reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This set of linked tablegen backends is responsible for emitting the bits
// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
// and provides a set of types and functions for (more or less) direct access
// to the MVE instruction set, including the scalar shifts as well as the
// vector instructions.
//
// MVE's standard intrinsic functions are unusual in that they have a system of
// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
// arguments you give it.
//
// This constrains the implementation strategies. The usual approach to making
// the user-facing functions polymorphic would be to either use
// __attribute__((overloadable)) to make a set of vaddq() functions that are
// all inline wrappers on the underlying clang builtins, or to define a single
// vaddq() macro which expands to an instance of _Generic.
//
// The inline-wrappers approach would work fine for most intrinsics, except for
// the ones that take an argument required to be a compile-time constant,
// because if you wrap an inline function around a call to a builtin, the
// constant nature of the argument is not passed through.
//
// The _Generic approach can be made to work with enough effort, but it takes a
// lot of machinery, because of the design feature of _Generic that even the
// untaken branches are required to pass all front-end validity checks such as
// type-correctness. You can work around that by nesting further _Generics all
// over the place to coerce things to the right type in untaken branches, but
// what you get out is complicated, hard to guarantee its correctness, and
// worst of all, gives _completely unreadable_ error messages if the user gets
// the types wrong for an intrinsic call.
//
// Therefore, my strategy is to introduce a new __attribute__ that allows a
// function to be mapped to a clang builtin even though it doesn't have the
// same name, and then declare all the user-facing MVE function names with that
// attribute, mapping each one directly to the clang builtin. And the
// polymorphic ones have __attribute__((overloadable)) as well. So once the
// compiler has resolved the overload, it knows the internal builtin ID of the
// selected function, and can check the immediate arguments against that; and
// if the user gets the types wrong in a call to a polymorphic intrinsic, they
// get a completely clear error message showing all the declarations of that
// function in the header file and explaining why each one doesn't fit their
// call.
//
// The downside of this is that if every clang builtin has to correspond
// exactly to a user-facing ACLE intrinsic, then you can't save work in the
// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
// description for an MVE intrinsic has to contain a full description of the
// sequence of IRBuilder calls that clang will need to make.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

using namespace llvm;

namespace {

class MveEmitter;
class Result;

// -----------------------------------------------------------------------------
// A system of classes to represent all the types we'll need to deal with in
// the prototypes of intrinsics.
//
// Query methods include finding out the C name of a type; the "LLVM name" in
// the sense of a C++ code snippet that can be used in the codegen function;
// the suffix that represents the type in the ACLE intrinsic naming scheme
// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
// type is floating-point related (hence should be under #ifdef in the MVE
// header so that it isn't included in integer-only MVE mode); and the type's
// size in bits. Not all subtypes support all these queries.

class Type {
public:
  enum class TypeKind {
    // Void appears as a return type (for store intrinsics, which are pure
    // side-effect). It's also used as the parameter type in the Tablegen
    // when an intrinsic doesn't need to come in various suffixed forms like
    // vfooq_s8,vfooq_u16,vfooq_f32.
    Void,

    // Scalar is used for ordinary int and float types of all sizes.
    Scalar,

    // Vector is used for anything that occupies exactly one MVE vector
    // register, i.e. {uint,int,float}NxM_t.
    Vector,

    // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
    // interleaving load/store intrinsics v{ld,st}{2,4}q.
    MultiVector,

    // Predicate is used by all the predicated intrinsics. Its C
    // representation is mve_pred16_t (which is just an alias for uint16_t).
    // But we give more detail here, by indicating that a given predicate
    // instruction is logically regarded as a vector of i1 containing the
    // same number of lanes as the input vector type. So our Predicate type
    // comes with a lane count, which we use to decide which kind of <n x i1>
    // we'll invoke the pred_i2v IR intrinsic to translate it into.
    Predicate,

    // Pointer is used for pointer types (obviously), and comes with a flag
    // indicating whether it's a pointer to a const or mutable instance of
    // the pointee type.
    Pointer,
  };

private:
  const TypeKind TKind;

protected:
  Type(TypeKind K) : TKind(K) {}

public:
  TypeKind typeKind() const { return TKind; }
  virtual ~Type() = default;
  virtual bool requiresFloat() const = 0;
  virtual unsigned sizeInBits() const = 0;
  virtual std::string cName() const = 0;
  virtual std::string llvmName() const {
    PrintFatalError("no LLVM type name available for type " + cName());
  }
  virtual std::string acleSuffix() const {
    PrintFatalError("no ACLE suffix available for this type");
  }
};

enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
inline std::string toLetter(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "s";
  case ScalarTypeKind::UnsignedInt:
    return "u";
  case ScalarTypeKind::Float:
    return "f";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}
inline std::string toCPrefix(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "int";
  case ScalarTypeKind::UnsignedInt:
    return "uint";
  case ScalarTypeKind::Float:
    return "float";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}

class VoidType : public Type {
public:
  VoidType() : Type(TypeKind::Void) {}
  unsigned sizeInBits() const override { return 0; }
  bool requiresFloat() const override { return false; }
  std::string cName() const override { return "void"; }

  static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
  std::string acleSuffix() const override { return ""; }
};

class PointerType : public Type {
  const Type *Pointee;
  bool Const;

public:
  PointerType(const Type *Pointee, bool Const)
      : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
  unsigned sizeInBits() const override { return 32; }
  bool requiresFloat() const override { return Pointee->requiresFloat(); }
  std::string cName() const override {
    std::string Name = Pointee->cName();

    // The syntax for a pointer in C is different when the pointee is
    // itself a pointer. The MVE intrinsics don't contain any double
    // pointers, so we don't need to worry about that wrinkle.
    assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");

    if (Const)
      Name = "const " + Name;
    return Name + " *";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Pointer;
  }
};

// Base class for all the types that have a name of the form
// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
//
// For this sub-hierarchy we invent a cNameBase() method which returns the
// whole name except for the trailing "_t", so that Vector and MultiVector can
// append an extra "x2" or whatever to their element type's cNameBase(). Then
// the main cName() query method puts "_t" on the end for the final type name.

