1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
| /*
* kmp_tasking.cpp -- OpenMP 3.0 tasking support.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#include "kmp_wait_release.h"
#include "kmp_taskdeps.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif
#include "tsan_annotations.h"
/* forward declaration */
static void __kmp_enable_tasking(kmp_task_team_t *task_team,
kmp_info_t *this_thr);
static void __kmp_alloc_task_deque(kmp_info_t *thread,
kmp_thread_data_t *thread_data);
static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
kmp_task_team_t *task_team);
static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
#ifdef BUILD_TIED_TASK_STACK
// __kmp_trace_task_stack: print the tied tasks from the task stack in order
// from top do bottom
//
// gtid: global thread identifier for thread containing stack
// thread_data: thread data for task team thread containing stack
// threshold: value above which the trace statement triggers
// location: string identifying call site of this function (for trace)
static void __kmp_trace_task_stack(kmp_int32 gtid,
kmp_thread_data_t *thread_data,
int threshold, char *location) {
kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
kmp_taskdata_t **stack_top = task_stack->ts_top;
kmp_int32 entries = task_stack->ts_entries;
kmp_taskdata_t *tied_task;
KA_TRACE(
threshold,
("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
"first_block = %p, stack_top = %p \n",
location, gtid, entries, task_stack->ts_first_block, stack_top));
KMP_DEBUG_ASSERT(stack_top != NULL);
KMP_DEBUG_ASSERT(entries > 0);
while (entries != 0) {
KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
// fix up ts_top if we need to pop from previous block
if (entries & TASK_STACK_INDEX_MASK == 0) {
kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
stack_block = stack_block->sb_prev;
stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
}
// finish bookkeeping
stack_top--;
entries--;
tied_task = *stack_top;
KMP_DEBUG_ASSERT(tied_task != NULL);
KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
KA_TRACE(threshold,
("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, "
"stack_top=%p, tied_task=%p\n",
location, gtid, entries, stack_top, tied_task));
}
KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
KA_TRACE(threshold,
("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
location, gtid));
}
// __kmp_init_task_stack: initialize the task stack for the first time
// after a thread_data structure is created.
// It should not be necessary to do this again (assuming the stack works).
//
// gtid: global thread identifier of calling thread
// thread_data: thread data for task team thread containing stack
static void __kmp_init_task_stack(kmp_int32 gtid,
kmp_thread_data_t *thread_data) {
kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
kmp_stack_block_t *first_block;
// set up the first block of the stack
first_block = &task_stack->ts_first_block;
task_stack->ts_top = (kmp_taskdata_t **)first_block;
memset((void *)first_block, '\0',
TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
// initialize the stack to be empty
task_stack->ts_entries = TASK_STACK_EMPTY;
first_block->sb_next = NULL;
first_block->sb_prev = NULL;
}
// __kmp_free_task_stack: free the task stack when thread_data is destroyed.
//
// gtid: global thread identifier for calling thread
// thread_data: thread info for thread containing stack
static void __kmp_free_task_stack(kmp_int32 gtid,
kmp_thread_data_t *thread_data) {
kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
// free from the second block of the stack
while (stack_block != NULL) {
kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
stack_block->sb_next = NULL;
stack_block->sb_prev = NULL;
if (stack_block != &task_stack->ts_first_block) {
__kmp_thread_free(thread,
stack_block); // free the block, if not the first
}
stack_block = next_block;
}
// initialize the stack to be empty
task_stack->ts_entries = 0;
task_stack->ts_top = NULL;
}
// __kmp_push_task_stack: Push the tied task onto the task stack.
// Grow the stack if necessary by allocating another block.
//
// gtid: global thread identifier for calling thread
// thread: thread info for thread containing stack
// tied_task: the task to push on the stack
static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
kmp_taskdata_t *tied_task) {
// GEH - need to consider what to do if tt_threads_data not allocated yet
kmp_thread_data_t *thread_data =
&thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
return; // Don't push anything on stack if team or team tasks are serialized
}
KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
KA_TRACE(20,
("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
gtid, thread, tied_task));
// Store entry
*(task_stack->ts_top) = tied_task;
// Do bookkeeping for next push
task_stack->ts_top++;
task_stack->ts_entries++;
if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
// Find beginning of this task block
kmp_stack_block_t *stack_block =
(kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
// Check if we already have a block
if (stack_block->sb_next !=
NULL) { // reset ts_top to beginning of next block
task_stack->ts_top = &stack_block->sb_next->sb_block[0];
} else { // Alloc new block and link it up
kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
thread, sizeof(kmp_stack_block_t));
task_stack->ts_top = &new_block->sb_block[0];
stack_block->sb_next = new_block;
new_block->sb_prev = stack_block;
new_block->sb_next = NULL;
KA_TRACE(
30,
("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
gtid, tied_task, new_block));
}
}
KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
tied_task));
}
// __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return
// the task, just check to make sure it matches the ending task passed in.
//
// gtid: global thread identifier for the calling thread
// thread: thread info structure containing stack
// tied_task: the task popped off the stack
// ending_task: the task that is ending (should match popped task)
static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
kmp_taskdata_t *ending_task) {
// GEH - need to consider what to do if tt_threads_data not allocated yet
kmp_thread_data_t *thread_data =
&thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
kmp_taskdata_t *tied_task;
if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
// Don't pop anything from stack if team or team tasks are serialized
return;
}
KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
thread));
// fix up ts_top if we need to pop from previous block
if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
stack_block = stack_block->sb_prev;
task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
}
// finish bookkeeping
task_stack->ts_top--;
task_stack->ts_entries--;
tied_task = *(task_stack->ts_top);
KMP_DEBUG_ASSERT(tied_task != NULL);
KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
tied_task));
return;
}
#endif /* BUILD_TIED_TASK_STACK */
// returns 1 if new task is allowed to execute, 0 otherwise
// checks Task Scheduling constraint (if requested) and
// mutexinoutset dependencies if any
static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
const kmp_taskdata_t *tasknew,
const kmp_taskdata_t *taskcurr) {
if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
// Check if the candidate obeys the Task Scheduling Constraints (TSC)
// only descendant of all deferred tied tasks can be scheduled, checking
// the last one is enough, as it in turn is the descendant of all others
kmp_taskdata_t *current = taskcurr->td_last_tied;
KMP_DEBUG_ASSERT(current != NULL);
// check if the task is not suspended on barrier
if (current->td_flags.tasktype == TASK_EXPLICIT ||
current->td_taskwait_thread > 0) { // <= 0 on barrier
kmp_int32 level = current->td_level;
kmp_taskdata_t *parent = tasknew->td_parent;
while (parent != current && parent->td_level > level) {
// check generation up to the level of the current task
parent = parent->td_parent;
KMP_DEBUG_ASSERT(parent != NULL);
}
if (parent != current)
return false;
}
}
// Check mutexinoutset dependencies, acquire locks
kmp_depnode_t *node = tasknew->td_depnode;
if (node && (node->dn.mtx_num_locks > 0)) {
for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
continue;
// could not get the lock, release previous locks
for (int j = i - 1; j >= 0; --j)
__kmp_release_lock(node->dn.mtx_locks[j], gtid);
return false;
}
// negative num_locks means all locks acquired successfully
node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
}
return true;
}
// __kmp_realloc_task_deque:
// Re-allocates a task deque for a particular thread, copies the content from
// the old deque and adjusts the necessary data structures relating to the
// deque. This operation must be done with the deque_lock being held
static void __kmp_realloc_task_deque(kmp_info_t *thread,
kmp_thread_data_t *thread_data) {
kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
kmp_int32 new_size = 2 * size;
KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
"%d] for thread_data %p\n",
__kmp_gtid_from_thread(thread), size, new_size, thread_data));
kmp_taskdata_t **new_deque =
(kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
int i, j;
for (i = thread_data->td.td_deque_head, j = 0; j < size;
i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
new_deque[j] = thread_data->td.td_deque[i];
__kmp_free(thread_data->td.td_deque);
thread_data->td.td_deque_head = 0;
thread_data->td.td_deque_tail = size;
thread_data->td.td_deque = new_deque;
thread_data->td.td_deque_size = new_size;
}
// __kmp_push_task: Add a task to the thread's deque
static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_task_team_t *task_team = thread->th.th_task_team;
kmp_int32 tid = __kmp_tid_from_gtid(gtid);
kmp_thread_data_t *thread_data;
KA_TRACE(20,
("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
if (taskdata->td_flags.tiedness == TASK_UNTIED) {
// untied task needs to increment counter so that the task structure is not
// freed prematurely
kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
KMP_DEBUG_USE_VAR(counter);
KA_TRACE(
20,
("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
gtid, counter, taskdata));
}
// The first check avoids building task_team thread data if serialized
if (taskdata->td_flags.task_serial) {
KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
"TASK_NOT_PUSHED for task %p\n",
gtid, taskdata));
return TASK_NOT_PUSHED;
}
// Now that serialized tasks have returned, we can assume that we are not in
// immediate exec mode
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
if (!KMP_TASKING_ENABLED(task_team)) {
__kmp_enable_tasking(task_team, thread);
}
KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
// Find tasking deque specific to encountering thread
thread_data = &task_team->tt.tt_threads_data[tid];
// No lock needed since only owner can allocate
if (thread_data->td.td_deque == NULL) {
__kmp_alloc_task_deque(thread, thread_data);
}
int locked = 0;
// Check if deque is full
if (TCR_4(thread_data->td.td_deque_ntasks) >=
TASK_DEQUE_SIZE(thread_data->td)) {
if (__kmp_enable_task_throttling &&
__kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
thread->th.th_current_task)) {
KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
"TASK_NOT_PUSHED for task %p\n",
gtid, taskdata));
return TASK_NOT_PUSHED;
} else {
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
locked = 1;
// expand deque to push the task which is not allowed to execute
__kmp_realloc_task_deque(thread, thread_data);
}
}
// Lock the deque for the task push operation
if (!locked) {
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
// Need to recheck as we can get a proxy task from thread outside of OpenMP
if (TCR_4(thread_data->td.td_deque_ntasks) >=
TASK_DEQUE_SIZE(thread_data->td)) {
if (__kmp_enable_task_throttling &&
__kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
thread->th.th_current_task)) {
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
"returning TASK_NOT_PUSHED for task %p\n",
gtid, taskdata));
return TASK_NOT_PUSHED;
} else {
// expand deque to push the task which is not allowed to execute
__kmp_realloc_task_deque(thread, thread_data);
}
}
}
// Must have room since no thread can add tasks but calling thread
KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
TASK_DEQUE_SIZE(thread_data->td));
thread_data->td.td_deque[thread_data->td.td_deque_tail] =
taskdata; // Push taskdata
// Wrap index.
