reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
//===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements the RewriteRope class, which is a powerful string.
//
//===----------------------------------------------------------------------===//

#include "clang/Rewrite/Core/RewriteRope.h"
#include "clang/Basic/LLVM.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstring>

using namespace clang;

/// RewriteRope is a "strong" string class, designed to make insertions and
/// deletions in the middle of the string nearly constant time (really, they are
/// O(log N), but with a very low constant factor).
///
/// The implementation of this datastructure is a conceptual linear sequence of
/// RopePiece elements.  Each RopePiece represents a view on a separately
/// allocated and reference counted string.  This means that splitting a very
/// long string can be done in constant time by splitting a RopePiece that
/// references the whole string into two rope pieces that reference each half.
/// Once split, another string can be inserted in between the two halves by
/// inserting a RopePiece in between the two others.  All of this is very
/// inexpensive: it takes time proportional to the number of RopePieces, not the
/// length of the strings they represent.
///
/// While a linear sequences of RopePieces is the conceptual model, the actual
/// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
/// is a tree that keeps the values in the leaves and has where each node
/// contains a reasonable number of pointers to children/values) allows us to
/// maintain efficient operation when the RewriteRope contains a *huge* number
/// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
/// the RopePiece corresponding to some offset very efficiently, and it
/// automatically balances itself on insertions of RopePieces (which can happen
/// for both insertions and erases of string ranges).
///
/// The one wrinkle on the theory is that we don't attempt to keep the tree
/// properly balanced when erases happen.  Erases of string data can both insert
/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
/// which results in two rope pieces, which is just like an insert) or it can
/// reduce the number of RopePieces maintained by the B+Tree.  In the case when
/// the number of RopePieces is reduced, we don't attempt to maintain the
/// standard 'invariant' that each node in the tree contains at least
/// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
/// matter.
///
/// The implementation below is primarily implemented in terms of three classes:
///   RopePieceBTreeNode - Common base class for:
///
///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
///          nodes.  This directly represents a chunk of the string with those
///          RopePieces concatenated.
///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
///          up to '2*WidthFactor' other nodes in the tree.

namespace {

//===----------------------------------------------------------------------===//
// RopePieceBTreeNode Class
//===----------------------------------------------------------------------===//

  /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
  /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
  /// and a flag that determines which subclass the instance is.  Also
  /// important, this node knows the full extend of the node, including any
  /// children that it has.  This allows efficient skipping over entire subtrees
  /// when looking for an offset in the BTree.
  class RopePieceBTreeNode {
  protected:
    /// WidthFactor - This controls the number of K/V slots held in the BTree:
    /// how wide it is.  Each level of the BTree is guaranteed to have at least
    /// 'WidthFactor' elements in it (either ropepieces or children), (except
    /// the root, which may have less) and may have at most 2*WidthFactor
    /// elements.
    enum { WidthFactor = 8 };

    /// Size - This is the number of bytes of file this node (including any
    /// potential children) covers.
    unsigned Size = 0;

    /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
    /// is an instance of RopePieceBTreeInterior.
    bool IsLeaf;

    RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
    ~RopePieceBTreeNode() = default;

  public:
    bool isLeaf() const { return IsLeaf; }
    unsigned size() const { return Size; }

    void Destroy();

    /// split - Split the range containing the specified offset so that we are
    /// guaranteed that there is a place to do an insertion at the specified
    /// offset.  The offset is relative, so "0" is the start of the node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *split(unsigned Offset);

    /// insert - Insert the specified ropepiece into this tree node at the
    /// specified offset.  The offset is relative, so "0" is the start of the
    /// node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);

    /// erase - Remove NumBytes from this node at the specified offset.  We are
    /// guaranteed that there is a split at Offset.
    void erase(unsigned Offset, unsigned NumBytes);
  };

//===----------------------------------------------------------------------===//
// RopePieceBTreeLeaf Class
//===----------------------------------------------------------------------===//

  /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
  /// nodes.  This directly represents a chunk of the string with those
  /// RopePieces concatenated.  Since this is a B+Tree, all values (in this case
  /// instances of RopePiece) are stored in leaves like this.  To make iteration
  /// over the leaves efficient, they maintain a singly linked list through the
  /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
  /// time for all increments.
  class RopePieceBTreeLeaf : public RopePieceBTreeNode {
    /// NumPieces - This holds the number of rope pieces currently active in the
    /// Pieces array.
    unsigned char NumPieces = 0;

    /// Pieces - This tracks the file chunks currently in this leaf.
    RopePiece Pieces[2*WidthFactor];