class CRegularNamedType : public Type {
  using Type::Type;
  virtual std::string cNameBase() const = 0;

public:
  std::string cName() const override { return cNameBase() + "_t"; }
};

class ScalarType : public CRegularNamedType {
  ScalarTypeKind Kind;
  unsigned Bits;

public:
  ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
    Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
               .Case("s", ScalarTypeKind::SignedInt)
               .Case("u", ScalarTypeKind::UnsignedInt)
               .Case("f", ScalarTypeKind::Float);
    Bits = Record->getValueAsInt("size");
  }
  unsigned sizeInBits() const override { return Bits; }
  ScalarTypeKind kind() const { return Kind; }
  std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
  std::string cNameBase() const override {
    return toCPrefix(Kind) + utostr(Bits);
  }
  std::string llvmName() const override {
    if (Kind == ScalarTypeKind::Float) {
      if (Bits == 16)
        return "HalfTy";
      if (Bits == 32)
        return "FloatTy";
      if (Bits == 64)
        return "DoubleTy";
      PrintFatalError("bad size for floating type");
    }
    return "Int" + utostr(Bits) + "Ty";
  }
  std::string acleSuffix() const override {
    return "_" + toLetter(Kind) + utostr(Bits);
  }
  bool isInteger() const { return Kind != ScalarTypeKind::Float; }
  bool requiresFloat() const override { return !isInteger(); }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Scalar;
  }
};

class VectorType : public CRegularNamedType {
  const ScalarType *Element;
  unsigned Lanes;

public:
  VectorType(const ScalarType *Element)
      : CRegularNamedType(TypeKind::Vector), Element(Element) {
    // MVE has a fixed 128-bit vector size
    Lanes = 128 / Element->sizeInBits();
  }
  unsigned sizeInBits() const override { return 128; }
  unsigned lanes() const { return Lanes; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Lanes);
  }
  std::string llvmName() const override {
    return "llvm::VectorType::get(" + Element->llvmName() + ", " +
           utostr(Lanes) + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Vector;
  }
};

class MultiVectorType : public CRegularNamedType {
  const VectorType *Element;
  unsigned Registers;

public:
  MultiVectorType(unsigned Registers, const VectorType *Element)
      : CRegularNamedType(TypeKind::MultiVector), Element(Element),
        Registers(Registers) {}
  unsigned sizeInBits() const override {
    return Registers * Element->sizeInBits();
  }
  unsigned registers() const { return Registers; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Registers);
  }

  // MultiVectorType doesn't override llvmName, because we don't expect to do
  // automatic code generation for the MVE intrinsics that use it: the {vld2,
  // vld4, vst2, vst4} family are the only ones that use these types, so it was
  // easier to hand-write the codegen for dealing with these structs than to
  // build in lots of extra automatic machinery that would only be used once.

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::MultiVector;
  }
};

class PredicateType : public CRegularNamedType {
  unsigned Lanes;

public:
  PredicateType(unsigned Lanes)
      : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
  unsigned sizeInBits() const override { return 16; }
  std::string cNameBase() const override { return "mve_pred16"; }
  bool requiresFloat() const override { return false; };
  std::string llvmName() const override {
    // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
    // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
    // explanation.
    unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);

    return "llvm::VectorType::get(Builder.getInt1Ty(), " +
           utostr(ModifiedLanes) + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Predicate;
  }
};

// -----------------------------------------------------------------------------
// Class to facilitate merging together the code generation for many intrinsics
// by means of varying a few constant or type parameters.
//
// Most obviously, the intrinsics in a single parametrised family will have
// code generation sequences that only differ in a type or two, e.g. vaddq_s8
// and vaddq_u16 will look the same apart from putting a different vector type
// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
// will often code-generate in the same way, with only a different choice of
// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
// marshalling the arguments and return values of the IR intrinsic in exactly
// the same way. And others might differ only in some other kind of constant,
// such as a lane index.
//
// So, when we generate the IR-building code for all these intrinsics, we keep
// track of every value that could possibly be pulled out of the code and
// stored ahead of time in a local variable. Then we group together intrinsics
// by textual equivalence of the code that would result if _all_ those
// parameters were stored in local variables. That gives us maximal sets that
// can be implemented by a single piece of IR-building code by changing
// parameter values ahead of time.
//
// After we've done that, we do a second pass in which we only allocate _some_
// of the parameters into local variables, by tracking which ones have the same
// values as each other (so that a single variable can be reused) and which
// ones are the same across the whole set (so that no variable is needed at
// all).
//
// Hence the class below. Its allocParam method is invoked during code
// generation by every method of a Result subclass (see below) that wants to
// give it the opportunity to pull something out into a switchable parameter.
// It returns a variable name for the parameter, or (if it's being used in the
// second pass once we've decided that some parameters don't need to be stored
// in variables after all) it might just return the input expression unchanged.

struct CodeGenParamAllocator {
  // Accumulated during code generation
  std::vector<std::string> *ParamTypes = nullptr;
  std::vector<std::string> *ParamValues = nullptr;

  // Provided ahead of time in pass 2, to indicate which parameters are being
  // assigned to what. This vector contains an entry for each call to
  // allocParam expected during code gen (which we counted up in pass 1), and
  // indicates the number of the parameter variable that should be returned, or
  // -1 if this call shouldn't allocate a parameter variable at all.
  //
  // We rely on the recursive code generation working identically in passes 1
  // and 2, so that the same list of calls to allocParam happen in the same
  // order. That guarantees that the parameter numbers recorded in pass 1 will
  // match the entries in this vector that store what MveEmitter::EmitBuiltinCG
  // decided to do about each one in pass 2.
  std::vector<int> *ParamNumberMap = nullptr;

  // Internally track how many things we've allocated
  unsigned nparams = 0;

  std::string allocParam(StringRef Type, StringRef Value) {
    unsigned ParamNumber;

    if (!ParamNumberMap) {
      // In pass 1, unconditionally assign a new parameter variable to every
      // value we're asked to process.
      ParamNumber = nparams++;
    } else {
      // In pass 2, consult the map provided by the caller to find out which
      // variable we should be keeping things in.
      int MapValue = (*ParamNumberMap)[nparams++];
      if (MapValue < 0)
        return Value;
      ParamNumber = MapValue;
    }

    // If we've allocated a new parameter variable for the first time, store
    // its type and value to be retrieved after codegen.
    if (ParamTypes && ParamTypes->size() == ParamNumber)
      ParamTypes->push_back(Type);
    if (ParamValues && ParamValues->size() == ParamNumber)
      ParamValues->push_back(Value);

    // Unimaginative naming scheme for parameter variables.
    return "Param" + utostr(ParamNumber);
  }
};

// -----------------------------------------------------------------------------
// System of classes that represent all the intermediate values used during
// code-generation for an intrinsic.
//
// The base class 'Result' can represent a value of the LLVM type 'Value', or
// sometimes 'Address' (for loads/stores, including an alignment requirement).
//
// In the case where the Tablegen provides a value in the codegen dag as a
// plain integer literal, the Result object we construct here will be one that
// returns true from hasIntegerConstantValue(). This allows the generated C++
// code to use the constant directly in contexts which can take a literal
// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
// effort of calling llvm::ConstantInt::get() and then pulling the constant
// back out of the resulting llvm:Value later.