thread_data->td.td_deque_tail =
(thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
TCW_4(thread_data->td.td_deque_ntasks,
TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
"task=%p ntasks=%d head=%u tail=%u\n",
gtid, taskdata, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
return TASK_SUCCESSFULLY_PUSHED;
}
// __kmp_pop_current_task_from_thread: set up current task from called thread
// when team ends
//
// this_thr: thread structure to set current_task in.
void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
"this_thread=%p, curtask=%p, "
"curtask_parent=%p\n",
0, this_thr, this_thr->th.th_current_task,
this_thr->th.th_current_task->td_parent));
this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
"this_thread=%p, curtask=%p, "
"curtask_parent=%p\n",
0, this_thr, this_thr->th.th_current_task,
this_thr->th.th_current_task->td_parent));
}
// __kmp_push_current_task_to_thread: set up current task in called thread for a
// new team
//
// this_thr: thread structure to set up
// team: team for implicit task data
// tid: thread within team to set up
void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
int tid) {
// current task of the thread is a parent of the new just created implicit
// tasks of new team
KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
"curtask=%p "
"parent_task=%p\n",
tid, this_thr, this_thr->th.th_current_task,
team->t.t_implicit_task_taskdata[tid].td_parent));
KMP_DEBUG_ASSERT(this_thr != NULL);
if (tid == 0) {
if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
team->t.t_implicit_task_taskdata[0].td_parent =
this_thr->th.th_current_task;
this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
}
} else {
team->t.t_implicit_task_taskdata[tid].td_parent =
team->t.t_implicit_task_taskdata[0].td_parent;
this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
}
KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
"curtask=%p "
"parent_task=%p\n",
tid, this_thr, this_thr->th.th_current_task,
team->t.t_implicit_task_taskdata[tid].td_parent));
}
// __kmp_task_start: bookkeeping for a task starting execution
//
// GTID: global thread id of calling thread
// task: task starting execution
// current_task: task suspending
static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
kmp_taskdata_t *current_task) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_info_t *thread = __kmp_threads[gtid];
KA_TRACE(10,
("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
gtid, taskdata, current_task));
KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
// mark currently executing task as suspended
// TODO: GEH - make sure root team implicit task is initialized properly.
// KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
current_task->td_flags.executing = 0;
// Add task to stack if tied
#ifdef BUILD_TIED_TASK_STACK
if (taskdata->td_flags.tiedness == TASK_TIED) {
__kmp_push_task_stack(gtid, thread, taskdata);
}
#endif /* BUILD_TIED_TASK_STACK */
// mark starting task as executing and as current task
thread->th.th_current_task = taskdata;
KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
taskdata->td_flags.tiedness == TASK_UNTIED);
KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
taskdata->td_flags.tiedness == TASK_UNTIED);
taskdata->td_flags.started = 1;
taskdata->td_flags.executing = 1;
KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
// GEH TODO: shouldn't we pass some sort of location identifier here?
// APT: yes, we will pass location here.
// need to store current thread state (in a thread or taskdata structure)
// before setting work_state, otherwise wrong state is set after end of task
KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
return;
}
#if OMPT_SUPPORT
//------------------------------------------------------------------------------
// __ompt_task_init:
// Initialize OMPT fields maintained by a task. This will only be called after
// ompt_start_tool, so we already know whether ompt is enabled or not.
static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
// The calls to __ompt_task_init already have the ompt_enabled condition.
task->ompt_task_info.task_data.value = 0;
task->ompt_task_info.frame.exit_frame = ompt_data_none;
task->ompt_task_info.frame.enter_frame = ompt_data_none;
task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
task->ompt_task_info.ndeps = 0;
task->ompt_task_info.deps = NULL;
}
// __ompt_task_start:
// Build and trigger task-begin event
static inline void __ompt_task_start(kmp_task_t *task,
kmp_taskdata_t *current_task,
kmp_int32 gtid) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
ompt_task_status_t status = ompt_task_switch;
if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
status = ompt_task_yield;
__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
}
/* let OMPT know that we're about to run this task */
if (ompt_enabled.ompt_callback_task_schedule) {
ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
&(current_task->ompt_task_info.task_data), status,
&(taskdata->ompt_task_info.task_data));
}
taskdata->ompt_task_info.scheduling_parent = current_task;
}
// __ompt_task_finish:
// Build and trigger final task-schedule event
static inline void
__ompt_task_finish(kmp_task_t *task, kmp_taskdata_t *resumed_task,
ompt_task_status_t status = ompt_task_complete) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
status = ompt_task_cancel;
}
/* let OMPT know that we're returning to the callee task */
if (ompt_enabled.ompt_callback_task_schedule) {
ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
&(taskdata->ompt_task_info.task_data), status,
&((resumed_task ? resumed_task
: (taskdata->ompt_task_info.scheduling_parent
? taskdata->ompt_task_info.scheduling_parent
: taskdata->td_parent))
->ompt_task_info.task_data));
}
}
#endif
template <bool ompt>
static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task,
void *frame_address,
void *return_address) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
"current_task=%p\n",
gtid, loc_ref, taskdata, current_task));
if (taskdata->td_flags.tiedness == TASK_UNTIED) {
// untied task needs to increment counter so that the task structure is not
// freed prematurely
kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
KMP_DEBUG_USE_VAR(counter);
KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
"incremented for task %p\n",
gtid, counter, taskdata));
}
taskdata->td_flags.task_serial =
1; // Execute this task immediately, not deferred.
__kmp_task_start(gtid, task, current_task);
#if OMPT_SUPPORT
if (ompt) {
if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
current_task->ompt_task_info.frame.enter_frame.ptr =
taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
current_task->ompt_task_info.frame.enter_frame_flags =
taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
}
if (ompt_enabled.ompt_callback_task_create) {
ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
ompt_callbacks.ompt_callback(ompt_callback_task_create)(
&(parent_info->task_data), &(parent_info->frame),
&(taskdata->ompt_task_info.task_data),
ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
return_address);
}
__ompt_task_start(task, current_task, gtid);
}
#endif // OMPT_SUPPORT
KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
loc_ref, taskdata));
}
#if OMPT_SUPPORT
OMPT_NOINLINE
static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task,
void *frame_address,
void *return_address) {
__kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
return_address);
}
#endif // OMPT_SUPPORT
// __kmpc_omp_task_begin_if0: report that a given serialized task has started
// execution
//
// loc_ref: source location information; points to beginning of task block.
// gtid: global thread number.
// task: task thunk for the started task.
void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task) {
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled)) {
OMPT_STORE_RETURN_ADDRESS(gtid);
__kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
OMPT_GET_FRAME_ADDRESS(1),
OMPT_LOAD_RETURN_ADDRESS(gtid));
return;
}
#endif
__kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
}
#ifdef TASK_UNUSED
// __kmpc_omp_task_begin: report that a given task has started execution
// NEVER GENERATED BY COMPILER, DEPRECATED!!!
void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
KA_TRACE(
10,
("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
__kmp_task_start(gtid, task, current_task);
KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
loc_ref, KMP_TASK_TO_TASKDATA(task)));
return;
}
#endif // TASK_UNUSED
// __kmp_free_task: free the current task space and the space for shareds
//
// gtid: Global thread ID of calling thread
// taskdata: task to free
// thread: thread data structure of caller
static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
kmp_info_t *thread) {
KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
taskdata));
// Check to make sure all flags and counters have the correct values
KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
taskdata->td_flags.task_serial == 1);
KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
taskdata->td_flags.freed = 1;
ANNOTATE_HAPPENS_BEFORE(taskdata);
// deallocate the taskdata and shared variable blocks associated with this task
#if USE_FAST_MEMORY
__kmp_fast_free(thread, taskdata);
#else /* ! USE_FAST_MEMORY */
__kmp_thread_free(thread, taskdata);
#endif
KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
}
// __kmp_free_task_and_ancestors: free the current task and ancestors without
// children
//
// gtid: Global thread ID of calling thread
// taskdata: task to free
// thread: thread data structure of caller
static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
kmp_taskdata_t *taskdata,
kmp_info_t *thread) {
// Proxy tasks must always be allowed to free their parents
// because they can be run in background even in serial mode.
kmp_int32 team_serial =
(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
!taskdata->td_flags.proxy;
KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
KMP_DEBUG_ASSERT(children >= 0);
// Now, go up the ancestor tree to see if any ancestors can now be freed.
while (children == 0) {
kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
"and freeing itself\n",
gtid, taskdata));
// --- Deallocate my ancestor task ---
__kmp_free_task(gtid, taskdata, thread);
taskdata = parent_taskdata;
if (team_serial)
return;
// Stop checking ancestors at implicit task instead of walking up ancestor
// tree to avoid premature deallocation of ancestors.
if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
if (taskdata->td_dephash) { // do we need to cleanup dephash?
int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
kmp_tasking_flags_t flags_old = taskdata->td_flags;
if (children == 0 && flags_old.complete == 1) {
kmp_tasking_flags_t flags_new = flags_old;
flags_new.complete = 0;
if (KMP_COMPARE_AND_STORE_ACQ32(
RCAST(kmp_int32 *, &taskdata->td_flags),
*RCAST(kmp_int32 *, &flags_old),
*RCAST(kmp_int32 *, &flags_new))) {
KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
"dephash of implicit task %p\n",
gtid, taskdata));
// cleanup dephash of finished implicit task
__kmp_dephash_free_entries(thread, taskdata->td_dephash);
}
}
}
return;
}
// Predecrement simulated by "- 1" calculation
children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
KMP_DEBUG_ASSERT(children >= 0);
}
KA_TRACE(
20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
"not freeing it yet\n",
gtid, taskdata, children));
}
// __kmp_task_finish: bookkeeping to do when a task finishes execution
//
// gtid: global thread ID for calling thread
// task: task to be finished
// resumed_task: task to be resumed. (may be NULL if task is serialized)
template <bool ompt>
static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
kmp_taskdata_t *resumed_task) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_info_t *thread = __kmp_threads[gtid];
kmp_task_team_t *task_team =
thread->th.th_task_team; // might be NULL for serial teams...
