reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
//===- ExprClassification.cpp - Expression AST Node Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Expr::classify.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "llvm/Support/ErrorHandling.h"

using namespace clang;

using Cl = Expr::Classification;

static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
                                     const Expr *trueExpr,
                                     const Expr *falseExpr);
static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
                                       Cl::Kinds Kind, SourceLocation &Loc);

Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
  assert(!TR->isReferenceType() && "Expressions can't have reference type.");

  Cl::Kinds kind = ClassifyInternal(Ctx, this);
  // C99 6.3.2.1: An lvalue is an expression with an object type or an
  //   incomplete type other than void.
  if (!Ctx.getLangOpts().CPlusPlus) {
    // Thus, no functions.
    if (TR->isFunctionType() || TR == Ctx.OverloadTy)
      kind = Cl::CL_Function;
    // No void either, but qualified void is OK because it is "other than void".
    // Void "lvalues" are classified as addressable void values, which are void
    // expressions whose address can be taken.
    else if (TR->isVoidType() && !TR.hasQualifiers())
      kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
  }

  // Enable this assertion for testing.
  switch (kind) {
  case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
  case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
  case Cl::CL_Function:
  case Cl::CL_Void:
  case Cl::CL_AddressableVoid:
  case Cl::CL_DuplicateVectorComponents:
  case Cl::CL_MemberFunction:
  case Cl::CL_SubObjCPropertySetting:
  case Cl::CL_ClassTemporary:
  case Cl::CL_ArrayTemporary:
  case Cl::CL_ObjCMessageRValue:
  case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
  }

  Cl::ModifiableType modifiable = Cl::CM_Untested;
  if (Loc)
    modifiable = IsModifiable(Ctx, this, kind, *Loc);
  return Classification(kind, modifiable);
}

/// Classify an expression which creates a temporary, based on its type.
static Cl::Kinds ClassifyTemporary(QualType T) {
  if (T->isRecordType())
    return Cl::CL_ClassTemporary;
  if (T->isArrayType())
    return Cl::CL_ArrayTemporary;

  // No special classification: these don't behave differently from normal
  // prvalues.
  return Cl::CL_PRValue;
}

static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
                                       const Expr *E,
                                       ExprValueKind Kind) {
  switch (Kind) {
  case VK_RValue:
    return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
  case VK_LValue:
    return Cl::CL_LValue;
  case VK_XValue:
    return Cl::CL_XValue;
  }
  llvm_unreachable("Invalid value category of implicit cast.");
}

static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
  // This function takes the first stab at classifying expressions.
  const LangOptions &Lang = Ctx.getLangOpts();

  switch (E->getStmtClass()) {
  case Stmt::NoStmtClass:
#define ABSTRACT_STMT(Kind)
#define STMT(Kind, Base) case Expr::Kind##Class:
#define EXPR(Kind, Base)
#include "clang/AST/StmtNodes.inc"
    llvm_unreachable("cannot classify a statement");

    // First come the expressions that are always lvalues, unconditionally.
  case Expr::ObjCIsaExprClass:
    // C++ [expr.prim.general]p1: A string literal is an lvalue.
  case Expr::StringLiteralClass:
    // @encode is equivalent to its string
  case Expr::ObjCEncodeExprClass:
    // __func__ and friends are too.
  case Expr::PredefinedExprClass:
    // Property references are lvalues
  case Expr::ObjCSubscriptRefExprClass:
  case Expr::ObjCPropertyRefExprClass:
    // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
  case Expr::CXXTypeidExprClass:
    // Unresolved lookups and uncorrected typos get classified as lvalues.
    // FIXME: Is this wise? Should they get their own kind?
  case Expr::UnresolvedLookupExprClass:
  case Expr::UnresolvedMemberExprClass:
  case Expr::TypoExprClass:
  case Expr::DependentCoawaitExprClass:
  case Expr::CXXDependentScopeMemberExprClass:
  case Expr::DependentScopeDeclRefExprClass:
    // ObjC instance variables are lvalues
    // FIXME: ObjC++0x might have different rules
  case Expr::ObjCIvarRefExprClass:
  case Expr::FunctionParmPackExprClass:
  case Expr::MSPropertyRefExprClass:
  case Expr::MSPropertySubscriptExprClass:
  case Expr::OMPArraySectionExprClass:
    return Cl::CL_LValue;

