Node))
return false;
return isOutermostParallel(Node) && !isReductionParallel(Node);
}
__isl_give isl_union_map *
IslAstInfo::getSchedule(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? isl_ast_build_get_schedule(Payload->Build) : nullptr;
}
__isl_give isl_pw_aff *
IslAstInfo::getMinimalDependenceDistance(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? Payload->MinimalDependenceDistance.copy() : nullptr;
}
IslAstInfo::MemoryAccessSet *
IslAstInfo::getBrokenReductions(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? &Payload->BrokenReductions : nullptr;
}
isl_ast_build *IslAstInfo::getBuild(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? Payload->Build : nullptr;
}
IslAstInfo IslAstAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR) {
return {S, SAM.getResult<DependenceAnalysis>(S, SAR).getDependences(
Dependences::AL_Statement)};
}
static __isl_give isl_printer *cbPrintUser(__isl_take isl_printer *P,
__isl_take isl_ast_print_options *O,
__isl_keep isl_ast_node *Node,
void *User) {
isl::ast_node AstNode = isl::manage_copy(Node);
isl::ast_expr NodeExpr = AstNode.user_get_expr();
isl::ast_expr CallExpr = NodeExpr.get_op_arg(0);
isl::id CallExprId = CallExpr.get_id();
ScopStmt *AccessStmt = (ScopStmt *)CallExprId.get_user();
P = isl_printer_start_line(P);
P = isl_printer_print_str(P, AccessStmt->getBaseName());
P = isl_printer_print_str(P, "(");
P = isl_printer_end_line(P);
P = isl_printer_indent(P, 2);
for (MemoryAccess *MemAcc : *AccessStmt) {
P = isl_printer_start_line(P);
if (MemAcc->isRead())
P = isl_printer_print_str(P, "/* read */ &");
else
P = isl_printer_print_str(P, "/* write */ ");
isl::ast_build Build = isl::manage_copy(IslAstInfo::getBuild(Node));
if (MemAcc->isAffine()) {
isl_pw_multi_aff *PwmaPtr =
MemAcc->applyScheduleToAccessRelation(Build.get_schedule()).release();
isl::pw_multi_aff Pwma = isl::manage(PwmaPtr);
isl::ast_expr AccessExpr = Build.access_from(Pwma);
P = isl_printer_print_ast_expr(P, AccessExpr.get());
} else {
P = isl_printer_print_str(
P, MemAcc->getLatestScopArrayInfo()->getName().c_str());
P = isl_printer_print_str(P, "[*]");
}
P = isl_printer_end_line(P);
}
P = isl_printer_indent(P, -2);
P = isl_printer_start_line(P);
P = isl_printer_print_str(P, ");");
P = isl_printer_end_line(P);
isl_ast_print_options_free(O);
return P;
}
void IslAstInfo::print(raw_ostream &OS) {
isl_ast_print_options *Options;
isl_ast_node *RootNode = Ast.getAst();
Function &F = S.getFunction();
OS << ":: isl ast :: " << F.getName() << " :: " << S.getNameStr() << "\n";
if (!RootNode) {
OS << ":: isl ast generation and code generation was skipped!\n\n";
OS << ":: This is either because no useful optimizations could be applied "
"(use -polly-process-unprofitable to enforce code generation) or "
"because earlier passes such as dependence analysis timed out (use "
"-polly-dependences-computeout=0 to set dependence analysis timeout "
"to infinity)\n\n";
return;
}
isl_ast_expr *RunCondition = Ast.getRunCondition();
char *RtCStr, *AstStr;
Options = isl_ast_print_options_alloc(S.getIslCtx().get());
if (PrintAccesses)
Options =
isl_ast_print_options_set_print_user(Options, cbPrintUser, nullptr);
Options = isl_ast_print_options_set_print_for(Options, cbPrintFor, nullptr);
isl_printer *P = isl_printer_to_str(S.getIslCtx().get());
P = isl_printer_set_output_format(P, ISL_FORMAT_C);
P = isl_printer_print_ast_expr(P, RunCondition);
RtCStr = isl_printer_get_str(P);
P = isl_printer_flush(P);
P = isl_printer_indent(P, 4);
P = isl_ast_node_print(RootNode, P, Options);
AstStr = isl_printer_get_str(P);
auto *Schedule = S.getScheduleTree().release();
LLVM_DEBUG({
dbgs() << S.getContextStr() << "\n";
dbgs() << stringFromIslObj(Schedule);
});
OS << "\nif (" << RtCStr << ")\n\n";
OS << AstStr << "\n";
OS << "else\n";
OS << " { /* original code */ }\n\n";
free(RtCStr);
free(AstStr);
isl_ast_expr_free(RunCondition);
isl_schedule_free(Schedule);
isl_ast_node_free(RootNode);
isl_printer_free(P);
}
AnalysisKey IslAstAnalysis::Key;
PreservedAnalyses IslAstPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR,
SPMUpdater &U) {
auto &Ast = SAM.getResult<IslAstAnalysis>(S, SAR);
Ast.print(OS);
return PreservedAnalyses::all();
}
void IslAstInfoWrapperPass::releaseMemory() { Ast.reset(); }
bool IslAstInfoWrapperPass::runOnScop(Scop &Scop) {
// Skip SCoPs in case they're already handled by PPCGCodeGeneration.
if (Scop.isToBeSkipped())
return false;
ScopsProcessed++;
const Dependences &D =
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
if (D.getSharedIslCtx() != Scop.getSharedIslCtx()) {
LLVM_DEBUG(
dbgs() << "Got dependence analysis for different SCoP/isl_ctx\n");
Ast.reset();
return false;
}
Ast.reset(new IslAstInfo(Scop, D));
LLVM_DEBUG(printScop(dbgs(), Scop));
return false;
}
void IslAstInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
// Get the Common analysis usage of ScopPasses.
ScopPass::getAnalysisUsage(AU);
AU.addRequiredTransitive<ScopInfoRegionPass>();
AU.addRequired<DependenceInfo>();
AU.addPreserved<DependenceInfo>();
}
void IslAstInfoWrapperPass::printScop(raw_ostream &OS, Scop &S) const {
if (Ast)
Ast->print(OS);
}
char IslAstInfoWrapperPass::ID = 0;
Pass *polly::createIslAstInfoWrapperPassPass() {
return new IslAstInfoWrapperPass();
}
INITIALIZE_PASS_BEGIN(IslAstInfoWrapperPass, "polly-ast",
"Polly - Generate an AST of the SCoP (isl)", false,
false);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_END(IslAstInfoWrapperPass, "polly-ast",
"Polly - Generate an AST from the SCoP (isl)", false, false)
|