kmp_int32 children = 0;
KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
"task %p\n",
gtid, taskdata, resumed_task));
KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
// Pop task from stack if tied
#ifdef BUILD_TIED_TASK_STACK
if (taskdata->td_flags.tiedness == TASK_TIED) {
__kmp_pop_task_stack(gtid, thread, taskdata);
}
#endif /* BUILD_TIED_TASK_STACK */
if (taskdata->td_flags.tiedness == TASK_UNTIED) {
// untied task needs to check the counter so that the task structure is not
// freed prematurely
kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
KA_TRACE(
20,
("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
gtid, counter, taskdata));
if (counter > 0) {
// untied task is not done, to be continued possibly by other thread, do
// not free it now
if (resumed_task == NULL) {
KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
resumed_task = taskdata->td_parent; // In a serialized task, the resumed
// task is the parent
}
thread->th.th_current_task = resumed_task; // restore current_task
resumed_task->td_flags.executing = 1; // resume previous task
KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
"resuming task %p\n",
gtid, taskdata, resumed_task));
return;
}
}
#if OMPT_SUPPORT
if (ompt)
__ompt_task_finish(task, resumed_task);
#endif
// Check mutexinoutset dependencies, release locks
kmp_depnode_t *node = taskdata->td_depnode;
if (node && (node->dn.mtx_num_locks < 0)) {
// negative num_locks means all locks were acquired
node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) {
KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
__kmp_release_lock(node->dn.mtx_locks[i], gtid);
}
}
KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
bool detach = false;
if (taskdata->td_flags.detachable == TASK_DETACHABLE) {
if (taskdata->td_allow_completion_event.type ==
KMP_EVENT_ALLOW_COMPLETION) {
// event hasn't been fulfilled yet. Try to detach task.
__kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
if (taskdata->td_allow_completion_event.type ==
KMP_EVENT_ALLOW_COMPLETION) {
taskdata->td_flags.proxy = TASK_PROXY; // proxify!
detach = true;
}
__kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
}
}
KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
if (!detach) {
taskdata->td_flags.complete = 1; // mark the task as completed
// Only need to keep track of count if team parallel and tasking not
// serialized
if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
// Predecrement simulated by "- 1" calculation
children =
KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
KMP_DEBUG_ASSERT(children >= 0);
if (taskdata->td_taskgroup)
KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
__kmp_release_deps(gtid, taskdata);
} else if (task_team && task_team->tt.tt_found_proxy_tasks) {
// if we found proxy tasks there could exist a dependency chain
// with the proxy task as origin
__kmp_release_deps(gtid, taskdata);
}
}
// td_flags.executing must be marked as 0 after __kmp_release_deps has been
// called. Othertwise, if a task is executed immediately from the release_deps
// code, the flag will be reset to 1 again by this same function
KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
taskdata->td_flags.executing = 0; // suspend the finishing task
KA_TRACE(
20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
gtid, taskdata, children));
/* If the tasks' destructor thunk flag has been set, we need to invoke the
destructor thunk that has been generated by the compiler. The code is
placed here, since at this point other tasks might have been released
hence overlapping the destructor invokations with some other work in the
released tasks. The OpenMP spec is not specific on when the destructors
are invoked, so we should be free to choose. */
if (taskdata->td_flags.destructors_thunk) {
kmp_routine_entry_t destr_thunk = task->data1.destructors;
KMP_ASSERT(destr_thunk);
destr_thunk(gtid, task);
}
// bookkeeping for resuming task:
// GEH - note tasking_ser => task_serial
KMP_DEBUG_ASSERT(
(taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
taskdata->td_flags.task_serial);
if (taskdata->td_flags.task_serial) {
if (resumed_task == NULL) {
resumed_task = taskdata->td_parent; // In a serialized task, the resumed
// task is the parent
}
} else {
KMP_DEBUG_ASSERT(resumed_task !=
NULL); // verify that resumed task is passed as arguemnt
}
// Free this task and then ancestor tasks if they have no children.
// Restore th_current_task first as suggested by John:
// johnmc: if an asynchronous inquiry peers into the runtime system
// it doesn't see the freed task as the current task.
thread->th.th_current_task = resumed_task;
if (!detach)
__kmp_free_task_and_ancestors(gtid, taskdata, thread);
// TODO: GEH - make sure root team implicit task is initialized properly.
// KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
resumed_task->td_flags.executing = 1; // resume previous task
KA_TRACE(
10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
gtid, taskdata, resumed_task));
return;
}
template <bool ompt>
static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
kmp_int32 gtid,
kmp_task_t *task) {
KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
// this routine will provide task to resume
__kmp_task_finish<ompt>(gtid, task, NULL);
KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
#if OMPT_SUPPORT
if (ompt) {
ompt_frame_t *ompt_frame;
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame = ompt_data_none;
ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
}
#endif
return;
}
#if OMPT_SUPPORT
OMPT_NOINLINE
void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task) {
__kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
}
#endif // OMPT_SUPPORT
// __kmpc_omp_task_complete_if0: report that a task has completed execution
//
// loc_ref: source location information; points to end of task block.
// gtid: global thread number.
// task: task thunk for the completed task.
void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task) {
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled)) {
__kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
return;
}
#endif
__kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
}
#ifdef TASK_UNUSED
// __kmpc_omp_task_complete: report that a task has completed execution
// NEVER GENERATED BY COMPILER, DEPRECATED!!!
void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *task) {
KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
loc_ref, KMP_TASK_TO_TASKDATA(task)));
__kmp_task_finish<false>(gtid, task,
NULL); // Not sure how to find task to resume
KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
loc_ref, KMP_TASK_TO_TASKDATA(task)));
return;
}
#endif // TASK_UNUSED
// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
// task for a given thread
//
// loc_ref: reference to source location of parallel region
// this_thr: thread data structure corresponding to implicit task
// team: team for this_thr
// tid: thread id of given thread within team
// set_curr_task: TRUE if need to push current task to thread
// NOTE: Routine does not set up the implicit task ICVS. This is assumed to
// have already been done elsewhere.
// TODO: Get better loc_ref. Value passed in may be NULL
void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
kmp_team_t *team, int tid, int set_curr_task) {
kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
KF_TRACE(
10,
("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
task->td_task_id = KMP_GEN_TASK_ID();
task->td_team = team;
// task->td_parent = NULL; // fix for CQ230101 (broken parent task info
// in debugger)
task->td_ident = loc_ref;
task->td_taskwait_ident = NULL;
task->td_taskwait_counter = 0;
task->td_taskwait_thread = 0;
task->td_flags.tiedness = TASK_TIED;
task->td_flags.tasktype = TASK_IMPLICIT;
task->td_flags.proxy = TASK_FULL;
// All implicit tasks are executed immediately, not deferred
task->td_flags.task_serial = 1;
task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
task->td_flags.started = 1;
task->td_flags.executing = 1;
task->td_flags.complete = 0;
task->td_flags.freed = 0;
task->td_depnode = NULL;
task->td_last_tied = task;
task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
if (set_curr_task) { // only do this init first time thread is created
KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
// Not used: don't need to deallocate implicit task
KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
task->td_taskgroup = NULL; // An implicit task does not have taskgroup
task->td_dephash = NULL;
__kmp_push_current_task_to_thread(this_thr, team, tid);
} else {
KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
}
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
__ompt_task_init(task, tid);
#endif
KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
team, task));
}
// __kmp_finish_implicit_task: Release resources associated to implicit tasks
// at the end of parallel regions. Some resources are kept for reuse in the next
// parallel region.
//
// thread: thread data structure corresponding to implicit task
void __kmp_finish_implicit_task(kmp_info_t *thread) {
kmp_taskdata_t *task = thread->th.th_current_task;
if (task->td_dephash) {
int children;
task->td_flags.complete = 1;
children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
kmp_tasking_flags_t flags_old = task->td_flags;
if (children == 0 && flags_old.complete == 1) {
kmp_tasking_flags_t flags_new = flags_old;
flags_new.complete = 0;
if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
*RCAST(kmp_int32 *, &flags_old),
*RCAST(kmp_int32 *, &flags_new))) {
KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
"dephash of implicit task %p\n",
thread->th.th_info.ds.ds_gtid, task));
__kmp_dephash_free_entries(thread, task->td_dephash);
}
}
}
}
// __kmp_free_implicit_task: Release resources associated to implicit tasks
// when these are destroyed regions
//
// thread: thread data structure corresponding to implicit task
void __kmp_free_implicit_task(kmp_info_t *thread) {
kmp_taskdata_t *task = thread->th.th_current_task;
if (task && task->td_dephash) {
__kmp_dephash_free(thread, task->td_dephash);
task->td_dephash = NULL;
}
}
// Round up a size to a power of two specified by val: Used to insert padding
// between structures co-allocated using a single malloc() call
static size_t __kmp_round_up_to_val(size_t size, size_t val) {
if (size & (val - 1)) {
size &= ~(val - 1);
if (size <= KMP_SIZE_T_MAX - val) {
size += val; // Round up if there is no overflow.
}
}
return size;
} // __kmp_round_up_to_va
// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
//
// loc_ref: source location information
// gtid: global thread number.
// flags: include tiedness & task type (explicit vs. implicit) of the ''new''
// task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
// sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including
// private vars accessed in task.
// sizeof_shareds: Size in bytes of array of pointers to shared vars accessed
// in task.
// task_entry: Pointer to task code entry point generated by compiler.
// returns: a pointer to the allocated kmp_task_t structure (task).
kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
kmp_tasking_flags_t *flags,
size_t sizeof_kmp_task_t, size_t sizeof_shareds,
kmp_routine_entry_t task_entry) {
kmp_task_t *task;
kmp_taskdata_t *taskdata;
kmp_info_t *thread = __kmp_threads[gtid];
kmp_team_t *team = thread->th.th_team;
kmp_taskdata_t *parent_task = thread->th.th_current_task;
size_t shareds_offset;
if (!TCR_4(__kmp_init_middle))
__kmp_middle_initialize();
KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
"sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
sizeof_shareds, task_entry));
if (parent_task->td_flags.final) {
if (flags->merged_if0) {
}
flags->final = 1;
}
if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
// Untied task encountered causes the TSC algorithm to check entire deque of
// the victim thread. If no untied task encountered, then checking the head
// of the deque should be enough.
KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
}
// Detachable tasks are not proxy tasks yet but could be in the future. Doing
// the tasking setup
// when that happens is too late.
if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) {
if (flags->proxy == TASK_PROXY) {
flags->tiedness = TASK_UNTIED;
flags->merged_if0 = 1;
}
/* are we running in a sequential parallel or tskm_immediate_exec... we need
tasking support enabled */
if ((thread->th.th_task_team) == NULL) {
/* This should only happen if the team is serialized
setup a task team and propagate it to the thread */
KMP_DEBUG_ASSERT(team->t.t_serialized);
KA_TRACE(30,
("T#%d creating task team in __kmp_task_alloc for proxy task\n",
gtid));
__kmp_task_team_setup(
thread, team,
1); // 1 indicates setup the current team regardless of nthreads
thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
}
kmp_task_team_t *task_team = thread->th.th_task_team;
/* tasking must be enabled now as the task might not be pushed */
if (!KMP_TASKING_ENABLED(task_team)) {
KA_TRACE(
30,
("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
__kmp_enable_tasking(task_team, thread);
kmp_int32 tid = thread->th.th_info.ds.ds_tid;
kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
// No lock needed since only owner can allocate
if (thread_data->td.td_deque == NULL) {
__kmp_alloc_task_deque(thread, thread_data);
}
}
if (task_team->tt.tt_found_proxy_tasks == FALSE)
TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
}
// Calculate shared structure offset including padding after kmp_task_t struct
// to align pointers in shared struct
shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
// Allocate a kmp_taskdata_t block and a kmp_task_t block.
KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
shareds_offset));
KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
sizeof_shareds));
// Avoid double allocation here by combining shareds with taskdata
#if USE_FAST_MEMORY
taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
sizeof_shareds);
#else /* ! USE_FAST_MEMORY */
taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
sizeof_shareds);
#endif /* USE_FAST_MEMORY */
ANNOTATE_HAPPENS_AFTER(taskdata);
task = KMP_TASKDATA_TO_TASK(taskdata);
// Make sure task & taskdata are aligned appropriately
#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
#else
KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
#endif
if (sizeof_shareds > 0) {
// Avoid double allocation here by combining shareds with taskdata
task->shareds = &((char *)taskdata)[shareds_offset];
// Make sure shareds struct is aligned to pointer size
KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
0);
} else {
task->shareds = NULL;
}
task->routine = task_entry;
task->part_id = 0; // AC: Always start with 0 part id
taskdata->td_task_id = KMP_GEN_TASK_ID();
taskdata->td_team = team;
taskdata->td_alloc_thread = thread;
taskdata->td_parent = parent_task;
taskdata->td_level = parent_task->td_level + 1; // increment nesting level
KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
taskdata->td_ident = loc_ref;
taskdata->td_taskwait_ident = NULL;
taskdata->td_taskwait_counter = 0;
taskdata->td_taskwait_thread = 0;
KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
// avoid copying icvs for proxy tasks
if (flags->proxy == TASK_FULL)
copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
taskdata->td_flags.tiedness = flags->tiedness;
taskdata->td_flags.final = flags->final;
taskdata->td_flags.merged_if0 = flags->merged_if0;
taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
taskdata->td_flags.proxy = flags->proxy;
taskdata->td_flags.detachable = flags->detachable;
taskdata->td_task_team = thread->th.th_task_team;
taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
taskdata->td_flags.tasktype = TASK_EXPLICIT;
// GEH - TODO: fix this to copy parent task's value of tasking_ser flag
taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
// GEH - TODO: fix this to copy parent task's value of team_serial flag
taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
// GEH - Note we serialize the task if the team is serialized to make sure
// implicit parallel region tasks are not left until program termination to
// execute. Also, it helps locality to execute immediately.
taskdata->td_flags.task_serial =
(parent_task->td_flags.final || taskdata->td_flags.team_serial ||
taskdata->td_flags.tasking_ser);
taskdata->td_flags.started = 0;
taskdata->td_flags.executing = 0;
taskdata->td_flags.complete = 0;
taskdata->td_flags.freed = 0;
taskdata->td_flags.native = flags->native;
KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
// start at one because counts current task and children
KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
taskdata->td_taskgroup =
parent_task->td_taskgroup; // task inherits taskgroup from the parent task
taskdata->td_dephash = NULL;
taskdata->td_depnode = NULL;
if (flags->tiedness == TASK_UNTIED)
taskdata->td_last_tied = NULL; // will be set when the task is scheduled
else
taskdata->td_last_tied = taskdata;
taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
__ompt_task_init(taskdata, gtid);
#endif
// Only need to keep track of child task counts if team parallel and tasking not
// serialized or if it is a proxy or detachable task
if (flags->proxy == TASK_PROXY ||
flags->detachable == TASK_DETACHABLE ||
!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
{
KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
if (parent_task->td_taskgroup)
KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
// Only need to keep track of allocated child tasks for explicit tasks since
// implicit not deallocated
if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
}
}
KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
gtid, taskdata, taskdata->td_parent));
ANNOTATE_HAPPENS_BEFORE(task);
return task;
}
kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
kmp_int32 flags, size_t sizeof_kmp_task_t,
size_t sizeof_shareds,
kmp_routine_entry_t task_entry) {
kmp_task_t *retval;
kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
input_flags->native = FALSE;
// __kmp_task_alloc() sets up all other runtime flags
KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
"sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
gtid, loc_ref, input_flags->tiedness ? "tied " : "untied",
input_flags->proxy ? "proxy" : "",
input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
sizeof_shareds, task_entry));
retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
sizeof_shareds, task_entry);
KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
return retval;
}
kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
kmp_int32 flags,
size_t sizeof_kmp_task_t,
size_t sizeof_shareds,
kmp_routine_entry_t task_entry,
kmp_int64 device_id) {
return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
sizeof_shareds, task_entry);
}
/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
task''
@param naffins Number of affinity items
@param affin_list List of affinity items
@return Returns non-zero if registering affinity information was not successful.
Returns 0 if registration was successful
This entry registers the affinity information attached to a task with the task
thunk structure kmp_taskdata_t.
*/
kmp_int32
__kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *new_task, kmp_int32 naffins,
kmp_task_affinity_info_t *affin_list) {
return 0;
}
// __kmp_invoke_task: invoke the specified task
//
// gtid: global thread ID of caller
// task: the task to invoke
// current_task: the task to resume after task invokation
static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
kmp_taskdata_t *current_task) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_info_t *thread;
int discard = 0 /* false */;
KA_TRACE(
30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
gtid, taskdata, current_task));
KMP_DEBUG_ASSERT(task);
if (taskdata->td_flags.proxy == TASK_PROXY &&
taskdata->td_flags.complete == 1) {
// This is a proxy task that was already completed but it needs to run
// its bottom-half finish
KA_TRACE(
30,
("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
gtid, taskdata));
__kmp_bottom_half_finish_proxy(gtid, task);
KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
"proxy task %p, resuming task %p\n",
gtid, taskdata, current_task));
return;
}
#if OMPT_SUPPORT
// For untied tasks, the first task executed only calls __kmpc_omp_task and
// does not execute code.
ompt_thread_info_t oldInfo;
if (UNLIKELY(ompt_enabled.enabled)) {
// Store the threads states and restore them after the task
thread = __kmp_threads[gtid];
oldInfo = thread->th.ompt_thread_info;
thread->th.ompt_thread_info.wait_id = 0;
thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
? ompt_state_work_serial
: ompt_state_work_parallel;
taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
// Proxy tasks are not handled by the runtime
if (taskdata->td_flags.proxy != TASK_PROXY) {
ANNOTATE_HAPPENS_AFTER(task);
__kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
}
// TODO: cancel tasks if the parallel region has also been cancelled
// TODO: check if this sequence can be hoisted above __kmp_task_start
// if cancellation has been enabled for this run ...
if (__kmp_omp_cancellation) {
thread = __kmp_threads[gtid];
kmp_team_t *this_team = thread->th.th_team;
kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
if ((taskgroup && taskgroup->cancel_request) ||
(this_team->t.t_cancel_request == cancel_parallel)) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_data_t *task_data;
if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
__ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
ompt_callbacks.ompt_callback(ompt_callback_cancel)(
task_data,
((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
: ompt_cancel_parallel) |
ompt_cancel_discarded_task,
NULL);
}
#endif
KMP_COUNT_BLOCK(TASK_cancelled);
// this task belongs to a task group and we need to cancel it
discard = 1 /* true */;
}
}
// Invoke the task routine and pass in relevant data.
// Thunks generated by gcc take a different argument list.
if (!discard) {
if (taskdata->td_flags.tiedness == TASK_UNTIED) {
taskdata->td_last_tied = current_task->td_last_tied;
KMP_DEBUG_ASSERT(taskdata->td_last_tied);
}
#if KMP_STATS_ENABLED
KMP_COUNT_BLOCK(TASK_executed);
switch (KMP_GET_THREAD_STATE()) {
case FORK_JOIN_BARRIER:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
break;
case PLAIN_BARRIER:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
break;
case TASKYIELD:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
break;
case TASKWAIT:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
break;
case TASKGROUP:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
break;
default:
KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
break;
}
#endif // KMP_STATS_ENABLED
// OMPT task begin
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
__ompt_task_start(task, current_task, gtid);
#endif
#if USE_ITT_BUILD && USE_ITT_NOTIFY
kmp_uint64 cur_time;
kmp_int32 kmp_itt_count_task =
__kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
current_task->td_flags.tasktype == TASK_IMPLICIT;
if (kmp_itt_count_task) {
thread = __kmp_threads[gtid];
// Time outer level explicit task on barrier for adjusting imbalance time
if (thread->th.th_bar_arrive_time)
cur_time = __itt_get_timestamp();
else
kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
}
#endif
#ifdef KMP_GOMP_COMPAT
if (taskdata->td_flags.native) {
((void (*)(void *))(*(task->routine)))(task->shareds);
} else
#endif /* KMP_GOMP_COMPAT */
{
(*(task->routine))(gtid, task);
}
KMP_POP_PARTITIONED_TIMER();
#if USE_ITT_BUILD && USE_ITT_NOTIFY
if (kmp_itt_count_task) {
// Barrier imbalance - adjust arrive time with the task duration
thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
}
#endif
}
// Proxy tasks are not handled by the runtime
if (taskdata->td_flags.proxy != TASK_PROXY) {
ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled)) {
thread->th.ompt_thread_info = oldInfo;
if (taskdata->td_flags.tiedness == TASK_TIED) {
taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
}
__kmp_task_finish<true>(gtid, task, current_task);
} else
#endif
__kmp_task_finish<false>(gtid, task, current_task);
}
KA_TRACE(
30,
("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
gtid, taskdata, current_task));
return;
}
// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
// Returns:
// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
// be resumed later.
// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
// resumed later.
kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *new_task) {
kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
loc_ref, new_taskdata));
#if OMPT_SUPPORT
kmp_taskdata_t *parent;
if (UNLIKELY(ompt_enabled.enabled)) {
parent = new_taskdata->td_parent;
if (ompt_enabled.ompt_callback_task_create) {
ompt_data_t task_data = ompt_data_none;
ompt_callbacks.ompt_callback(ompt_callback_task_create)(
parent ? &(parent->ompt_task_info.task_data) : &task_data,
parent ? &(parent->ompt_task_info.frame) : NULL,
&(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
OMPT_GET_RETURN_ADDRESS(0));
}
}
#endif
/* Should we execute the new task or queue it? For now, let's just always try
to queue it. If the queue fills up, then we'll execute it. */
if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
{ // Execute this task immediately
kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
new_taskdata->td_flags.task_serial = 1;
__kmp_invoke_task(gtid, new_task, current_task);
}
KA_TRACE(
10,
("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
"loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
gtid, loc_ref, new_taskdata));
ANNOTATE_HAPPENS_BEFORE(new_task);
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled)) {
parent->ompt_task_info.frame.enter_frame = ompt_data_none;
}
#endif
return TASK_CURRENT_NOT_QUEUED;
}
// __kmp_omp_task: Schedule a non-thread-switchable task for execution
//
// gtid: Global Thread ID of encountering thread
// new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
// serialize_immediate: if TRUE then if the task is executed immediately its
// execution will be serialized
// Returns:
// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
// be resumed later.
// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
// resumed later.
kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
bool serialize_immediate) {
kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
/* Should we execute the new task or queue it? For now, let's just always try
to queue it. If the queue fills up, then we'll execute it. */
if (new_taskdata->td_flags.proxy == TASK_PROXY ||
__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
{ // Execute this task immediately
kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
if (serialize_immediate)
new_taskdata->td_flags.task_serial = 1;
__kmp_invoke_task(gtid, new_task, current_task);
}
ANNOTATE_HAPPENS_BEFORE(new_task);
return TASK_CURRENT_NOT_QUEUED;
}
// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
// non-thread-switchable task from the parent thread only!
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: non-thread-switchable task thunk allocated by
// __kmp_omp_task_alloc()
// Returns:
// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
// be resumed later.
// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
// resumed later.
kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *new_task) {
kmp_int32 res;
KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
#if KMP_DEBUG || OMPT_SUPPORT
kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
#endif
KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
new_taskdata));
#if OMPT_SUPPORT
kmp_taskdata_t *parent = NULL;
if (UNLIKELY(ompt_enabled.enabled)) {
if (!new_taskdata->td_flags.started) {
OMPT_STORE_RETURN_ADDRESS(gtid);
parent = new_taskdata->td_parent;
if (!parent->ompt_task_info.frame.enter_frame.ptr) {
parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
if (ompt_enabled.ompt_callback_task_create) {
ompt_data_t task_data = ompt_data_none;
ompt_callbacks.ompt_callback(ompt_callback_task_create)(
parent ? &(parent->ompt_task_info.task_data) : &task_data,
parent ? &(parent->ompt_task_info.frame) : NULL,
&(new_taskdata->ompt_task_info.task_data),
ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
OMPT_LOAD_RETURN_ADDRESS(gtid));
}
} else {
// We are scheduling the continuation of an UNTIED task.
// Scheduling back to the parent task.
__ompt_task_finish(new_task,
new_taskdata->ompt_task_info.scheduling_parent,
ompt_task_switch);
new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
}
}
#endif
res = __kmp_omp_task(gtid, new_task, true);
KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
"TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
gtid, loc_ref, new_taskdata));
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
parent->ompt_task_info.frame.enter_frame = ompt_data_none;
}
#endif
return res;
}
// __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
// a taskloop task with the correct OMPT return address
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: non-thread-switchable task thunk allocated by
// __kmp_omp_task_alloc()
// codeptr_ra: return address for OMPT callback
// Returns:
// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
// be resumed later.
// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
// resumed later.
kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
kmp_task_t *new_task, void *codeptr_ra) {
kmp_int32 res;
KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
#if KMP_DEBUG || OMPT_SUPPORT
kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
#endif
KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
new_taskdata));
#if OMPT_SUPPORT
kmp_taskdata_t *parent = NULL;
if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
parent = new_taskdata->td_parent;
if (!parent->ompt_task_info.frame.enter_frame.ptr)
parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
if (ompt_enabled.ompt_callback_task_create) {
ompt_data_t task_data = ompt_data_none;
ompt_callbacks.ompt_callback(ompt_callback_task_create)(
parent ? &(parent->ompt_task_info.task_data) : &task_data,
parent ? &(parent->ompt_task_info.frame) : NULL,
&(new_taskdata->ompt_task_info.task_data),
ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
codeptr_ra);
}
}
#endif
res = __kmp_omp_task(gtid, new_task, true);
KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
"TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
gtid, loc_ref, new_taskdata));
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
parent->ompt_task_info.frame.enter_frame = ompt_data_none;
}
#endif
return res;
}
template <bool ompt>
static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
void *frame_address,
void *return_address) {
kmp_taskdata_t *taskdata;
kmp_info_t *thread;
int thread_finished = FALSE;
KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
if (__kmp_tasking_mode != tskm_immediate_exec) {
thread = __kmp_threads[gtid];
taskdata = thread->th.th_current_task;
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_data_t *my_task_data;
ompt_data_t *my_parallel_data;
if (ompt) {
my_task_data = &(taskdata->ompt_task_info.task_data);
my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
if (ompt_enabled.ompt_callback_sync_region) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
my_task_data, return_address);
}
if (ompt_enabled.ompt_callback_sync_region_wait) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
my_task_data, return_address);
}
}
#endif // OMPT_SUPPORT && OMPT_OPTIONAL
// Debugger: The taskwait is active. Store location and thread encountered the
// taskwait.
#if USE_ITT_BUILD
// Note: These values are used by ITT events as well.
#endif /* USE_ITT_BUILD */
taskdata->td_taskwait_counter += 1;
taskdata->td_taskwait_ident = loc_ref;
taskdata->td_taskwait_thread = gtid + 1;
#if USE_ITT_BUILD
void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
bool must_wait =
!taskdata->td_flags.team_serial && !taskdata->td_flags.final;
must_wait = must_wait || (thread->th.th_task_team != NULL &&
thread->th.th_task_team->tt.tt_found_proxy_tasks);
if (must_wait) {
kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
&(taskdata->td_incomplete_child_tasks)),
0U);
while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
flag.execute_tasks(thread, gtid, FALSE,
&thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
__kmp_task_stealing_constraint);
}
}
#if USE_ITT_BUILD
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_finished(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
// Debugger: The taskwait is completed. Location remains, but thread is
// negated.
taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt) {
if (ompt_enabled.ompt_callback_sync_region_wait) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
my_task_data, return_address);
}
if (ompt_enabled.ompt_callback_sync_region) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
my_task_data, return_address);
}
taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
}
#endif // OMPT_SUPPORT && OMPT_OPTIONAL
ANNOTATE_HAPPENS_AFTER(taskdata);
}
KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
"returning TASK_CURRENT_NOT_QUEUED\n",
gtid, taskdata));
return TASK_CURRENT_NOT_QUEUED;
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_NOINLINE
static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
void *frame_address,
void *return_address) {
return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
return_address);
}
#endif // OMPT_SUPPORT && OMPT_OPTIONAL
// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
// complete
kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (UNLIKELY(ompt_enabled.enabled)) {
OMPT_STORE_RETURN_ADDRESS(gtid);
return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
OMPT_LOAD_RETURN_ADDRESS(gtid));
}
#endif
return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
}
// __kmpc_omp_taskyield: switch to a different task
kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
kmp_taskdata_t *taskdata;
kmp_info_t *thread;
int thread_finished = FALSE;
KMP_COUNT_BLOCK(OMP_TASKYIELD);
KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
gtid, loc_ref, end_part));
if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
thread = __kmp_threads[gtid];
taskdata = thread->th.th_current_task;
// Should we model this as a task wait or not?
// Debugger: The taskwait is active. Store location and thread encountered the
// taskwait.
#if USE_ITT_BUILD
// Note: These values are used by ITT events as well.
#endif /* USE_ITT_BUILD */
taskdata->td_taskwait_counter += 1;
taskdata->td_taskwait_ident = loc_ref;
taskdata->td_taskwait_thread = gtid + 1;
#if USE_ITT_BUILD
void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
if (!taskdata->td_flags.team_serial) {
kmp_task_team_t *task_team = thread->th.th_task_team;
if (task_team != NULL) {
if (KMP_TASKING_ENABLED(task_team)) {
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
thread->th.ompt_thread_info.ompt_task_yielded = 1;
#endif
__kmp_execute_tasks_32(
thread, gtid, NULL, FALSE,
&thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
__kmp_task_stealing_constraint);
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
thread->th.ompt_thread_info.ompt_task_yielded = 0;
#endif
}
}
}
#if USE_ITT_BUILD
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_finished(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
// Debugger: The taskwait is completed. Location remains, but thread is
// negated.
taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
}
KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
"returning TASK_CURRENT_NOT_QUEUED\n",
gtid, taskdata));
return TASK_CURRENT_NOT_QUEUED;
}
// Task Reduction implementation
//
// Note: initial implementation didn't take into account the possibility
// to specify omp_orig for initializer of the UDR (user defined reduction).
// Corrected implementation takes into account the omp_orig object.
// Compiler is free to use old implementation if omp_orig is not specified.
/*!
@ingroup BASIC_TYPES
@{
*/
/*!
Flags for special info per task reduction item.
