1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
| //===--- EvalEmitter.cpp - Instruction emitter for the VM -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "EvalEmitter.h"
#include "Context.h"
#include "Interp.h"
#include "Opcode.h"
#include "Program.h"
#include "clang/AST/DeclCXX.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
template <typename T> using Expected = llvm::Expected<T>;
EvalEmitter::EvalEmitter(Context &Ctx, Program &P, State &Parent,
InterpStack &Stk, APValue &Result)
: Ctx(Ctx), P(P), S(Parent, P, Stk, Ctx, this), Result(Result) {
// Create a dummy frame for the interpreter which does not have locals.
S.Current = new InterpFrame(S, nullptr, nullptr, CodePtr(), Pointer());
}
llvm::Expected<bool> EvalEmitter::interpretExpr(const Expr *E) {
if (this->visitExpr(E))
return true;
if (BailLocation)
return llvm::make_error<ByteCodeGenError>(*BailLocation);
return false;
}
llvm::Expected<bool> EvalEmitter::interpretDecl(const VarDecl *VD) {
if (this->visitDecl(VD))
return true;
if (BailLocation)
return llvm::make_error<ByteCodeGenError>(*BailLocation);
return false;
}
void EvalEmitter::emitLabel(LabelTy Label) {
CurrentLabel = Label;
}
EvalEmitter::LabelTy EvalEmitter::getLabel() { return NextLabel++; }
Scope::Local EvalEmitter::createLocal(Descriptor *D) {
// Allocate memory for a local.
auto Memory = std::make_unique<char[]>(sizeof(Block) + D->getAllocSize());
auto *B = new (Memory.get()) Block(D, /*isStatic=*/false);
B->invokeCtor();
// Register the local.
unsigned Off = Locals.size();
Locals.insert({Off, std::move(Memory)});
return {Off, D};
}
bool EvalEmitter::bail(const SourceLocation &Loc) {
if (!BailLocation)
BailLocation = Loc;
return false;
}
bool EvalEmitter::jumpTrue(const LabelTy &Label) {
if (isActive()) {
if (S.Stk.pop<bool>())
ActiveLabel = Label;
}
return true;
}
bool EvalEmitter::jumpFalse(const LabelTy &Label) {
if (isActive()) {
if (!S.Stk.pop<bool>())
ActiveLabel = Label;
}
return true;
}
bool EvalEmitter::jump(const LabelTy &Label) {
if (isActive())
CurrentLabel = ActiveLabel = Label;
return true;
}
bool EvalEmitter::fallthrough(const LabelTy &Label) {
if (isActive())
ActiveLabel = Label;
CurrentLabel = Label;
return true;
}
template <PrimType OpType> bool EvalEmitter::emitRet(const SourceInfo &Info) {
if (!isActive())
return true;
using T = typename PrimConv<OpType>::T;
return ReturnValue<T>(S.Stk.pop<T>(), Result);
}
bool EvalEmitter::emitRetVoid(const SourceInfo &Info) { return true; }
bool EvalEmitter::emitRetValue(const SourceInfo &Info) {
// Method to recursively traverse composites.