    // C99 6.5.2.5p5 says that compound literals are lvalues.
    // In C++, they're prvalue temporaries, except for file-scope arrays.
  case Expr::CompoundLiteralExprClass:
    return !E->isLValue() ? ClassifyTemporary(E->getType()) : Cl::CL_LValue;

    // Expressions that are prvalues.
  case Expr::CXXBoolLiteralExprClass:
  case Expr::CXXPseudoDestructorExprClass:
  case Expr::UnaryExprOrTypeTraitExprClass:
  case Expr::CXXNewExprClass:
  case Expr::CXXThisExprClass:
  case Expr::CXXNullPtrLiteralExprClass:
  case Expr::ImaginaryLiteralClass:
  case Expr::GNUNullExprClass:
  case Expr::OffsetOfExprClass:
  case Expr::CXXThrowExprClass:
  case Expr::ShuffleVectorExprClass:
  case Expr::ConvertVectorExprClass:
  case Expr::IntegerLiteralClass:
  case Expr::FixedPointLiteralClass:
  case Expr::CharacterLiteralClass:
  case Expr::AddrLabelExprClass:
  case Expr::CXXDeleteExprClass:
  case Expr::ImplicitValueInitExprClass:
  case Expr::BlockExprClass:
  case Expr::FloatingLiteralClass:
  case Expr::CXXNoexceptExprClass:
  case Expr::CXXScalarValueInitExprClass:
  case Expr::TypeTraitExprClass:
  case Expr::ArrayTypeTraitExprClass:
  case Expr::ExpressionTraitExprClass:
  case Expr::ObjCSelectorExprClass:
  case Expr::ObjCProtocolExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCBoxedExprClass:
  case Expr::ObjCArrayLiteralClass:
  case Expr::ObjCDictionaryLiteralClass:
  case Expr::ObjCBoolLiteralExprClass:
  case Expr::ObjCAvailabilityCheckExprClass:
  case Expr::ParenListExprClass:
  case Expr::SizeOfPackExprClass:
  case Expr::SubstNonTypeTemplateParmPackExprClass:
  case Expr::AsTypeExprClass:
  case Expr::ObjCIndirectCopyRestoreExprClass:
  case Expr::AtomicExprClass:
  case Expr::CXXFoldExprClass:
  case Expr::ArrayInitLoopExprClass:
  case Expr::ArrayInitIndexExprClass:
  case Expr::NoInitExprClass:
  case Expr::DesignatedInitUpdateExprClass:
  case Expr::SourceLocExprClass:
  case Expr::ConceptSpecializationExprClass:
    return Cl::CL_PRValue;

  case Expr::ConstantExprClass:
    return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr());

    // Next come the complicated cases.
  case Expr::SubstNonTypeTemplateParmExprClass:
    return ClassifyInternal(Ctx,
                 cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());

    // C, C++98 [expr.sub]p1: The result is an lvalue of type "T".
    // C++11 (DR1213): in the case of an array operand, the result is an lvalue
    //                 if that operand is an lvalue and an xvalue otherwise.
    // Subscripting vector types is more like member access.
  case Expr::ArraySubscriptExprClass:
    if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
      return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
    if (Lang.CPlusPlus11) {
      // Step over the array-to-pointer decay if present, but not over the
      // temporary materialization.
      auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts();
      if (Base->getType()->isArrayType())
        return ClassifyInternal(Ctx, Base);
    }
    return Cl::CL_LValue;

    // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
    //   function or variable and a prvalue otherwise.
  case Expr::DeclRefExprClass:
    if (E->getType() == Ctx.UnknownAnyTy)
      return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
               ? Cl::CL_PRValue : Cl::CL_LValue;
    return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());