class Result {
public:
  // Convenient shorthand for the pointer type we'll be using everywhere.
  using Ptr = std::shared_ptr<Result>;

private:
  Ptr Predecessor;
  std::string VarName;
  bool VarNameUsed = false;
  unsigned Visited = 0;

public:
  virtual ~Result() = default;
  using Scope = std::map<std::string, Ptr>;
  virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
  virtual bool hasIntegerConstantValue() const { return false; }
  virtual uint32_t integerConstantValue() const { return 0; }
  virtual std::string typeName() const { return "Value *"; }

  // Mostly, when a code-generation operation has a dependency on prior
  // operations, it's because it uses the output values of those operations as
  // inputs. But there's one exception, which is the use of 'seq' in Tablegen
  // to indicate that operations have to be performed in sequence regardless of
  // whether they use each others' output values.
  //
  // So, the actual generation of code is done by depth-first search, using the
  // prerequisites() method to get a list of all the other Results that have to
  // be computed before this one. That method divides into the 'predecessor',
  // set by setPredecessor() while processing a 'seq' dag node, and the list
  // returned by 'morePrerequisites', which each subclass implements to return
  // a list of the Results it uses as input to whatever its own computation is
  // doing.

  virtual void morePrerequisites(std::vector<Ptr> &output) const {}
  std::vector<Ptr> prerequisites() const {
    std::vector<Ptr> ToRet;
    if (Predecessor)
      ToRet.push_back(Predecessor);
    morePrerequisites(ToRet);
    return ToRet;
  }

  void setPredecessor(Ptr p) {
    assert(!Predecessor);
    Predecessor = p;
  }

  // Each Result will be assigned a variable name in the output code, but not
  // all those variable names will actually be used (e.g. the return value of
  // Builder.CreateStore has void type, so nobody will want to refer to it). To
  // prevent annoying compiler warnings, we track whether each Result's
  // variable name was ever actually mentioned in subsequent statements, so
  // that it can be left out of the final generated code.
  std::string varname() {
    VarNameUsed = true;
    return VarName;
  }
  void setVarname(const StringRef s) { VarName = s; }
  bool varnameUsed() const { return VarNameUsed; }

  // Code generation happens in multiple passes. This method tracks whether a
  // Result has yet been visited in a given pass, without the need for a
  // tedious loop in between passes that goes through and resets a 'visited'
  // flag back to false: you just set Pass=1 the first time round, and Pass=2
  // the second time.
  bool needsVisiting(unsigned Pass) {
    bool ToRet = Visited < Pass;
    Visited = Pass;
    return ToRet;
  }
};

// Result subclass that retrieves one of the arguments to the clang builtin
// function. In cases where the argument has pointer type, we call
// EmitPointerWithAlignment and store the result in a variable of type Address,
// so that load and store IR nodes can know the right alignment. Otherwise, we
// call EmitScalarExpr.
//
// There are aggregate parameters in the MVE intrinsics API, but we don't deal
// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
// vst2q/vst4q family, which is few enough that we just write the code by hand
// for those in CGBuiltin.cpp.
class BuiltinArgResult : public Result {
public:
  unsigned ArgNum;
  bool AddressType;
  BuiltinArgResult(unsigned ArgNum, bool AddressType)
      : ArgNum(ArgNum), AddressType(AddressType) {}
  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
    OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
       << "(E->getArg(" << ArgNum << "))";
  }
  std::string typeName() const override {
    return AddressType ? "Address" : Result::typeName();
  }
};

// Result subclass for an integer literal appearing in Tablegen. This may need
// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
// it may be used directly as an integer, depending on which IRBuilder method
// it's being passed to.
class IntLiteralResult : public Result {
public:
  const ScalarType *IntegerType;
  uint32_t IntegerValue;
  IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
      : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "llvm::ConstantInt::get("
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
       << ", ";
    OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
       << ")";
  }
  bool hasIntegerConstantValue() const override { return true; }
  uint32_t integerConstantValue() const override { return IntegerValue; }
};

// Result subclass representing a cast between different integer types. We use
// our own ScalarType abstraction as the representation of the target type,
// which gives both size and signedness.
class IntCastResult : public Result {
public:
  const ScalarType *IntegerType;
  Ptr V;
  IntCastResult(const ScalarType *IntegerType, Ptr V)
      : IntegerType(IntegerType), V(V) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder.CreateIntCast(" << V->varname() << ", "
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
       << ParamAlloc.allocParam("bool",
                                IntegerType->kind() == ScalarTypeKind::SignedInt
                                    ? "true"
                                    : "false")
       << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(V);
  }
};

// Result subclass representing a call to an IRBuilder method. Each IRBuilder
// method we want to use will have a Tablegen record giving the method name and
// describing any important details of how to call it, such as whether a
// particular argument should be an integer constant instead of an llvm::Value.
class IRBuilderResult : public Result {
public:
  StringRef BuilderMethod;
  std::vector<Ptr> Args;
  std::set<unsigned> AddressArgs;
  std::set<unsigned> IntConstantArgs;
  IRBuilderResult(StringRef BuilderMethod, std::vector<Ptr> Args,
                  std::set<unsigned> AddressArgs,
                  std::set<unsigned> IntConstantArgs)
      : BuilderMethod(BuilderMethod), Args(Args), AddressArgs(AddressArgs),
        IntConstantArgs(IntConstantArgs) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder." << BuilderMethod << "(";
    const char *Sep = "";
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      if (IntConstantArgs.find(i) != IntConstantArgs.end()) {
        assert(Arg->hasIntegerConstantValue());
        OS << Sep
           << ParamAlloc.allocParam("unsigned",
                                    utostr(Arg->integerConstantValue()));
      } else {
        OS << Sep << Arg->varname();
      }
      Sep = ", ";
    }
    OS << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      if (IntConstantArgs.find(i) != IntConstantArgs.end())
        continue;
      output.push_back(Arg);
    }
  }
};

// Result subclass representing a call to an IR intrinsic, which we first have
// to look up using an Intrinsic::ID constant and an array of types.
class IRIntrinsicResult : public Result {
public:
  std::string IntrinsicID;
  std::vector<const Type *> ParamTypes;
  std::vector<Ptr> Args;
  IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
                    std::vector<Ptr> Args)
      : IntrinsicID(IntrinsicID), ParamTypes(ParamTypes), Args(Args) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    std::string IntNo = ParamAlloc.allocParam(
        "Intrinsic::ID", "Intrinsic::arm_mve_" + IntrinsicID);
    OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
    if (!ParamTypes.empty()) {
      OS << ", llvm::SmallVector<llvm::Type *, " << ParamTypes.size() << "> {";
      const char *Sep = "";
      for (auto T : ParamTypes) {
        OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
        Sep = ", ";
      }
      OS << "}";
    }
    OS << "), llvm::SmallVector<Value *, " << Args.size() << "> {";
    const char *Sep = "";
    for (auto Arg : Args) {
      OS << Sep << Arg->varname();
      Sep = ", ";
    }
    OS << "})";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.insert(output.end(), Args.begin(), Args.end());
  }
};