    /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
    /// efficient in-order forward iteration of the tree without traversal.
    RopePieceBTreeLeaf **PrevLeaf = nullptr;
    RopePieceBTreeLeaf *NextLeaf = nullptr;

  public:
    RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}

    ~RopePieceBTreeLeaf() {
      if (PrevLeaf || NextLeaf)
        removeFromLeafInOrder();
      clear();
    }

    bool isFull() const { return NumPieces == 2*WidthFactor; }

    /// clear - Remove all rope pieces from this leaf.
    void clear() {
      while (NumPieces)
        Pieces[--NumPieces] = RopePiece();
      Size = 0;
    }

    unsigned getNumPieces() const { return NumPieces; }

    const RopePiece &getPiece(unsigned i) const {
      assert(i < getNumPieces() && "Invalid piece ID");
      return Pieces[i];
    }

    const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }

    void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
      assert(!PrevLeaf && !NextLeaf && "Already in ordering");

      NextLeaf = Node->NextLeaf;
      if (NextLeaf)
        NextLeaf->PrevLeaf = &NextLeaf;
      PrevLeaf = &Node->NextLeaf;
      Node->NextLeaf = this;
    }

    void removeFromLeafInOrder() {
      if (PrevLeaf) {
        *PrevLeaf = NextLeaf;
        if (NextLeaf)
          NextLeaf->PrevLeaf = PrevLeaf;
      } else if (NextLeaf) {
        NextLeaf->PrevLeaf = nullptr;
      }
    }

    /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
    /// summing the size of all RopePieces.
    void FullRecomputeSizeLocally() {
      Size = 0;
      for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
        Size += getPiece(i).size();
    }

    /// split - Split the range containing the specified offset so that we are
    /// guaranteed that there is a place to do an insertion at the specified
    /// offset.  The offset is relative, so "0" is the start of the node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *split(unsigned Offset);

    /// insert - Insert the specified ropepiece into this tree node at the
    /// specified offset.  The offset is relative, so "0" is the start of the
    /// node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);

    /// erase - Remove NumBytes from this node at the specified offset.  We are
    /// guaranteed that there is a split at Offset.
    void erase(unsigned Offset, unsigned NumBytes);

    static bool classof(const RopePieceBTreeNode *N) {
      return N->isLeaf();
    }
  };

} // namespace

/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset.  The offset is relative, so "0" is the start of the node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
  // Find the insertion point.  We are guaranteed that there is a split at the
  // specified offset so find it.
  if (Offset == 0 || Offset == size()) {
    // Fastpath for a common case.  There is already a splitpoint at the end.
    return nullptr;
  }

  // Find the piece that this offset lands in.
  unsigned PieceOffs = 0;
  unsigned i = 0;
  while (Offset >= PieceOffs+Pieces[i].size()) {
    PieceOffs += Pieces[i].size();
    ++i;
  }

  // If there is already a split point at the specified offset, just return
  // success.
  if (PieceOffs == Offset)
    return nullptr;

  // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
  // to being Piece relative.
  unsigned IntraPieceOffset = Offset-PieceOffs;

  // We do this by shrinking the RopePiece and then doing an insert of the tail.
  RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
                 Pieces[i].EndOffs);
  Size -= Pieces[i].size();
  Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
  Size += Pieces[i].size();

  return insert(Offset, Tail);
}

/// insert - Insert the specified RopePiece into this tree node at the
/// specified offset.  The offset is relative, so "0" is the start of the node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
                                               const RopePiece &R) {
  // If this node is not full, insert the piece.
  if (!isFull()) {
    // Find the insertion point.  We are guaranteed that there is a split at the
    // specified offset so find it.
    unsigned i = 0, e = getNumPieces();
    if (Offset == size()) {
      // Fastpath for a common case.
      i = e;
    } else {
      unsigned SlotOffs = 0;
      for (; Offset > SlotOffs; ++i)
        SlotOffs += getPiece(i).size();
      assert(SlotOffs == Offset && "Split didn't occur before insertion!");
    }

    // For an insertion into a non-full leaf node, just insert the value in
    // its sorted position.  This requires moving later values over.
    for (; i != e; --e)
      Pieces[e] = Pieces[e-1];
    Pieces[i] = R;
    ++NumPieces;
    Size += R.size();
    return nullptr;
  }

  // Otherwise, if this is leaf is full, split it in two halves.  Since this
  // node is full, it contains 2*WidthFactor values.  We move the first
  // 'WidthFactor' values to the LHS child (which we leave in this node) and
  // move the last 'WidthFactor' values into the RHS child.