    // Member access is complex.
  case Expr::MemberExprClass:
    return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));

  case Expr::UnaryOperatorClass:
    switch (cast<UnaryOperator>(E)->getOpcode()) {
      // C++ [expr.unary.op]p1: The unary * operator performs indirection:
      //   [...] the result is an lvalue referring to the object or function
      //   to which the expression points.
    case UO_Deref:
      return Cl::CL_LValue;

      // GNU extensions, simply look through them.
    case UO_Extension:
      return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());

    // Treat _Real and _Imag basically as if they were member
    // expressions:  l-value only if the operand is a true l-value.
    case UO_Real:
    case UO_Imag: {
      const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
      Cl::Kinds K = ClassifyInternal(Ctx, Op);
      if (K != Cl::CL_LValue) return K;

      if (isa<ObjCPropertyRefExpr>(Op))
        return Cl::CL_SubObjCPropertySetting;
      return Cl::CL_LValue;
    }

      // C++ [expr.pre.incr]p1: The result is the updated operand; it is an
      //   lvalue, [...]
      // Not so in C.
    case UO_PreInc:
    case UO_PreDec:
      return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;

    default:
      return Cl::CL_PRValue;
    }

  case Expr::OpaqueValueExprClass:
    return ClassifyExprValueKind(Lang, E, E->getValueKind());

    // Pseudo-object expressions can produce l-values with reference magic.
  case Expr::PseudoObjectExprClass:
    return ClassifyExprValueKind(Lang, E,
                                 cast<PseudoObjectExpr>(E)->getValueKind());

    // Implicit casts are lvalues if they're lvalue casts. Other than that, we
    // only specifically record class temporaries.
  case Expr::ImplicitCastExprClass:
    return ClassifyExprValueKind(Lang, E, E->getValueKind());

    // C++ [expr.prim.general]p4: The presence of parentheses does not affect
    //   whether the expression is an lvalue.
  case Expr::ParenExprClass:
    return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());

    // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
    // or a void expression if its result expression is, respectively, an
    // lvalue, a function designator, or a void expression.
  case Expr::GenericSelectionExprClass:
    if (cast<GenericSelectionExpr>(E)->isResultDependent())
      return Cl::CL_PRValue;
    return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());

  case Expr::BinaryOperatorClass:
  case Expr::CompoundAssignOperatorClass:
    // C doesn't have any binary expressions that are lvalues.
    if (Lang.CPlusPlus)
      return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
    return Cl::CL_PRValue;

  case Expr::CallExprClass:
  case Expr::CXXOperatorCallExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::UserDefinedLiteralClass:
  case Expr::CUDAKernelCallExprClass:
    return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx));

  case Expr::CXXRewrittenBinaryOperatorClass:
    return ClassifyInternal(
        Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());

    // __builtin_choose_expr is equivalent to the chosen expression.
  case Expr::ChooseExprClass:
    return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr());

    // Extended vector element access is an lvalue unless there are duplicates
    // in the shuffle expression.
  case Expr::ExtVectorElementExprClass:
    if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements())
      return Cl::CL_DuplicateVectorComponents;
    if (cast<ExtVectorElementExpr>(E)->isArrow())
      return Cl::CL_LValue;
    return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase());

    // Simply look at the actual default argument.
  case Expr::CXXDefaultArgExprClass:
    return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());

    // Same idea for default initializers.
  case Expr::CXXDefaultInitExprClass:
    return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr());

    // Same idea for temporary binding.
  case Expr::CXXBindTemporaryExprClass:
    return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());

    // And the cleanups guard.
  case Expr::ExprWithCleanupsClass:
    return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());