// -----------------------------------------------------------------------------
// Class that describes a single ACLE intrinsic.
//
// A Tablegen record will typically describe more than one ACLE intrinsic, by
// means of setting the 'list<Type> Params' field to a list of multiple
// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
// rather than a single one for all of them. Hence, the constructor takes both
// a Tablegen record and the current value of the parameter type.

class ACLEIntrinsic {
  // Structure documenting that one of the intrinsic's arguments is required to
  // be a compile-time constant integer, and what constraints there are on its
  // value. Used when generating Sema checking code.
  struct ImmediateArg {
    enum class BoundsType { ExplicitRange, UInt };
    BoundsType boundsType;
    int64_t i1, i2;
    StringRef ExtraCheckType, ExtraCheckArgs;
    const Type *ArgType;
  };

  // For polymorphic intrinsics, FullName is the explicit name that uniquely
  // identifies this variant of the intrinsic, and ShortName is the name it
  // shares with at least one other intrinsic.
  std::string ShortName, FullName;

  const Type *ReturnType;
  std::vector<const Type *> ArgTypes;
  std::map<unsigned, ImmediateArg> ImmediateArgs;
  Result::Ptr Code;

  std::map<std::string, std::string> CustomCodeGenArgs;

  // Recursive function that does the internals of code generation.
  void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
                  unsigned Pass) const {
    if (!V->needsVisiting(Pass))
      return;

    for (Result::Ptr W : V->prerequisites())
      genCodeDfs(W, Used, Pass);

    Used.push_back(V);
  }

public:
  const std::string &shortName() const { return ShortName; }
  const std::string &fullName() const { return FullName; }
  const Type *returnType() const { return ReturnType; }
  const std::vector<const Type *> &argTypes() const { return ArgTypes; }
  bool requiresFloat() const {
    if (ReturnType->requiresFloat())
      return true;
    for (const Type *T : ArgTypes)
      if (T->requiresFloat())
        return true;
    return false;
  }
  bool polymorphic() const { return ShortName != FullName; }

  // External entry point for code generation, called from MveEmitter.
  void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
               unsigned Pass) const {
    if (!hasCode()) {
      for (auto kv : CustomCodeGenArgs)
        OS << "  " << kv.first << " = " << kv.second << ";\n";
      OS << "  break; // custom code gen\n";
      return;
    }
    std::list<Result::Ptr> Used;
    genCodeDfs(Code, Used, Pass);

    unsigned varindex = 0;
    for (Result::Ptr V : Used)
      if (V->varnameUsed())
        V->setVarname("Val" + utostr(varindex++));

    for (Result::Ptr V : Used) {
      OS << "  ";
      if (V == Used.back()) {
        assert(!V->varnameUsed());
        OS << "return "; // FIXME: what if the top-level thing is void?
      } else if (V->varnameUsed()) {
        std::string Type = V->typeName();
        OS << V->typeName();
        if (!StringRef(Type).endswith("*"))
          OS << " ";
        OS << V->varname() << " = ";
      }
      V->genCode(OS, ParamAlloc);
      OS << ";\n";
    }
  }
  bool hasCode() const { return Code != nullptr; }

  std::string genSema() const {
    std::vector<std::string> SemaChecks;

    for (const auto &kv : ImmediateArgs) {
      const ImmediateArg &IA = kv.second;

      llvm::APInt lo(128, 0), hi(128, 0);
      switch (IA.boundsType) {
      case ImmediateArg::BoundsType::ExplicitRange:
        lo = IA.i1;
        hi = IA.i2;
        break;
      case ImmediateArg::BoundsType::UInt:
        lo = 0;
        hi = IA.i1;
        break;
      }

      llvm::APInt typelo, typehi;
      if (cast<ScalarType>(IA.ArgType)->kind() == ScalarTypeKind::UnsignedInt) {
        typelo = llvm::APInt::getSignedMinValue(IA.ArgType->sizeInBits());
        typehi = llvm::APInt::getSignedMaxValue(IA.ArgType->sizeInBits());
      } else {
        typelo = llvm::APInt::getMinValue(IA.ArgType->sizeInBits());
        typehi = llvm::APInt::getMaxValue(IA.ArgType->sizeInBits());
      }
      typelo = typelo.sext(128);
      typehi = typehi.sext(128);

      std::string Index = utostr(kv.first);

      if (lo.sle(typelo) && hi.sge(typehi))
        SemaChecks.push_back("SemaBuiltinConstantArg(TheCall, " + Index + ")");
      else
        SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
                             ", 0x" + lo.toString(16, true) + ", 0x" +
                             hi.toString(16, true) + ")");

      if (!IA.ExtraCheckType.empty()) {
        std::string Suffix;
        if (!IA.ExtraCheckArgs.empty())
          Suffix = (Twine(", ") + IA.ExtraCheckArgs).str();
        SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
                              IA.ExtraCheckType + "(TheCall, " + Index +
                              Suffix + ")")
                                 .str());
      }
    }
    if (SemaChecks.empty())
      return "";
    return (Twine("  return ") +
            join(std::begin(SemaChecks), std::end(SemaChecks),
                 " ||\n         ") +
            ";\n")
        .str();
  }

  ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param);
};

// -----------------------------------------------------------------------------
// The top-level class that holds all the state from analyzing the entire
// Tablegen input.

class MveEmitter {
  // MveEmitter holds a collection of all the types we've instantiated.
  VoidType Void;
  std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
  std::map<std::pair<ScalarTypeKind, unsigned>, std::unique_ptr<VectorType>>
      VectorTypes;
  std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
      MultiVectorTypes;
  std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
  std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;

  // And all the ACLEIntrinsic instances we've created.
  std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;

public:
  // Methods to create a Type object, or return the right existing one from the
  // maps stored in this object.
  const VoidType *getVoidType() { return &Void; }
  const ScalarType *getScalarType(StringRef Name) {
    return ScalarTypes[Name].get();
  }
  const ScalarType *getScalarType(Record *R) {
    return getScalarType(R->getName());
  }
  const VectorType *getVectorType(const ScalarType *ST) {
    std::pair<ScalarTypeKind, unsigned> key(ST->kind(), ST->sizeInBits());
    if (VectorTypes.find(key) == VectorTypes.end())
      VectorTypes[key] = std::make_unique<VectorType>(ST);
    return VectorTypes[key].get();
  }
  const MultiVectorType *getMultiVectorType(unsigned Registers,
                                            const VectorType *VT) {
    std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
    if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
      MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
    return MultiVectorTypes[key].get();
  }
  const PredicateType *getPredicateType(unsigned Lanes) {
    unsigned key = Lanes;
    if (PredicateTypes.find(key) == PredicateTypes.end())
      PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
    return PredicateTypes[key].get();
  }
  const PointerType *getPointerType(const Type *T, bool Const) {
    PointerType PT(T, Const);
    std::string key = PT.cName();
    if (PointerTypes.find(key) == PointerTypes.end())
      PointerTypes[key] = std::make_unique<PointerType>(PT);
    return PointerTypes[key].get();
  }