  // Create the new node.
  RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();

  // Move over the last 'WidthFactor' values from here to NewNode.
  std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
            &NewNode->Pieces[0]);
  // Replace old pieces with null RopePieces to drop refcounts.
  std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());

  // Decrease the number of values in the two nodes.
  NewNode->NumPieces = NumPieces = WidthFactor;

  // Recompute the two nodes' size.
  NewNode->FullRecomputeSizeLocally();
  FullRecomputeSizeLocally();

  // Update the list of leaves.
  NewNode->insertAfterLeafInOrder(this);

  // These insertions can't fail.
  if (this->size() >= Offset)
    this->insert(Offset, R);
  else
    NewNode->insert(Offset - this->size(), R);
  return NewNode;
}

/// erase - Remove NumBytes from this node at the specified offset.  We are
/// guaranteed that there is a split at Offset.
void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
  // Since we are guaranteed that there is a split at Offset, we start by
  // finding the Piece that starts there.
  unsigned PieceOffs = 0;
  unsigned i = 0;
  for (; Offset > PieceOffs; ++i)
    PieceOffs += getPiece(i).size();
  assert(PieceOffs == Offset && "Split didn't occur before erase!");

  unsigned StartPiece = i;

  // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
  // all of them.
  for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
    PieceOffs += getPiece(i).size();

  // If we exactly include the last one, include it in the region to delete.
  if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
    PieceOffs += getPiece(i).size();
    ++i;
  }

  // If we completely cover some RopePieces, erase them now.
  if (i != StartPiece) {
    unsigned NumDeleted = i-StartPiece;
    for (; i != getNumPieces(); ++i)
      Pieces[i-NumDeleted] = Pieces[i];

    // Drop references to dead rope pieces.
    std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
              RopePiece());
    NumPieces -= NumDeleted;

    unsigned CoverBytes = PieceOffs-Offset;
    NumBytes -= CoverBytes;
    Size -= CoverBytes;
  }

  // If we completely removed some stuff, we could be done.
  if (NumBytes == 0) return;

  // Okay, now might be erasing part of some Piece.  If this is the case, then
  // move the start point of the piece.
  assert(getPiece(StartPiece).size() > NumBytes);
  Pieces[StartPiece].StartOffs += NumBytes;

  // The size of this node just shrunk by NumBytes.
  Size -= NumBytes;
}

//===----------------------------------------------------------------------===//
// RopePieceBTreeInterior Class
//===----------------------------------------------------------------------===//

namespace {

  /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
  /// which holds up to 2*WidthFactor pointers to child nodes.
  class RopePieceBTreeInterior : public RopePieceBTreeNode {
    /// NumChildren - This holds the number of children currently active in the
    /// Children array.
    unsigned char NumChildren = 0;

    RopePieceBTreeNode *Children[2*WidthFactor];

  public:
    RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}

    RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
        : RopePieceBTreeNode(false) {
      Children[0] = LHS;
      Children[1] = RHS;
      NumChildren = 2;
      Size = LHS->size() + RHS->size();
    }

    ~RopePieceBTreeInterior() {
      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
        Children[i]->Destroy();
    }

    bool isFull() const { return NumChildren == 2*WidthFactor; }

    unsigned getNumChildren() const { return NumChildren; }

    const RopePieceBTreeNode *getChild(unsigned i) const {
      assert(i < NumChildren && "invalid child #");
      return Children[i];
    }

    RopePieceBTreeNode *getChild(unsigned i) {
      assert(i < NumChildren && "invalid child #");
      return Children[i];
    }

    /// FullRecomputeSizeLocally - Recompute the Size field of this node by
    /// summing up the sizes of the child nodes.
    void FullRecomputeSizeLocally() {
      Size = 0;
      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
        Size += getChild(i)->size();
    }

    /// split - Split the range containing the specified offset so that we are
    /// guaranteed that there is a place to do an insertion at the specified
    /// offset.  The offset is relative, so "0" is the start of the node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *split(unsigned Offset);

    /// insert - Insert the specified ropepiece into this tree node at the
    /// specified offset.  The offset is relative, so "0" is the start of the
    /// node.
    ///
    /// If there is no space in this subtree for the extra piece, the extra tree
    /// node is returned and must be inserted into a parent.
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);

    /// HandleChildPiece - A child propagated an insertion result up to us.
    /// Insert the new child, and/or propagate the result further up the tree.
    RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);

    /// erase - Remove NumBytes from this node at the specified offset.  We are
    /// guaranteed that there is a split at Offset.
    void erase(unsigned Offset, unsigned NumBytes);

    static bool classof(const RopePieceBTreeNode *N) {
      return !N->isLeaf();
    }
  };