std::function<bool(QualType, const Pointer &, APValue &)> Composite;
Composite = [this, &Composite](QualType Ty, const Pointer &Ptr, APValue &R) {
if (auto *AT = Ty->getAs<AtomicType>())
Ty = AT->getValueType();
if (auto *RT = Ty->getAs<RecordType>()) {
auto *Record = Ptr.getRecord();
assert(Record && "Missing record descriptor");
bool Ok = true;
if (RT->getDecl()->isUnion()) {
const FieldDecl *ActiveField = nullptr;
APValue Value;
for (auto &F : Record->fields()) {
const Pointer &FP = Ptr.atField(F.Offset);
QualType FieldTy = F.Decl->getType();
if (FP.isActive()) {
if (llvm::Optional<PrimType> T = Ctx.classify(FieldTy)) {
TYPE_SWITCH(*T, Ok &= ReturnValue<T>(FP.deref<T>(), Value));
} else {
Ok &= Composite(FieldTy, FP, Value);
}
break;
}
}
R = APValue(ActiveField, Value);
} else {
unsigned NF = Record->getNumFields();
unsigned NB = Record->getNumBases();
unsigned NV = Ptr.isBaseClass() ? 0 : Record->getNumVirtualBases();
R = APValue(APValue::UninitStruct(), NB, NF);
for (unsigned I = 0; I < NF; ++I) {
const Record::Field *FD = Record->getField(I);
QualType FieldTy = FD->Decl->getType();
const Pointer &FP = Ptr.atField(FD->Offset);
APValue &Value = R.getStructField(I);
if (llvm::Optional<PrimType> T = Ctx.classify(FieldTy)) {
TYPE_SWITCH(*T, Ok &= ReturnValue<T>(FP.deref<T>(), Value));
} else {
Ok &= Composite(FieldTy, FP, Value);
}
}
for (unsigned I = 0; I < NB; ++I) {
const Record::Base *BD = Record->getBase(I);
QualType BaseTy = Ctx.getASTContext().getRecordType(BD->Decl);
const Pointer &BP = Ptr.atField(BD->Offset);
Ok &= Composite(BaseTy, BP, R.getStructBase(I));
}
for (unsigned I = 0; I < NV; ++I) {
const Record::Base *VD = Record->getVirtualBase(I);
QualType VirtBaseTy = Ctx.getASTContext().getRecordType(VD->Decl);
const Pointer &VP = Ptr.atField(VD->Offset);
Ok &= Composite(VirtBaseTy, VP, R.getStructBase(NB + I));
}
}
return Ok;
}
if (auto *AT = Ty->getAsArrayTypeUnsafe()) {
const size_t NumElems = Ptr.getNumElems();
QualType ElemTy = AT->getElementType();
R = APValue(APValue::UninitArray{}, NumElems, NumElems);
bool Ok = true;
for (unsigned I = 0; I < NumElems; ++I) {
APValue &Slot = R.getArrayInitializedElt(I);
const Pointer &EP = Ptr.atIndex(I);
if (llvm::Optional<PrimType> T = Ctx.classify(ElemTy)) {
TYPE_SWITCH(*T, Ok &= ReturnValue<T>(EP.deref<T>(), Slot));
} else {
Ok &= Composite(ElemTy, EP.narrow(), Slot);
}
}
return Ok;
}
llvm_unreachable("invalid value to return");
};
// Return the composite type.
const auto &Ptr = S.Stk.pop<Pointer>();
return Composite(Ptr.getType(), Ptr, Result);
}
bool EvalEmitter::emitGetPtrLocal(uint32_t I, const SourceInfo &Info) {
if (!isActive())
return true;
auto It = Locals.find(I);
assert(It != Locals.end() && "Missing local variable");
S.Stk.push<Pointer>(reinterpret_cast<Block *>(It->second.get()));
return true;
}
template <PrimType OpType>
bool EvalEmitter::emitGetLocal(uint32_t I, const SourceInfo &Info) {
if (!isActive())
return true;
using T = typename PrimConv<OpType>::T;
auto It = Locals.find(I);
assert(It != Locals.end() && "Missing local variable");
auto *B = reinterpret_cast<Block *>(It->second.get());
S.Stk.push<T>(*reinterpret_cast<T *>(B + 1));
return true;
}
template <PrimType OpType>
bool EvalEmitter::emitSetLocal(uint32_t I, const SourceInfo &Info) {
if (!isActive())
return true;
using T = typename PrimConv<OpType>::T;
auto It = Locals.find(I);
assert(It != Locals.end() && "Missing local variable");
auto *B = reinterpret_cast<Block *>(It->second.get());
*reinterpret_cast<T *>(B + 1) = S.Stk.pop<T>();
return true;
}
bool EvalEmitter::emitDestroy(uint32_t I, const SourceInfo &Info) {
if (!isActive())
return true;
for (auto &Local : Descriptors[I]) {
auto It = Locals.find(Local.Offset);
assert(It != Locals.end() && "Missing local variable");
S.deallocate(reinterpret_cast<Block *>(It->second.get()));
}
return true;
}
//===----------------------------------------------------------------------===//
// Opcode evaluators
//===----------------------------------------------------------------------===//
#define GET_EVAL_IMPL
#include "Opcodes.inc"
#undef GET_EVAL_IMPL
|