  // Methods to construct a type from various pieces of Tablegen. These are
  // always called in the context of setting up a particular ACLEIntrinsic, so
  // there's always an ambient parameter type (because we're iterating through
  // the Params list in the Tablegen record for the intrinsic), which is used
  // to expand Tablegen classes like 'Vector' which mean something different in
  // each member of a parametric family.
  const Type *getType(Record *R, const Type *Param);
  const Type *getType(DagInit *D, const Type *Param);
  const Type *getType(Init *I, const Type *Param);

  // Functions that translate the Tablegen representation of an intrinsic's
  // code generation into a collection of Value objects (which will then be
  // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
  Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
                            const Type *Param);
  Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
                               const Result::Scope &Scope, const Type *Param);
  Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType);

  // Constructor and top-level functions.

  MveEmitter(RecordKeeper &Records);

  void EmitHeader(raw_ostream &OS);
  void EmitBuiltinDef(raw_ostream &OS);
  void EmitBuiltinSema(raw_ostream &OS);
  void EmitBuiltinCG(raw_ostream &OS);
  void EmitBuiltinAliases(raw_ostream &OS);
};

const Type *MveEmitter::getType(Init *I, const Type *Param) {
  if (auto Dag = dyn_cast<DagInit>(I))
    return getType(Dag, Param);
  if (auto Def = dyn_cast<DefInit>(I))
    return getType(Def->getDef(), Param);

  PrintFatalError("Could not convert this value into a type");
}

const Type *MveEmitter::getType(Record *R, const Type *Param) {
  if (R->isSubClassOf("Immediate"))
    R = R->getValueAsDef("type"); // pass to subfield

  if (R->getName() == "Void")
    return getVoidType();
  if (R->isSubClassOf("PrimitiveType"))
    return getScalarType(R);
  if (R->isSubClassOf("ComplexType"))
    return getType(R->getValueAsDag("spec"), Param);

  PrintFatalError(R->getLoc(), "Could not convert this record into a type");
}

const Type *MveEmitter::getType(DagInit *D, const Type *Param) {
  // The meat of the getType system: types in the Tablegen are represented by a
  // dag whose operators select sub-cases of this function.

  Record *Op = cast<DefInit>(D->getOperator())->getDef();
  if (!Op->isSubClassOf("ComplexTypeOp"))
    PrintFatalError(
        "Expected ComplexTypeOp as dag operator in type expression");

  if (Op->getName() == "CTO_Parameter") {
    if (isa<VoidType>(Param))
      PrintFatalError("Parametric type in unparametrised context");
    return Param;
  }

  if (Op->getName() == "CTO_Vec") {
    const Type *Element = getType(D->getArg(0), Param);
    return getVectorType(cast<ScalarType>(Element));
  }

  if (Op->getName() == "CTO_Pred") {
    const Type *Element = getType(D->getArg(0), Param);
    return getPredicateType(128 / Element->sizeInBits());
  }

  if (Op->isSubClassOf("CTO_Tuple")) {
    unsigned Registers = Op->getValueAsInt("n");
    const Type *Element = getType(D->getArg(0), Param);
    return getMultiVectorType(Registers, cast<VectorType>(Element));
  }

  if (Op->isSubClassOf("CTO_Pointer")) {
    const Type *Pointee = getType(D->getArg(0), Param);
    return getPointerType(Pointee, Op->getValueAsBit("const"));
  }

  if (Op->isSubClassOf("CTO_Sign")) {
    const ScalarType *ST = cast<ScalarType>(getType(D->getArg(0), Param));
    ScalarTypeKind NewKind = Op->getValueAsBit("signed")
                                 ? ScalarTypeKind::SignedInt
                                 : ScalarTypeKind::UnsignedInt;
    for (const auto &kv : ScalarTypes) {
      const ScalarType *RT = kv.second.get();
      if (RT->kind() == NewKind && RT->sizeInBits() == ST->sizeInBits())
        return RT;
    }
    PrintFatalError("Cannot change sign of this type");
  }

  PrintFatalError("Bad operator in type dag expression");
}

Result::Ptr MveEmitter::getCodeForDag(DagInit *D, const Result::Scope &Scope,
                                      const Type *Param) {
  Record *Op = cast<DefInit>(D->getOperator())->getDef();

  if (Op->getName() == "seq") {
    Result::Scope SubScope = Scope;
    Result::Ptr PrevV = nullptr;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
      // We don't use getCodeForDagArg here, because the argument name
      // has different semantics in a seq
      Result::Ptr V =
          getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
      StringRef ArgName = D->getArgNameStr(i);
      if (!ArgName.empty())
        SubScope[ArgName] = V;
      if (PrevV)
        V->setPredecessor(PrevV);
      PrevV = V;
    }
    return PrevV;
  } else if (Op->isSubClassOf("Type")) {
    if (D->getNumArgs() != 1)
      PrintFatalError("Type casts should have exactly one argument");
    const Type *CastType = getType(Op, Param);
    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
    if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
      if (!ST->requiresFloat()) {
        if (Arg->hasIntegerConstantValue())
          return std::make_shared<IntLiteralResult>(
              ST, Arg->integerConstantValue());
        else
          return std::make_shared<IntCastResult>(ST, Arg);
      }
    }
    PrintFatalError("Unsupported type cast");
  } else {
    std::vector<Result::Ptr> Args;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
      Args.push_back(getCodeForDagArg(D, i, Scope, Param));
    if (Op->isSubClassOf("IRBuilder")) {
      std::set<unsigned> AddressArgs;
      for (unsigned i : Op->getValueAsListOfInts("address_params"))
        AddressArgs.insert(i);
      std::set<unsigned> IntConstantArgs;
      for (unsigned i : Op->getValueAsListOfInts("int_constant_params"))
        IntConstantArgs.insert(i);
      return std::make_shared<IRBuilderResult>(
          Op->getValueAsString("func"), Args, AddressArgs, IntConstantArgs);
    } else if (Op->isSubClassOf("IRInt")) {
      std::vector<const Type *> ParamTypes;
      for (Record *RParam : Op->getValueAsListOfDefs("params"))
        ParamTypes.push_back(getType(RParam, Param));
      std::string IntName = Op->getValueAsString("intname");
      if (Op->getValueAsBit("appendKind"))
        IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
      return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
    } else {
      PrintFatalError("Unsupported dag node " + Op->getName());
    }
  }
}