} // namespace

/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset.  The offset is relative, so "0" is the start of the node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
  // Figure out which child to split.
  if (Offset == 0 || Offset == size())
    return nullptr; // If we have an exact offset, we're already split.

  unsigned ChildOffset = 0;
  unsigned i = 0;
  for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
    ChildOffset += getChild(i)->size();

  // If already split there, we're done.
  if (ChildOffset == Offset)
    return nullptr;

  // Otherwise, recursively split the child.
  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
    return HandleChildPiece(i, RHS);
  return nullptr; // Done!
}

/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset.  The offset is relative, so "0" is the start of the
/// node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
                                                   const RopePiece &R) {
  // Find the insertion point.  We are guaranteed that there is a split at the
  // specified offset so find it.
  unsigned i = 0, e = getNumChildren();

  unsigned ChildOffs = 0;
  if (Offset == size()) {
    // Fastpath for a common case.  Insert at end of last child.
    i = e-1;
    ChildOffs = size()-getChild(i)->size();
  } else {
    for (; Offset > ChildOffs+getChild(i)->size(); ++i)
      ChildOffs += getChild(i)->size();
  }

  Size += R.size();

  // Insert at the end of this child.
  if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
    return HandleChildPiece(i, RHS);

  return nullptr;
}

/// HandleChildPiece - A child propagated an insertion result up to us.
/// Insert the new child, and/or propagate the result further up the tree.
RopePieceBTreeNode *
RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
  // Otherwise the child propagated a subtree up to us as a new child.  See if
  // we have space for it here.
  if (!isFull()) {
    // Insert RHS after child 'i'.
    if (i + 1 != getNumChildren())
      memmove(&Children[i+2], &Children[i+1],
              (getNumChildren()-i-1)*sizeof(Children[0]));
    Children[i+1] = RHS;
    ++NumChildren;
    return nullptr;
  }

  // Okay, this node is full.  Split it in half, moving WidthFactor children to
  // a newly allocated interior node.

  // Create the new node.
  RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();

  // Move over the last 'WidthFactor' values from here to NewNode.
  memcpy(&NewNode->Children[0], &Children[WidthFactor],
         WidthFactor*sizeof(Children[0]));

  // Decrease the number of values in the two nodes.
  NewNode->NumChildren = NumChildren = WidthFactor;

  // Finally, insert the two new children in the side the can (now) hold them.
  // These insertions can't fail.
  if (i < WidthFactor)
    this->HandleChildPiece(i, RHS);
  else
    NewNode->HandleChildPiece(i-WidthFactor, RHS);

  // Recompute the two nodes' size.
  NewNode->FullRecomputeSizeLocally();
  FullRecomputeSizeLocally();
  return NewNode;
}

/// erase - Remove NumBytes from this node at the specified offset.  We are
/// guaranteed that there is a split at Offset.
void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
  // This will shrink this node by NumBytes.
  Size -= NumBytes;

  // Find the first child that overlaps with Offset.
  unsigned i = 0;
  for (; Offset >= getChild(i)->size(); ++i)
    Offset -= getChild(i)->size();

  // Propagate the delete request into overlapping children, or completely
  // delete the children as appropriate.
  while (NumBytes) {
    RopePieceBTreeNode *CurChild = getChild(i);

    // If we are deleting something contained entirely in the child, pass on the
    // request.
    if (Offset+NumBytes < CurChild->size()) {
      CurChild->erase(Offset, NumBytes);
      return;
    }

    // If this deletion request starts somewhere in the middle of the child, it
    // must be deleting to the end of the child.
    if (Offset) {
      unsigned BytesFromChild = CurChild->size()-Offset;
      CurChild->erase(Offset, BytesFromChild);
      NumBytes -= BytesFromChild;
      // Start at the beginning of the next child.
      Offset = 0;
      ++i;
      continue;
    }

    // If the deletion request completely covers the child, delete it and move
    // the rest down.
    NumBytes -= CurChild->size();
    CurChild->Destroy();
    --NumChildren;
    if (i != getNumChildren())
      memmove(&Children[i], &Children[i+1],
              (getNumChildren()-i)*sizeof(Children[0]));
  }
}

//===----------------------------------------------------------------------===//
// RopePieceBTreeNode Implementation
//===----------------------------------------------------------------------===//

void RopePieceBTreeNode::Destroy() {
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    delete Leaf;
  else
    delete cast<RopePieceBTreeInterior>(this);
}