*/
typedef struct kmp_taskred_flags {
/*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
unsigned lazy_priv : 1;
unsigned reserved31 : 31;
} kmp_taskred_flags_t;
/*!
Internal struct for reduction data item related info set up by compiler.
*/
typedef struct kmp_task_red_input {
void *reduce_shar; /**< shared between tasks item to reduce into */
size_t reduce_size; /**< size of data item in bytes */
// three compiler-generated routines (init, fini are optional):
void *reduce_init; /**< data initialization routine (single parameter) */
void *reduce_fini; /**< data finalization routine */
void *reduce_comb; /**< data combiner routine */
kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
} kmp_task_red_input_t;
/*!
Internal struct for reduction data item related info saved by the library.
*/
typedef struct kmp_taskred_data {
void *reduce_shar; /**< shared between tasks item to reduce into */
size_t reduce_size; /**< size of data item */
kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
void *reduce_priv; /**< array of thread specific items */
void *reduce_pend; /**< end of private data for faster comparison op */
// three compiler-generated routines (init, fini are optional):
void *reduce_comb; /**< data combiner routine */
void *reduce_init; /**< data initialization routine (two parameters) */
void *reduce_fini; /**< data finalization routine */
void *reduce_orig; /**< original item (can be used in UDR initializer) */
} kmp_taskred_data_t;
/*!
Internal struct for reduction data item related info set up by compiler.
New interface: added reduce_orig field to provide omp_orig for UDR initializer.
*/
typedef struct kmp_taskred_input {
void *reduce_shar; /**< shared between tasks item to reduce into */
void *reduce_orig; /**< original reduction item used for initialization */
size_t reduce_size; /**< size of data item */
// three compiler-generated routines (init, fini are optional):
void *reduce_init; /**< data initialization routine (two parameters) */
void *reduce_fini; /**< data finalization routine */
void *reduce_comb; /**< data combiner routine */
kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
} kmp_taskred_input_t;
/*!
@}
*/
template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
template <>
void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
kmp_task_red_input_t &src) {
item.reduce_orig = NULL;
}
template <>
void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
kmp_taskred_input_t &src) {
if (src.reduce_orig != NULL) {
item.reduce_orig = src.reduce_orig;
} else {
item.reduce_orig = src.reduce_shar;
} // non-NULL reduce_orig means new interface used
}
template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j);
template <>
void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
int offset) {
((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
}
template <>
void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
int offset) {
((void (*)(void *, void *))item.reduce_init)(
(char *)(item.reduce_priv) + offset, item.reduce_orig);
}
template <typename T>
void *__kmp_task_reduction_init(int gtid, int num, T *data) {
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
kmp_int32 nth = thread->th.th_team_nproc;
kmp_taskred_data_t *arr;
// check input data just in case
KMP_ASSERT(tg != NULL);
KMP_ASSERT(data != NULL);
KMP_ASSERT(num > 0);
if (nth == 1) {
KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
gtid, tg));
return (void *)tg;
}
KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
gtid, tg, num));
arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
thread, num * sizeof(kmp_taskred_data_t));
for (int i = 0; i < num; ++i) {
size_t size = data[i].reduce_size - 1;
// round the size up to cache line per thread-specific item
size += CACHE_LINE - size % CACHE_LINE;
KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
arr[i].reduce_shar = data[i].reduce_shar;
arr[i].reduce_size = size;
arr[i].flags = data[i].flags;
arr[i].reduce_comb = data[i].reduce_comb;
arr[i].reduce_init = data[i].reduce_init;
arr[i].reduce_fini = data[i].reduce_fini;
__kmp_assign_orig<T>(arr[i], data[i]);
if (!arr[i].flags.lazy_priv) {
// allocate cache-line aligned block and fill it with zeros
arr[i].reduce_priv = __kmp_allocate(nth * size);
arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
if (arr[i].reduce_init != NULL) {
// initialize all thread-specific items
for (int j = 0; j < nth; ++j) {
__kmp_call_init<T>(arr[i], j * size);
}
}
} else {
// only allocate space for pointers now,
// objects will be lazily allocated/initialized if/when requested
// note that __kmp_allocate zeroes the allocated memory
arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
}
}
tg->reduce_data = (void *)arr;
tg->reduce_num_data = num;
return (void *)tg;
}
/*!
@ingroup TASKING
@param gtid Global thread ID
@param num Number of data items to reduce
@param data Array of data for reduction
@return The taskgroup identifier
Initialize task reduction for the taskgroup.
Note: this entry supposes the optional compiler-generated initializer routine
has single parameter - pointer to object to be initialized. That means
the reduction either does not use omp_orig object, or the omp_orig is accessible
without help of the runtime library.
*/
void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
}
/*!
@ingroup TASKING
@param gtid Global thread ID
@param num Number of data items to reduce
@param data Array of data for reduction
@return The taskgroup identifier
Initialize task reduction for the taskgroup.
Note: this entry supposes the optional compiler-generated initializer routine
has two parameters, pointer to object to be initialized and pointer to omp_orig
*/
void *__kmpc_taskred_init(int gtid, int num, void *data) {
return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
}
// Copy task reduction data (except for shared pointers).
template <typename T>
void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
kmp_taskgroup_t *tg, void *reduce_data) {
kmp_taskred_data_t *arr;
KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
" from data %p\n",
thr, tg, reduce_data));
arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
thr, num * sizeof(kmp_taskred_data_t));
// threads will share private copies, thunk routines, sizes, flags, etc.:
KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
for (int i = 0; i < num; ++i) {
arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
}
tg->reduce_data = (void *)arr;
tg->reduce_num_data = num;
}
/*!
@ingroup TASKING
@param gtid Global thread ID
@param tskgrp The taskgroup ID (optional)
@param data Shared location of the item
@return The pointer to per-thread data
Get thread-specific location of data item
*/
void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
kmp_info_t *thread = __kmp_threads[gtid];
kmp_int32 nth = thread->th.th_team_nproc;
if (nth == 1)
return data; // nothing to do
kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
if (tg == NULL)
tg = thread->th.th_current_task->td_taskgroup;
KMP_ASSERT(tg != NULL);
kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
kmp_int32 num = tg->reduce_num_data;
kmp_int32 tid = thread->th.th_info.ds.ds_tid;
KMP_ASSERT(data != NULL);
while (tg != NULL) {
for (int i = 0; i < num; ++i) {
if (!arr[i].flags.lazy_priv) {
if (data == arr[i].reduce_shar ||
(data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
} else {
// check shared location first
void **p_priv = (void **)(arr[i].reduce_priv);
if (data == arr[i].reduce_shar)
goto found;
// check if we get some thread specific location as parameter
for (int j = 0; j < nth; ++j)
if (data == p_priv[j])
goto found;
continue; // not found, continue search
found:
if (p_priv[tid] == NULL) {
// allocate thread specific object lazily
p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
if (arr[i].reduce_init != NULL) {
if (arr[i].reduce_orig != NULL) { // new interface
((void (*)(void *, void *))arr[i].reduce_init)(
p_priv[tid], arr[i].reduce_orig);
} else { // old interface (single parameter)
((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
}
}
}
return p_priv[tid];
}
}
tg = tg->parent;
arr = (kmp_taskred_data_t *)(tg->reduce_data);
num = tg->reduce_num_data;
}
KMP_ASSERT2(0, "Unknown task reduction item");
return NULL; // ERROR, this line never executed
}
// Finalize task reduction.
// Called from __kmpc_end_taskgroup()
static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
kmp_int32 nth = th->th.th_team_nproc;
KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
kmp_int32 num = tg->reduce_num_data;
for (int i = 0; i < num; ++i) {
void *sh_data = arr[i].reduce_shar;
void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
void (*f_comb)(void *, void *) =
(void (*)(void *, void *))(arr[i].reduce_comb);
if (!arr[i].flags.lazy_priv) {
void *pr_data = arr[i].reduce_priv;
size_t size = arr[i].reduce_size;
for (int j = 0; j < nth; ++j) {
void *priv_data = (char *)pr_data + j * size;
f_comb(sh_data, priv_data); // combine results
if (f_fini)
f_fini(priv_data); // finalize if needed
}
} else {
void **pr_data = (void **)(arr[i].reduce_priv);
for (int j = 0; j < nth; ++j) {
if (pr_data[j] != NULL) {
f_comb(sh_data, pr_data[j]); // combine results
if (f_fini)
f_fini(pr_data[j]); // finalize if needed
__kmp_free(pr_data[j]);
}
}
}
__kmp_free(arr[i].reduce_priv);
}
__kmp_thread_free(th, arr);
tg->reduce_data = NULL;
tg->reduce_num_data = 0;
}
// Cleanup task reduction data for parallel or worksharing,
// do not touch task private data other threads still working with.
// Called from __kmpc_end_taskgroup()
static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
__kmp_thread_free(th, tg->reduce_data);
tg->reduce_data = NULL;
tg->reduce_num_data = 0;
}
template <typename T>
void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
int num, T *data) {
kmp_info_t *thr = __kmp_threads[gtid];
kmp_int32 nth = thr->th.th_team_nproc;
__kmpc_taskgroup(loc, gtid); // form new taskgroup first
if (nth == 1) {
KA_TRACE(10,
("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
gtid, thr->th.th_current_task->td_taskgroup));
return (void *)thr->th.th_current_task->td_taskgroup;
}
kmp_team_t *team = thr->th.th_team;
void *reduce_data;
kmp_taskgroup_t *tg;
reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
if (reduce_data == NULL &&
__kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
(void *)1)) {
// single thread enters this block to initialize common reduction data
KMP_DEBUG_ASSERT(reduce_data == NULL);
// first initialize own data, then make a copy other threads can use
tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
// fini counters should be 0 at this point
KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
} else {
while (
(reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
(void *)1) { // wait for task reduction initialization
KMP_CPU_PAUSE();
}
KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
tg = thr->th.th_current_task->td_taskgroup;
__kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
}
return tg;
}
/*!
@ingroup TASKING
@param loc Source location info
@param gtid Global thread ID
@param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
@param num Number of data items to reduce
@param data Array of data for reduction
@return The taskgroup identifier
Initialize task reduction for a parallel or worksharing.
Note: this entry supposes the optional compiler-generated initializer routine
has single parameter - pointer to object to be initialized. That means
the reduction either does not use omp_orig object, or the omp_orig is accessible
without help of the runtime library.