    // Casts depend completely on the target type. All casts work the same.
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass:
  case Expr::ObjCBridgedCastExprClass:
  case Expr::BuiltinBitCastExprClass:
    // Only in C++ can casts be interesting at all.
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());

  case Expr::CXXUnresolvedConstructExprClass:
    return ClassifyUnnamed(Ctx,
                      cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());

  case Expr::BinaryConditionalOperatorClass: {
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    const auto *co = cast<BinaryConditionalOperator>(E);
    return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
  }

  case Expr::ConditionalOperatorClass: {
    // Once again, only C++ is interesting.
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    const auto *co = cast<ConditionalOperator>(E);
    return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
  }

    // ObjC message sends are effectively function calls, if the target function
    // is known.
  case Expr::ObjCMessageExprClass:
    if (const ObjCMethodDecl *Method =
          cast<ObjCMessageExpr>(E)->getMethodDecl()) {
      Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType());
      return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
    }
    return Cl::CL_PRValue;

    // Some C++ expressions are always class temporaries.
  case Expr::CXXConstructExprClass:
  case Expr::CXXInheritedCtorInitExprClass:
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::LambdaExprClass:
  case Expr::CXXStdInitializerListExprClass:
    return Cl::CL_ClassTemporary;

  case Expr::VAArgExprClass:
    return ClassifyUnnamed(Ctx, E->getType());

  case Expr::DesignatedInitExprClass:
    return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());

  case Expr::StmtExprClass: {
    const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
    if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
      return ClassifyUnnamed(Ctx, LastExpr->getType());
    return Cl::CL_PRValue;
  }

  case Expr::CXXUuidofExprClass:
    return Cl::CL_LValue;

  case Expr::PackExpansionExprClass:
    return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());

  case Expr::MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
              ? Cl::CL_LValue
              : Cl::CL_XValue;

  case Expr::InitListExprClass:
    // An init list can be an lvalue if it is bound to a reference and
    // contains only one element. In that case, we look at that element
    // for an exact classification. Init list creation takes care of the
    // value kind for us, so we only need to fine-tune.
    if (E->isRValue())
      return ClassifyExprValueKind(Lang, E, E->getValueKind());
    assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
           "Only 1-element init lists can be glvalues.");
    return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));

  case Expr::CoawaitExprClass:
  case Expr::CoyieldExprClass:
    return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr());
  }

  llvm_unreachable("unhandled expression kind in classification");
}

/// ClassifyDecl - Return the classification of an expression referencing the
/// given declaration.
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
  // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
  //   function, variable, or data member and a prvalue otherwise.
  // In C, functions are not lvalues.
  // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
  // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
  // special-case this.

  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
    return Cl::CL_MemberFunction;

  bool islvalue;
  if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(D))
    islvalue = NTTParm->getType()->isReferenceType();
  else
    islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
               isa<IndirectFieldDecl>(D) ||
               isa<BindingDecl>(D) ||
               (Ctx.getLangOpts().CPlusPlus &&
                (isa<FunctionDecl>(D) || isa<MSPropertyDecl>(D) ||
                 isa<FunctionTemplateDecl>(D)));

  return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
}

/// ClassifyUnnamed - Return the classification of an expression yielding an
/// unnamed value of the given type. This applies in particular to function
/// calls and casts.
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
  // In C, function calls are always rvalues.
  if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;

  // C++ [expr.call]p10: A function call is an lvalue if the result type is an
  //   lvalue reference type or an rvalue reference to function type, an xvalue
  //   if the result type is an rvalue reference to object type, and a prvalue
  //   otherwise.
  if (T->isLValueReferenceType())
    return Cl::CL_LValue;
  const auto *RV = T->getAs<RValueReferenceType>();
  if (!RV) // Could still be a class temporary, though.
    return ClassifyTemporary(T);

  return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
}

static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
  if (E->getType() == Ctx.UnknownAnyTy)
    return (isa<FunctionDecl>(E->getMemberDecl())
              ? Cl::CL_PRValue : Cl::CL_LValue);