Result::Ptr MveEmitter::getCodeForDagArg(DagInit *D, unsigned ArgNum,
                                         const Result::Scope &Scope,
                                         const Type *Param) {
  Init *Arg = D->getArg(ArgNum);
  StringRef Name = D->getArgNameStr(ArgNum);

  if (!Name.empty()) {
    if (!isa<UnsetInit>(Arg))
      PrintFatalError(
          "dag operator argument should not have both a value and a name");
    auto it = Scope.find(Name);
    if (it == Scope.end())
      PrintFatalError("unrecognized variable name '" + Name + "'");
    return it->second;
  }

  if (auto *II = dyn_cast<IntInit>(Arg))
    return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                              II->getValue());

  if (auto *DI = dyn_cast<DagInit>(Arg))
    return getCodeForDag(DI, Scope, Param);

  PrintFatalError("bad dag argument type for code generation");
}

Result::Ptr MveEmitter::getCodeForArg(unsigned ArgNum, const Type *ArgType) {
  Result::Ptr V =
      std::make_shared<BuiltinArgResult>(ArgNum, isa<PointerType>(ArgType));

  if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
    if (ST->isInteger() && ST->sizeInBits() < 32)
      V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
  } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
    V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
    V = std::make_shared<IRIntrinsicResult>(
        "pred_i2v", std::vector<const Type *>{PT}, std::vector<Result::Ptr>{V});
  }

  return V;
}

ACLEIntrinsic::ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param)
    : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
  // Derive the intrinsic's full name, by taking the name of the
  // Tablegen record (or override) and appending the suffix from its
  // parameter type. (If the intrinsic is unparametrised, its
  // parameter type will be given as Void, which returns the empty
  // string for acleSuffix.)
  StringRef BaseName =
      (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
                                       : R->getName());
  FullName = (Twine(BaseName) + Param->acleSuffix()).str();

  // Derive the intrinsic's polymorphic name, by removing components from the
  // full name as specified by its 'pnt' member ('polymorphic name type'),
  // which indicates how many type suffixes to remove, and any other piece of
  // the name that should be removed.
  Record *PolymorphicNameType = R->getValueAsDef("pnt");
  SmallVector<StringRef, 8> NameParts;
  StringRef(FullName).split(NameParts, '_');
  for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
                           "NumTypeSuffixesToDiscard");
       i < e; ++i)
    NameParts.pop_back();
  if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
    StringRef ExtraSuffix =
        PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
    auto it = NameParts.end();
    while (it != NameParts.begin()) {
      --it;
      if (*it == ExtraSuffix) {
        NameParts.erase(it);
        break;
      }
    }
  }
  ShortName = join(std::begin(NameParts), std::end(NameParts), "_");

  // Process the intrinsic's argument list.
  DagInit *ArgsDag = R->getValueAsDag("args");
  Result::Scope Scope;
  for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
    Init *TypeInit = ArgsDag->getArg(i);

    // Work out the type of the argument, for use in the function prototype in
    // the header file.
    const Type *ArgType = ME.getType(TypeInit, Param);
    ArgTypes.push_back(ArgType);

    // The argument will usually have a name in the arguments dag, which goes
    // into the variable-name scope that the code gen will refer to.
    StringRef ArgName = ArgsDag->getArgNameStr(i);
    if (!ArgName.empty())
      Scope[ArgName] = ME.getCodeForArg(i, ArgType);

    // If the argument is a subclass of Immediate, record the details about
    // what values it can take, for Sema checking.
    if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
      Record *TypeRec = TypeDI->getDef();
      if (TypeRec->isSubClassOf("Immediate")) {
        Record *Bounds = TypeRec->getValueAsDef("bounds");
        ImmediateArg &IA = ImmediateArgs[i];
        if (Bounds->isSubClassOf("IB_ConstRange")) {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("lo");
          IA.i2 = Bounds->getValueAsInt("hi");
        } else if (Bounds->getName() == "IB_UEltValue") {
          IA.boundsType = ImmediateArg::BoundsType::UInt;
          IA.i1 = Param->sizeInBits();
        } else if (Bounds->getName() == "IB_LaneIndex") {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = 0;
          IA.i2 = 128 / Param->sizeInBits();
        } else if (Bounds->getName() == "IB_EltBit") {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("base");
          IA.i2 = IA.i1 + Param->sizeInBits() - 1;
        } else {
          PrintFatalError("unrecognised ImmediateBounds subclass");
        }

        IA.ArgType = ArgType;

        if (!TypeRec->isValueUnset("extra")) {
          IA.ExtraCheckType = TypeRec->getValueAsString("extra");
          if (!TypeRec->isValueUnset("extraarg"))
            IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
        }
      }
    }
  }

  // Finally, go through the codegen dag and translate it into a Result object
  // (with an arbitrary DAG of depended-on Results hanging off it).
  DagInit *CodeDag = R->getValueAsDag("codegen");
  Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
  if (MainOp->isSubClassOf("CustomCodegen")) {
    // Or, if it's the special case of CustomCodegen, just accumulate
    // a list of parameters we're going to assign to variables before
    // breaking from the loop.
    CustomCodeGenArgs["CustomCodeGenType"] =
        (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
    for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
      StringRef Name = CodeDag->getArgNameStr(i);
      if (Name.empty()) {
        PrintFatalError("Operands to CustomCodegen should have names");
      } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[Name] = itostr(II->getValue());
      } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[Name] = SI->getValue();
      } else {
        PrintFatalError("Operands to CustomCodegen should be integers");
      }
    }
  } else {
    Code = ME.getCodeForDag(CodeDag, Scope, Param);
  }
}

MveEmitter::MveEmitter(RecordKeeper &Records) {
  // Construct the whole MveEmitter.

  // First, look up all the instances of PrimitiveType. This gives us the list
  // of vector typedefs we have to put in arm_mve.h, and also allows us to
  // collect all the useful ScalarType instances into a big list so that we can
  // use it for operations such as 'find the unsigned version of this signed
  // integer type'.
  for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
    ScalarTypes[R->getName()] = std::make_unique<ScalarType>(R);

  // Now go through the instances of Intrinsic, and for each one, iterate
  // through its list of type parameters making an ACLEIntrinsic for each one.
  for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
    for (Record *RParam : R->getValueAsListOfDefs("params")) {
      const Type *Param = getType(RParam, getVoidType());
      auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
      ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
    }
  }
}

/// A wrapper on raw_string_ostream that contains its own buffer rather than
/// having to point it at one elsewhere. (In other words, it works just like
/// std::ostringstream; also, this makes it convenient to declare a whole array
/// of them at once.)
///
/// We have to set this up using multiple inheritance, to ensure that the
/// string member has been constructed before raw_string_ostream's constructor
/// is given a pointer to it.
class string_holder {
protected:
  std::string S;
};
class raw_self_contained_string_ostream : private string_holder,
                                          public raw_string_ostream {
public:
  raw_self_contained_string_ostream()
      : string_holder(), raw_string_ostream(S) {}
};

void MveEmitter::EmitHeader(raw_ostream &OS) {
  // Accumulate pieces of the header file that will be enabled under various
  // different combinations of #ifdef. The index into parts[] is made up of
  // the following bit flags.
  constexpr unsigned Float = 1;
  constexpr unsigned UseUserNamespace = 2;

  constexpr unsigned NumParts = 4;
  raw_self_contained_string_ostream parts[NumParts];