*/
void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
int num, void *data) {
return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
(kmp_task_red_input_t *)data);
}
/*!
@ingroup TASKING
@param loc Source location info
@param gtid Global thread ID
@param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
@param num Number of data items to reduce
@param data Array of data for reduction
@return The taskgroup identifier
Initialize task reduction for a parallel or worksharing.
Note: this entry supposes the optional compiler-generated initializer routine
has two parameters, pointer to object to be initialized and pointer to omp_orig
*/
void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
void *data) {
return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
(kmp_taskred_input_t *)data);
}
/*!
@ingroup TASKING
@param loc Source location info
@param gtid Global thread ID
@param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
Finalize task reduction for a parallel or worksharing.
*/
void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
__kmpc_end_taskgroup(loc, gtid);
}
// __kmpc_taskgroup: Start a new taskgroup
void __kmpc_taskgroup(ident_t *loc, int gtid) {
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskdata_t *taskdata = thread->th.th_current_task;
kmp_taskgroup_t *tg_new =
(kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
tg_new->parent = taskdata->td_taskgroup;
tg_new->reduce_data = NULL;
tg_new->reduce_num_data = 0;
taskdata->td_taskgroup = tg_new;
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
kmp_team_t *team = thread->th.th_team;
ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
// FIXME: I think this is wrong for lwt!
ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
&(my_task_data), codeptr);
}
#endif
}
// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
// and its descendants are complete
void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskdata_t *taskdata = thread->th.th_current_task;
kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
int thread_finished = FALSE;
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_team_t *team;
ompt_data_t my_task_data;
ompt_data_t my_parallel_data;
void *codeptr;
if (UNLIKELY(ompt_enabled.enabled)) {
team = thread->th.th_team;
my_task_data = taskdata->ompt_task_info.task_data;
// FIXME: I think this is wrong for lwt!
my_parallel_data = team->t.ompt_team_info.parallel_data;
codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
}
#endif
KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
KMP_DEBUG_ASSERT(taskgroup != NULL);
KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
if (__kmp_tasking_mode != tskm_immediate_exec) {
// mark task as waiting not on a barrier
taskdata->td_taskwait_counter += 1;
taskdata->td_taskwait_ident = loc;
taskdata->td_taskwait_thread = gtid + 1;
#if USE_ITT_BUILD
// For ITT the taskgroup wait is similar to taskwait until we need to
// distinguish them
void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
&(my_task_data), codeptr);
}
#endif
if (!taskdata->td_flags.team_serial ||
(thread->th.th_task_team != NULL &&
thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)),
0U);
while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
flag.execute_tasks(thread, gtid, FALSE,
&thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
__kmp_task_stealing_constraint);
}
}
taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
&(my_task_data), codeptr);
}
#endif
#if USE_ITT_BUILD
if (itt_sync_obj != NULL)
__kmp_itt_taskwait_finished(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
}
KMP_DEBUG_ASSERT(taskgroup->count == 0);
if (taskgroup->reduce_data != NULL) { // need to reduce?
int cnt;
void *reduce_data;
kmp_team_t *t = thread->th.th_team;
kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
// check if <priv> data of the first reduction variable shared for the team
void *priv0 = arr[0].reduce_priv;
if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
// finishing task reduction on parallel
cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
if (cnt == thread->th.th_team_nproc - 1) {
// we are the last thread passing __kmpc_reduction_modifier_fini()
// finalize task reduction:
__kmp_task_reduction_fini(thread, taskgroup);
// cleanup fields in the team structure:
// TODO: is relaxed store enough here (whole barrier should follow)?
__kmp_thread_free(thread, reduce_data);
KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
} else {
// we are not the last thread passing __kmpc_reduction_modifier_fini(),
// so do not finalize reduction, just clean own copy of the data
__kmp_task_reduction_clean(thread, taskgroup);
}
} else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
NULL &&
((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
// finishing task reduction on worksharing
cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
if (cnt == thread->th.th_team_nproc - 1) {
// we are the last thread passing __kmpc_reduction_modifier_fini()
__kmp_task_reduction_fini(thread, taskgroup);
// cleanup fields in team structure:
// TODO: is relaxed store enough here (whole barrier should follow)?
__kmp_thread_free(thread, reduce_data);
KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
} else {
// we are not the last thread passing __kmpc_reduction_modifier_fini(),
// so do not finalize reduction, just clean own copy of the data
__kmp_task_reduction_clean(thread, taskgroup);
}
} else {
// finishing task reduction on taskgroup
__kmp_task_reduction_fini(thread, taskgroup);
}
}
// Restore parent taskgroup for the current task
taskdata->td_taskgroup = taskgroup->parent;
__kmp_thread_free(thread, taskgroup);
KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
gtid, taskdata));
ANNOTATE_HAPPENS_AFTER(taskdata);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
&(my_task_data), codeptr);
}
#endif
}
// __kmp_remove_my_task: remove a task from my own deque
static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
kmp_task_team_t *task_team,
kmp_int32 is_constrained) {
kmp_task_t *task;
kmp_taskdata_t *taskdata;
kmp_thread_data_t *thread_data;
kmp_uint32 tail;
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
NULL); // Caller should check this condition
thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
gtid, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
KA_TRACE(10,
("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
"ntasks=%d head=%u tail=%u\n",
gtid, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
return NULL;
}
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
KA_TRACE(10,
("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
"ntasks=%d head=%u tail=%u\n",
gtid, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
return NULL;
}
tail = (thread_data->td.td_deque_tail - 1) &
TASK_DEQUE_MASK(thread_data->td); // Wrap index.
taskdata = thread_data->td.td_deque[tail];
if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
thread->th.th_current_task)) {
// The TSC does not allow to steal victim task
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
KA_TRACE(10,
("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
"ntasks=%d head=%u tail=%u\n",
gtid, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
return NULL;
}
thread_data->td.td_deque_tail = tail;
TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
"ntasks=%d head=%u tail=%u\n",
gtid, taskdata, thread_data->td.td_deque_ntasks,
thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
task = KMP_TASKDATA_TO_TASK(taskdata);
return task;
}
// __kmp_steal_task: remove a task from another thread's deque
// Assume that calling thread has already checked existence of
// task_team thread_data before calling this routine.
static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
kmp_task_team_t *task_team,
std::atomic<kmp_int32> *unfinished_threads,
int *thread_finished,
kmp_int32 is_constrained) {
kmp_task_t *task;
kmp_taskdata_t *taskdata;
kmp_taskdata_t *current;
kmp_thread_data_t *victim_td, *threads_data;
kmp_int32 target;
kmp_int32 victim_tid;
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
threads_data = task_team->tt.tt_threads_data;
KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
victim_tid = victim_thr->th.th_info.ds.ds_tid;
victim_td = &threads_data[victim_tid];
KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
"task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, __kmp_gtid_from_thread(victim_thr), task_team,
victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
victim_td->td.td_deque_tail));
if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
"task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, __kmp_gtid_from_thread(victim_thr), task_team,
victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
victim_td->td.td_deque_tail));
return NULL;
}
__kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
// Check again after we acquire the lock
if (ntasks == 0) {
__kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
"task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
return NULL;
}
KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
current = __kmp_threads[gtid]->th.th_current_task;
taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
// Bump head pointer and Wrap.
victim_td->td.td_deque_head =
(victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
} else {
if (!task_team->tt.tt_untied_task_encountered) {
// The TSC does not allow to steal victim task
__kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
"T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
return NULL;
}
int i;
// walk through victim's deque trying to steal any task
target = victim_td->td.td_deque_head;
taskdata = NULL;
for (i = 1; i < ntasks; ++i) {
target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
taskdata = victim_td->td.td_deque[target];
if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
break; // found victim task
} else {
taskdata = NULL;
}
}
if (taskdata == NULL) {
// No appropriate candidate to steal found
__kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
"T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
return NULL;
}
int prev = target;
for (i = i + 1; i < ntasks; ++i) {
// shift remaining tasks in the deque left by 1
target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
prev = target;
}
KMP_DEBUG_ASSERT(
victim_td->td.td_deque_tail ==
(kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
}
if (*thread_finished) {
// We need to un-mark this victim as a finished victim. This must be done
// before releasing the lock, or else other threads (starting with the
// master victim) might be prematurely released from the barrier!!!
kmp_int32 count;
count = KMP_ATOMIC_INC(unfinished_threads);
KA_TRACE(
20,
("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
gtid, count + 1, task_team));
*thread_finished = FALSE;
}
TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
__kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
KMP_COUNT_BLOCK(TASK_stolen);
KA_TRACE(10,
("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
"task_team=%p ntasks=%d head=%u tail=%u\n",
gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
task = KMP_TASKDATA_TO_TASK(taskdata);
return task;
}
// __kmp_execute_tasks_template: Choose and execute tasks until either the
// condition is statisfied (return true) or there are none left (return false).
//
// final_spin is TRUE if this is the spin at the release barrier.
// thread_finished indicates whether the thread is finished executing all
// the tasks it has on its deque, and is at the release barrier.
// spinner is the location on which to spin.
// spinner == NULL means only execute a single task and return.
// checker is the value to check to terminate the spin.
template <class C>
static inline int __kmp_execute_tasks_template(
kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
kmp_task_team_t *task_team = thread->th.th_task_team;
kmp_thread_data_t *threads_data;
kmp_task_t *task;
kmp_info_t *other_thread;
kmp_taskdata_t *current_task = thread->th.th_current_task;
std::atomic<kmp_int32> *unfinished_threads;
kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
tid = thread->th.th_info.ds.ds_tid;
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
if (task_team == NULL || current_task == NULL)
return FALSE;
KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
"*thread_finished=%d\n",
gtid, final_spin, *thread_finished));
thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
KMP_DEBUG_ASSERT(threads_data != NULL);
nthreads = task_team->tt.tt_nproc;
unfinished_threads = &(task_team->tt.tt_unfinished_threads);
KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
while (1) { // Outer loop keeps trying to find tasks in case of single thread
// getting tasks from target constructs
while (1) { // Inner loop to find a task and execute it
task = NULL;
if (use_own_tasks) { // check on own queue first
task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
}
if ((task == NULL) && (nthreads > 1)) { // Steal a task
int asleep = 1;
use_own_tasks = 0;
// Try to steal from the last place I stole from successfully.
if (victim_tid == -2) { // haven't stolen anything yet
victim_tid = threads_data[tid].td.td_deque_last_stolen;
if (victim_tid !=
-1) // if we have a last stolen from victim, get the thread
other_thread = threads_data[victim_tid].td.td_thr;
}
if (victim_tid != -1) { // found last victim
asleep = 0;
} else if (!new_victim) { // no recent steals and we haven't already
// used a new victim; select a random thread
do { // Find a different thread to steal work from.