  // Handle C first, it's easier.
  if (!Ctx.getLangOpts().CPlusPlus) {
    // C99 6.5.2.3p3
    // For dot access, the expression is an lvalue if the first part is. For
    // arrow access, it always is an lvalue.
    if (E->isArrow())
      return Cl::CL_LValue;
    // ObjC property accesses are not lvalues, but get special treatment.
    Expr *Base = E->getBase()->IgnoreParens();
    if (isa<ObjCPropertyRefExpr>(Base))
      return Cl::CL_SubObjCPropertySetting;
    return ClassifyInternal(Ctx, Base);
  }

  NamedDecl *Member = E->getMemberDecl();
  // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
  // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
  //   E1.E2 is an lvalue.
  if (const auto *Value = dyn_cast<ValueDecl>(Member))
    if (Value->getType()->isReferenceType())
      return Cl::CL_LValue;

  //   Otherwise, one of the following rules applies.
  //   -- If E2 is a static member [...] then E1.E2 is an lvalue.
  if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
    return Cl::CL_LValue;

  //   -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
  //      E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
  //      otherwise, it is a prvalue.
  if (isa<FieldDecl>(Member)) {
    // *E1 is an lvalue
    if (E->isArrow())
      return Cl::CL_LValue;
    Expr *Base = E->getBase()->IgnoreParenImpCasts();
    if (isa<ObjCPropertyRefExpr>(Base))
      return Cl::CL_SubObjCPropertySetting;
    return ClassifyInternal(Ctx, E->getBase());
  }

  //   -- If E2 is a [...] member function, [...]
  //      -- If it refers to a static member function [...], then E1.E2 is an
  //         lvalue; [...]
  //      -- Otherwise [...] E1.E2 is a prvalue.
  if (const auto *Method = dyn_cast<CXXMethodDecl>(Member))
    return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;

  //   -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
  // So is everything else we haven't handled yet.
  return Cl::CL_PRValue;
}

static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
  assert(Ctx.getLangOpts().CPlusPlus &&
         "This is only relevant for C++.");
  // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
  // Except we override this for writes to ObjC properties.
  if (E->isAssignmentOp())
    return (E->getLHS()->getObjectKind() == OK_ObjCProperty
              ? Cl::CL_PRValue : Cl::CL_LValue);

  // C++ [expr.comma]p1: the result is of the same value category as its right
  //   operand, [...].
  if (E->getOpcode() == BO_Comma)
    return ClassifyInternal(Ctx, E->getRHS());

  // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
  //   is a pointer to a data member is of the same value category as its first
  //   operand.
  if (E->getOpcode() == BO_PtrMemD)
    return (E->getType()->isFunctionType() ||
            E->hasPlaceholderType(BuiltinType::BoundMember))
             ? Cl::CL_MemberFunction
             : ClassifyInternal(Ctx, E->getLHS());

  // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
  //   second operand is a pointer to data member and a prvalue otherwise.
  if (E->getOpcode() == BO_PtrMemI)
    return (E->getType()->isFunctionType() ||
            E->hasPlaceholderType(BuiltinType::BoundMember))
             ? Cl::CL_MemberFunction
             : Cl::CL_LValue;

  // All other binary operations are prvalues.
  return Cl::CL_PRValue;
}

static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
                                     const Expr *False) {
  assert(Ctx.getLangOpts().CPlusPlus &&
         "This is only relevant for C++.");

  // C++ [expr.cond]p2
  //   If either the second or the third operand has type (cv) void,
  //   one of the following shall hold:
  if (True->getType()->isVoidType() || False->getType()->isVoidType()) {
    // The second or the third operand (but not both) is a (possibly
    // parenthesized) throw-expression; the result is of the [...] value
    // category of the other.
    bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts());
    bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts());
    if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False)
                                           : (FalseIsThrow ? True : nullptr))
      return ClassifyInternal(Ctx, NonThrow);