  // Write typedefs for all the required vector types, and a few scalar
  // types that don't already have the name we want them to have.

  parts[0] << "typedef uint16_t mve_pred16_t;\n";
  parts[Float] << "typedef __fp16 float16_t;\n"
                  "typedef float float32_t;\n";
  for (const auto &kv : ScalarTypes) {
    const ScalarType *ST = kv.second.get();
    raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
    const VectorType *VT = getVectorType(ST);

    OS << "typedef __attribute__((neon_vector_type(" << VT->lanes() << "))) "
       << ST->cName() << " " << VT->cName() << ";\n";

    // Every vector type also comes with a pair of multi-vector types for
    // the VLD2 and VLD4 instructions.
    for (unsigned n = 2; n <= 4; n += 2) {
      const MultiVectorType *MT = getMultiVectorType(n, VT);
      OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
         << MT->cName() << ";\n";
    }
  }
  parts[0] << "\n";
  parts[Float] << "\n";

  // Write declarations for all the intrinsics.

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    // We generate each intrinsic twice, under its full unambiguous
    // name and its shorter polymorphic name (if the latter exists).
    for (bool Polymorphic : {false, true}) {
      if (Polymorphic && !Int.polymorphic())
        continue;

      // We also generate each intrinsic under a name like __arm_vfooq
      // (which is in C language implementation namespace, so it's
      // safe to define in any conforming user program) and a shorter
      // one like vfooq (which is in user namespace, so a user might
      // reasonably have used it for something already). If so, they
      // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
      // including the header, which will suppress the shorter names
      // and leave only the implementation-namespace ones. Then they
      // have to write __arm_vfooq everywhere, of course.

      for (bool UserNamespace : {false, true}) {
        raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
                                (UserNamespace ? UseUserNamespace : 0)];

        // Make the name of the function in this declaration.

        std::string FunctionName =
            Polymorphic ? Int.shortName() : Int.fullName();
        if (!UserNamespace)
          FunctionName = "__arm_" + FunctionName;

        // Make strings for the types involved in the function's
        // prototype.

        std::string RetTypeName = Int.returnType()->cName();
        if (!StringRef(RetTypeName).endswith("*"))
          RetTypeName += " ";

        std::vector<std::string> ArgTypeNames;
        for (const Type *ArgTypePtr : Int.argTypes())
          ArgTypeNames.push_back(ArgTypePtr->cName());
        std::string ArgTypesString =
            join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");

        // Emit the actual declaration. All these functions are
        // declared 'static inline' without a body, which is fine
        // provided clang recognizes them as builtins, and has the
        // effect that this type signature is used in place of the one
        // that Builtins.def didn't provide. That's how we can get
        // structure types that weren't defined until this header was
        // included to be part of the type signature of a builtin that
        // was known to clang already.
        //
        // The declarations use __attribute__(__clang_arm_mve_alias),
        // so that each function declared will be recognized as the
        // appropriate MVE builtin in spite of its user-facing name.
        //
        // (That's better than making them all wrapper functions,
        // partly because it avoids any compiler error message citing
        // the wrapper function definition instead of the user's code,
        // and mostly because some MVE intrinsics have arguments
        // required to be compile-time constants, and that property
        // can't be propagated through a wrapper function. It can be
        // propagated through a macro, but macros can't be overloaded
        // on argument types very easily - you have to use _Generic,
        // which makes error messages very confusing when the user
        // gets it wrong.)
        //
        // Finally, the polymorphic versions of the intrinsics are
        // also defined with __attribute__(overloadable), so that when
        // the same name is defined with several type signatures, the
        // right thing happens. Each one of the overloaded
        // declarations is given a different builtin id, which
        // has exactly the effect we want: first clang resolves the
        // overload to the right function, then it knows which builtin
        // it's referring to, and then the Sema checking for that
        // builtin can check further things like the constant
        // arguments.
        //
        // One more subtlety is the newline just before the return
        // type name. That's a cosmetic tweak to make the error
        // messages legible if the user gets the types wrong in a call
        // to a polymorphic function: this way, clang will print just
        // the _final_ line of each declaration in the header, to show
        // the type signatures that would have been legal. So all the
        // confusing machinery with __attribute__ is left out of the
        // error message, and the user sees something that's more or
        // less self-documenting: "here's a list of actually readable
        // type signatures for vfooq(), and here's why each one didn't
        // match your call".

        OS << "static __inline__ __attribute__(("
           << (Polymorphic ? "overloadable, " : "")
           << "__clang_arm_mve_alias(__builtin_arm_mve_" << Int.fullName()
           << ")))\n"
           << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
      }
    }
  }
  for (auto &part : parts)
    part << "\n";

  // Now we've finished accumulating bits and pieces into the parts[] array.
  // Put it all together to write the final output file.

  OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
        "-----------------------------------===\n"
        " *\n"
        " *\n"
        " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
        "Exceptions.\n"
        " * See https://llvm.org/LICENSE.txt for license information.\n"
        " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
        " *\n"
        " *===-------------------------------------------------------------"
        "----"
        "------===\n"
        " */\n"
        "\n"
        "#ifndef __ARM_MVE_H\n"
        "#define __ARM_MVE_H\n"
        "\n"
        "#if !__ARM_FEATURE_MVE\n"
        "#error \"MVE support not enabled\"\n"
        "#endif\n"
        "\n"
        "#include <stdint.h>\n"
        "\n";

  for (size_t i = 0; i < NumParts; ++i) {
    std::vector<std::string> conditions;
    if (i & Float)
      conditions.push_back("(__ARM_FEATURE_MVE & 2)");
    if (i & UseUserNamespace)
      conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");

    std::string condition =
        join(std::begin(conditions), std::end(conditions), " && ");
    if (!condition.empty())
      OS << "#if " << condition << "\n\n";
    OS << parts[i].str();
    if (!condition.empty())
      OS << "#endif /* " << condition << " */\n\n";
  }

  OS << "#endif /* __ARM_MVE_H */\n";
}

void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
       << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
  }

  std::set<std::string> ShortNamesSeen;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.polymorphic()) {
      StringRef Name = Int.shortName();
      if (ShortNamesSeen.find(Name) == ShortNamesSeen.end()) {
        OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt\")\n";
        ShortNamesSeen.insert(Name);
      }
    }
  }
}

void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
  std::map<std::string, std::set<std::string>> Checks;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    std::string Check = Int.genSema();
    if (!Check.empty())
      Checks[Check].insert(Int.fullName());
  }

  for (const auto &kv : Checks) {
    for (StringRef Name : kv.second)
      OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
    OS << kv.first;
  }
}