/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset.  The offset is relative, so "0" is the start of the node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
  assert(Offset <= size() && "Invalid offset to split!");
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    return Leaf->split(Offset);
  return cast<RopePieceBTreeInterior>(this)->split(Offset);
}

/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset.  The offset is relative, so "0" is the start of the
/// node.
///
/// If there is no space in this subtree for the extra piece, the extra tree
/// node is returned and must be inserted into a parent.
RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
                                               const RopePiece &R) {
  assert(Offset <= size() && "Invalid offset to insert!");
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    return Leaf->insert(Offset, R);
  return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
}

/// erase - Remove NumBytes from this node at the specified offset.  We are
/// guaranteed that there is a split at Offset.
void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
  assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    return Leaf->erase(Offset, NumBytes);
  return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
}

//===----------------------------------------------------------------------===//
// RopePieceBTreeIterator Implementation
//===----------------------------------------------------------------------===//

static const RopePieceBTreeLeaf *getCN(const void *P) {
  return static_cast<const RopePieceBTreeLeaf*>(P);
}

// begin iterator.
RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
  const auto *N = static_cast<const RopePieceBTreeNode *>(n);

  // Walk down the left side of the tree until we get to a leaf.
  while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
    N = IN->getChild(0);

  // We must have at least one leaf.
  CurNode = cast<RopePieceBTreeLeaf>(N);

  // If we found a leaf that happens to be empty, skip over it until we get
  // to something full.
  while (CurNode && getCN(CurNode)->getNumPieces() == 0)
    CurNode = getCN(CurNode)->getNextLeafInOrder();

  if (CurNode)
    CurPiece = &getCN(CurNode)->getPiece(0);
  else  // Empty tree, this is an end() iterator.
    CurPiece = nullptr;
  CurChar = 0;
}

void RopePieceBTreeIterator::MoveToNextPiece() {
  if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
    CurChar = 0;
    ++CurPiece;
    return;
  }

  // Find the next non-empty leaf node.
  do
    CurNode = getCN(CurNode)->getNextLeafInOrder();
  while (CurNode && getCN(CurNode)->getNumPieces() == 0);

  if (CurNode)
    CurPiece = &getCN(CurNode)->getPiece(0);
  else // Hit end().
    CurPiece = nullptr;
  CurChar = 0;
}

//===----------------------------------------------------------------------===//
// RopePieceBTree Implementation
//===----------------------------------------------------------------------===//

static RopePieceBTreeNode *getRoot(void *P) {
  return static_cast<RopePieceBTreeNode*>(P);
}

RopePieceBTree::RopePieceBTree() {
  Root = new RopePieceBTreeLeaf();
}

RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
  assert(RHS.empty() && "Can't copy non-empty tree yet");
  Root = new RopePieceBTreeLeaf();
}

RopePieceBTree::~RopePieceBTree() {
  getRoot(Root)->Destroy();
}

unsigned RopePieceBTree::size() const {
  return getRoot(Root)->size();
}

void RopePieceBTree::clear() {
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
    Leaf->clear();
  else {
    getRoot(Root)->Destroy();
    Root = new RopePieceBTreeLeaf();
  }
}

void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
  // #1. Split at Offset.
  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);

  // #2. Do the insertion.
  if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
}

void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
  // #1. Split at Offset.
  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);

  // #2. Do the erasing.
  getRoot(Root)->erase(Offset, NumBytes);
}

//===----------------------------------------------------------------------===//
// RewriteRope Implementation
//===----------------------------------------------------------------------===//

/// MakeRopeString - This copies the specified byte range into some instance of
/// RopeRefCountString, and return a RopePiece that represents it.  This uses
/// the AllocBuffer object to aggregate requests for small strings into one
/// allocation instead of doing tons of tiny allocations.
RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
  unsigned Len = End-Start;
  assert(Len && "Zero length RopePiece is invalid!");

  // If we have space for this string in the current alloc buffer, use it.
  if (AllocOffs+Len <= AllocChunkSize) {
    memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
    AllocOffs += Len;
    return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
  }

  // If we don't have enough room because this specific allocation is huge,
  // just allocate a new rope piece for it alone.
  if (Len > AllocChunkSize) {
    unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
    auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
    Res->RefCount = 0;
    memcpy(Res->Data, Start, End-Start);
    return RopePiece(Res, 0, End-Start);
  }

  // Otherwise, this was a small request but we just don't have space for it
  // Make a new chunk and share it with later allocations.

  unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
  auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
  Res->RefCount = 0;
  memcpy(Res->Data, Start, Len);
  AllocBuffer = Res;
  AllocOffs = Len;

  return RopePiece(AllocBuffer, 0, Len);
}