    //   [Otherwise] the result [...] is a prvalue.
    return Cl::CL_PRValue;
  }

  // Note that at this point, we have already performed all conversions
  // according to [expr.cond]p3.
  // C++ [expr.cond]p4: If the second and third operands are glvalues of the
  //   same value category [...], the result is of that [...] value category.
  // C++ [expr.cond]p5: Otherwise, the result is a prvalue.
  Cl::Kinds LCl = ClassifyInternal(Ctx, True),
            RCl = ClassifyInternal(Ctx, False);
  return LCl == RCl ? LCl : Cl::CL_PRValue;
}

static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
                                       Cl::Kinds Kind, SourceLocation &Loc) {
  // As a general rule, we only care about lvalues. But there are some rvalues
  // for which we want to generate special results.
  if (Kind == Cl::CL_PRValue) {
    // For the sake of better diagnostics, we want to specifically recognize
    // use of the GCC cast-as-lvalue extension.
    if (const auto *CE = dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
      if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
        Loc = CE->getExprLoc();
        return Cl::CM_LValueCast;
      }
    }
  }
  if (Kind != Cl::CL_LValue)
    return Cl::CM_RValue;

  // This is the lvalue case.
  // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
  if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
    return Cl::CM_Function;

  // Assignment to a property in ObjC is an implicit setter access. But a
  // setter might not exist.
  if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
    if (Expr->isImplicitProperty() &&
        Expr->getImplicitPropertySetter() == nullptr)
      return Cl::CM_NoSetterProperty;
  }

  CanQualType CT = Ctx.getCanonicalType(E->getType());
  // Const stuff is obviously not modifiable.
  if (CT.isConstQualified())
    return Cl::CM_ConstQualified;
  if (Ctx.getLangOpts().OpenCL &&
      CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant)
    return Cl::CM_ConstAddrSpace;

  // Arrays are not modifiable, only their elements are.
  if (CT->isArrayType())
    return Cl::CM_ArrayType;
  // Incomplete types are not modifiable.
  if (CT->isIncompleteType())
    return Cl::CM_IncompleteType;

  // Records with any const fields (recursively) are not modifiable.
  if (const RecordType *R = CT->getAs<RecordType>())
    if (R->hasConstFields())
      return Cl::CM_ConstQualifiedField;

  return Cl::CM_Modifiable;
}

Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
  Classification VC = Classify(Ctx);
  switch (VC.getKind()) {
  case Cl::CL_LValue: return LV_Valid;
  case Cl::CL_XValue: return LV_InvalidExpression;
  case Cl::CL_Function: return LV_NotObjectType;
  case Cl::CL_Void: return LV_InvalidExpression;
  case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
  case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
  case Cl::CL_MemberFunction: return LV_MemberFunction;
  case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
  case Cl::CL_ClassTemporary: return LV_ClassTemporary;
  case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
  case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
  case Cl::CL_PRValue: return LV_InvalidExpression;
  }
  llvm_unreachable("Unhandled kind");
}

Expr::isModifiableLvalueResult
Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
  SourceLocation dummy;
  Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
  switch (VC.getKind()) {
  case Cl::CL_LValue: break;
  case Cl::CL_XValue: return MLV_InvalidExpression;
  case Cl::CL_Function: return MLV_NotObjectType;
  case Cl::CL_Void: return MLV_InvalidExpression;
  case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
  case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
  case Cl::CL_MemberFunction: return MLV_MemberFunction;
  case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
  case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
  case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
  case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
  case Cl::CL_PRValue:
    return VC.getModifiable() == Cl::CM_LValueCast ?
      MLV_LValueCast : MLV_InvalidExpression;
  }
  assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
  switch (VC.getModifiable()) {
  case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
  case Cl::CM_Modifiable: return MLV_Valid;
  case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
  case Cl::CM_Function: return MLV_NotObjectType;
  case Cl::CM_LValueCast:
    llvm_unreachable("CM_LValueCast and CL_LValue don't match");
  case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
  case Cl::CM_ConstQualified: return MLV_ConstQualified;
  case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField;
  case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace;
  case Cl::CM_ArrayType: return MLV_ArrayType;
  case Cl::CM_IncompleteType: return MLV_IncompleteType;
  }
  llvm_unreachable("Unhandled modifiable type");
}