// Machinery for the grouping of intrinsics by similar codegen.
//
// The general setup is that 'MergeableGroup' stores the things that a set of
// similarly shaped intrinsics have in common: the text of their code
// generation, and the number and type of their parameter variables.
// MergeableGroup is the key in a std::map whose value is a set of
// OutputIntrinsic, which stores the ways in which a particular intrinsic
// specializes the MergeableGroup's generic description: the function name and
// the _values_ of the parameter variables.

struct ComparableStringVector : std::vector<std::string> {
  // Infrastructure: a derived class of vector<string> which comes with an
  // ordering, so that it can be used as a key in maps and an element in sets.
  // There's no requirement on the ordering beyond being deterministic.
  bool operator<(const ComparableStringVector &rhs) const {
    if (size() != rhs.size())
      return size() < rhs.size();
    for (size_t i = 0, e = size(); i < e; ++i)
      if ((*this)[i] != rhs[i])
        return (*this)[i] < rhs[i];
    return false;
  }
};

struct OutputIntrinsic {
  const ACLEIntrinsic *Int;
  std::string Name;
  ComparableStringVector ParamValues;
  bool operator<(const OutputIntrinsic &rhs) const {
    if (Name != rhs.Name)
      return Name < rhs.Name;
    return ParamValues < rhs.ParamValues;
  }
};
struct MergeableGroup {
  std::string Code;
  ComparableStringVector ParamTypes;
  bool operator<(const MergeableGroup &rhs) const {
    if (Code != rhs.Code)
      return Code < rhs.Code;
    return ParamTypes < rhs.ParamTypes;
  }
};

void MveEmitter::EmitBuiltinCG(raw_ostream &OS) {
  // Pass 1: generate code for all the intrinsics as if every type or constant
  // that can possibly be abstracted out into a parameter variable will be.
  // This identifies the sets of intrinsics we'll group together into a single
  // piece of code generation.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    MergeableGroup MG;
    OutputIntrinsic OI;

    OI.Int = &Int;
    OI.Name = Int.fullName();
    CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
    raw_string_ostream OS(MG.Code);
    Int.genCode(OS, ParamAllocPrelim, 1);
    OS.flush();

    MergeableGroupsPrelim[MG].insert(OI);
  }

  // Pass 2: for each of those groups, optimize the parameter variable set by
  // eliminating 'parameters' that are the same for all intrinsics in the
  // group, and merging together pairs of parameter variables that take the
  // same values as each other for all intrinsics in the group.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;

  for (const auto &kv : MergeableGroupsPrelim) {
    const MergeableGroup &MG = kv.first;
    std::vector<int> ParamNumbers;
    std::map<ComparableStringVector, int> ParamNumberMap;

    // Loop over the parameters for this group.
    for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
      // Is this parameter the same for all intrinsics in the group?
      const OutputIntrinsic &OI_first = *kv.second.begin();
      bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
        return OI.ParamValues[i] == OI_first.ParamValues[i];
      });

      // If so, record it as -1, meaning 'no parameter variable needed'. Then
      // the corresponding call to allocParam in pass 2 will not generate a
      // variable at all, and just use the value inline.
      if (Constant) {
        ParamNumbers.push_back(-1);
        continue;
      }

      // Otherwise, make a list of the values this parameter takes for each
      // intrinsic, and see if that value vector matches anything we already
      // have. We also record the parameter type, so that we don't accidentally
      // match up two parameter variables with different types. (Not that
      // there's much chance of them having textually equivalent values, but in
      // _principle_ it could happen.)
      ComparableStringVector key;
      key.push_back(MG.ParamTypes[i]);
      for (const auto &OI : kv.second)
        key.push_back(OI.ParamValues[i]);

      auto Found = ParamNumberMap.find(key);
      if (Found != ParamNumberMap.end()) {
        // Yes, an existing parameter variable can be reused for this.
        ParamNumbers.push_back(Found->second);
        continue;
      }

      // No, we need a new parameter variable.
      int ExistingIndex = ParamNumberMap.size();
      ParamNumberMap[key] = ExistingIndex;
      ParamNumbers.push_back(ExistingIndex);
    }

    // Now we're ready to do the pass 2 code generation, which will emit the
    // reduced set of parameter variables we've just worked out.

    for (const auto &OI_prelim : kv.second) {
      const ACLEIntrinsic *Int = OI_prelim.Int;

      MergeableGroup MG;
      OutputIntrinsic OI;

      OI.Int = OI_prelim.Int;
      OI.Name = OI_prelim.Name;
      CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
                                       &ParamNumbers};
      raw_string_ostream OS(MG.Code);
      Int->genCode(OS, ParamAlloc, 2);
      OS.flush();

      MergeableGroups[MG].insert(OI);
    }
  }

  // Output the actual C++ code.

  for (const auto &kv : MergeableGroups) {
    const MergeableGroup &MG = kv.first;

    // List of case statements in the main switch on BuiltinID, and an open
    // brace.
    const char *prefix = "";
    for (const auto &OI : kv.second) {
      OS << prefix << "case ARM::BI__builtin_arm_mve_" << OI.Name << ":";
      prefix = "\n";
    }
    OS << " {\n";

    if (!MG.ParamTypes.empty()) {
      // If we've got some parameter variables, then emit their declarations...
      for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
        StringRef Type = MG.ParamTypes[i];
        OS << "  " << Type;
        if (!Type.endswith("*"))
          OS << " ";
        OS << " Param" << utostr(i) << ";\n";
      }

      // ... and an inner switch on BuiltinID that will fill them in with each
      // individual intrinsic's values.
      OS << "  switch (BuiltinID) {\n";
      for (const auto &OI : kv.second) {
        OS << "  case ARM::BI__builtin_arm_mve_" << OI.Name << ":\n";
        for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
          OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
        OS << "    break;\n";
      }
      OS << "  }\n";
    }

    // And finally, output the code, and close the outer pair of braces. (The
    // code will always end with a 'return' statement, so we need not insert a
    // 'break' here.)
    OS << MG.Code << "}\n";
  }
}

void MveEmitter::EmitBuiltinAliases(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    OS << "case ARM::BI__builtin_arm_mve_" << Int.fullName() << ":\n"
       << "  return AliasName == \"" << Int.fullName() << "\"";
    if (Int.polymorphic())
      OS << " || AliasName == \"" << Int.shortName() << "\"";
    OS << ";\n";
  }
}

} // namespace

namespace clang {

void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitHeader(OS);
}

void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinDef(OS);
}

void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinSema(OS);
}

void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinCG(OS);
}

void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinAliases(OS);
}

} // end namespace clang