// Pick a random thread. Initial plan was to cycle through all the
// threads, and only return if we tried to steal from every thread,
// and failed. Arch says that's not such a great idea.
victim_tid = __kmp_get_random(thread) % (nthreads - 1);
if (victim_tid >= tid) {
++victim_tid; // Adjusts random distribution to exclude self
}
// Found a potential victim
other_thread = threads_data[victim_tid].td.td_thr;
// There is a slight chance that __kmp_enable_tasking() did not wake
// up all threads waiting at the barrier. If victim is sleeping,
// then wake it up. Since we were going to pay the cache miss
// penalty for referencing another thread's kmp_info_t struct
// anyway,
// the check shouldn't cost too much performance at this point. In
// extra barrier mode, tasks do not sleep at the separate tasking
// barrier, so this isn't a problem.
asleep = 0;
if ((__kmp_tasking_mode == tskm_task_teams) &&
(__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
(TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
NULL)) {
asleep = 1;
__kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
other_thread->th.th_sleep_loc);
// A sleeping thread should not have any tasks on it's queue.
// There is a slight possibility that it resumes, steals a task
// from another thread, which spawns more tasks, all in the time
// that it takes this thread to check => don't write an assertion
// that the victim's queue is empty. Try stealing from a
// different thread.
}
} while (asleep);
}
if (!asleep) {
// We have a victim to try to steal from
task = __kmp_steal_task(other_thread, gtid, task_team,
unfinished_threads, thread_finished,
is_constrained);
}
if (task != NULL) { // set last stolen to victim
if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
threads_data[tid].td.td_deque_last_stolen = victim_tid;
// The pre-refactored code did not try more than 1 successful new
// vicitm, unless the last one generated more local tasks;
// new_victim keeps track of this
new_victim = 1;
}
} else { // No tasks found; unset last_stolen
KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
victim_tid = -2; // no successful victim found
}
}
if (task == NULL) // break out of tasking loop
break;
// Found a task; execute it
#if USE_ITT_BUILD && USE_ITT_NOTIFY
if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
// get the object reliably
itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
}
__kmp_itt_task_starting(itt_sync_obj);
}
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
__kmp_invoke_task(gtid, task, current_task);
#if USE_ITT_BUILD
if (itt_sync_obj != NULL)
__kmp_itt_task_finished(itt_sync_obj);
#endif /* USE_ITT_BUILD */
// If this thread is only partway through the barrier and the condition is
// met, then return now, so that the barrier gather/release pattern can
// proceed. If this thread is in the last spin loop in the barrier,
// waiting to be released, we know that the termination condition will not
// be satisified, so don't waste any cycles checking it.
if (flag == NULL || (!final_spin && flag->done_check())) {
KA_TRACE(
15,
("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
gtid));
return TRUE;
}
if (thread->th.th_task_team == NULL) {
break;
}
KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
// If execution of a stolen task results in more tasks being placed on our
// run queue, reset use_own_tasks
if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
"other tasks, restart\n",
gtid));
use_own_tasks = 1;
new_victim = 0;
}
}
// The task source has been exhausted. If in final spin loop of barrier,
// check if termination condition is satisfied. The work queue may be empty
// but there might be proxy tasks still executing.
if (final_spin &&
KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) {
// First, decrement the #unfinished threads, if that has not already been
// done. This decrement might be to the spin location, and result in the
// termination condition being satisfied.
if (!*thread_finished) {
kmp_int32 count;
count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
"unfinished_threads to %d task_team=%p\n",
gtid, count, task_team));
*thread_finished = TRUE;
}
// It is now unsafe to reference thread->th.th_team !!!
// Decrementing task_team->tt.tt_unfinished_threads can allow the master
// thread to pass through the barrier, where it might reset each thread's
// th.th_team field for the next parallel region. If we can steal more
// work, we know that this has not happened yet.
if (flag != NULL && flag->done_check()) {
KA_TRACE(
15,
("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
gtid));
return TRUE;
}
}
// If this thread's task team is NULL, master has recognized that there are
// no more tasks; bail out
if (thread->th.th_task_team == NULL) {
KA_TRACE(15,
("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
return FALSE;
}
// We could be getting tasks from target constructs; if this is the only
// thread, keep trying to execute tasks from own queue
if (nthreads == 1)
use_own_tasks = 1;
else {
KA_TRACE(15,
("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
return FALSE;
}
}
}
int __kmp_execute_tasks_32(
kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_template(
thread, gtid, flag, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
int __kmp_execute_tasks_64(
kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_template(
thread, gtid, flag, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
int __kmp_execute_tasks_oncore(
kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_template(
thread, gtid, flag, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
// next barrier so they can assist in executing enqueued tasks.
// First thread in allocates the task team atomically.
static void __kmp_enable_tasking(kmp_task_team_t *task_team,
kmp_info_t *this_thr) {
kmp_thread_data_t *threads_data;
int nthreads, i, is_init_thread;
KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
__kmp_gtid_from_thread(this_thr)));
KMP_DEBUG_ASSERT(task_team != NULL);
KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
nthreads = task_team->tt.tt_nproc;
KMP_DEBUG_ASSERT(nthreads > 0);
KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
// Allocate or increase the size of threads_data if necessary
is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
if (!is_init_thread) {
// Some other thread already set up the array.
KA_TRACE(
20,
("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
__kmp_gtid_from_thread(this_thr)));
return;
}
threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
KMP_DEBUG_ASSERT(threads_data != NULL);
if (__kmp_tasking_mode == tskm_task_teams &&
(__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
// Release any threads sleeping at the barrier, so that they can steal
// tasks and execute them. In extra barrier mode, tasks do not sleep
// at the separate tasking barrier, so this isn't a problem.
for (i = 0; i < nthreads; i++) {
volatile void *sleep_loc;
kmp_info_t *thread = threads_data[i].td.td_thr;
if (i == this_thr->th.th_info.ds.ds_tid) {
continue;
}
// Since we haven't locked the thread's suspend mutex lock at this
// point, there is a small window where a thread might be putting
// itself to sleep, but hasn't set the th_sleep_loc field yet.
// To work around this, __kmp_execute_tasks_template() periodically checks
// see if other threads are sleeping (using the same random mechanism that
// is used for task stealing) and awakens them if they are.
if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
NULL) {
KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
__kmp_gtid_from_thread(this_thr),
__kmp_gtid_from_thread(thread)));
__kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
} else {
KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
__kmp_gtid_from_thread(this_thr),
__kmp_gtid_from_thread(thread)));
}
}
}
KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
__kmp_gtid_from_thread(this_thr)));
}
/* // TODO: Check the comment consistency
* Utility routines for "task teams". A task team (kmp_task_t) is kind of
* like a shadow of the kmp_team_t data struct, with a different lifetime.
* After a child * thread checks into a barrier and calls __kmp_release() from
* the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
* longer assume that the kmp_team_t structure is intact (at any moment, the
* master thread may exit the barrier code and free the team data structure,
* and return the threads to the thread pool).
*
* This does not work with the the tasking code, as the thread is still
* expected to participate in the execution of any tasks that may have been
* spawned my a member of the team, and the thread still needs access to all
* to each thread in the team, so that it can steal work from it.
*
* Enter the existence of the kmp_task_team_t struct. It employs a reference
* counting mechanims, and is allocated by the master thread before calling
* __kmp_<barrier_kind>_release, and then is release by the last thread to
* exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes
* of the kmp_task_team_t structs for consecutive barriers can overlap
* (and will, unless the master thread is the last thread to exit the barrier
* release phase, which is not typical). The existence of such a struct is
* useful outside the context of tasking.
*
* We currently use the existence of the threads array as an indicator that
* tasks were spawned since the last barrier. If the structure is to be
* useful outside the context of tasking, then this will have to change, but
* not settting the field minimizes the performance impact of tasking on
* barriers, when no explicit tasks were spawned (pushed, actually).
*/
static kmp_task_team_t *__kmp_free_task_teams =
NULL; // Free list for task_team data structures
// Lock for task team data structures
kmp_bootstrap_lock_t __kmp_task_team_lock =
KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
// __kmp_alloc_task_deque:
// Allocates a task deque for a particular thread, and initialize the necessary
// data structures relating to the deque. This only happens once per thread
// per task team since task teams are recycled. No lock is needed during
// allocation since each thread allocates its own deque.
static void __kmp_alloc_task_deque(kmp_info_t *thread,
kmp_thread_data_t *thread_data) {
__kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
// Initialize last stolen task field to "none"
thread_data->td.td_deque_last_stolen = -1;
KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
KE_TRACE(
10,
("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
__kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
// Allocate space for task deque, and zero the deque
// Cannot use __kmp_thread_calloc() because threads not around for
// kmp_reap_task_team( ).
thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
}
// __kmp_free_task_deque:
// Deallocates a task deque for a particular thread. Happens at library
// deallocation so don't need to reset all thread data fields.
static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
if (thread_data->td.td_deque != NULL) {
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
TCW_4(thread_data->td.td_deque_ntasks, 0);
__kmp_free(thread_data->td.td_deque);
thread_data->td.td_deque = NULL;
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
}
#ifdef BUILD_TIED_TASK_STACK
// GEH: Figure out what to do here for td_susp_tied_tasks
if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
__kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
}
#endif // BUILD_TIED_TASK_STACK
}
// __kmp_realloc_task_threads_data:
// Allocates a threads_data array for a task team, either by allocating an
// initial array or enlarging an existing array. Only the first thread to get
// the lock allocs or enlarges the array and re-initializes the array eleemnts.
// That thread returns "TRUE", the rest return "FALSE".
// Assumes that the new array size is given by task_team -> tt.tt_nproc.
// The current size is given by task_team -> tt.tt_max_threads.
static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
kmp_task_team_t *task_team) {
kmp_thread_data_t **threads_data_p;
kmp_int32 nthreads, maxthreads;
int is_init_thread = FALSE;
if (TCR_4(task_team->tt.tt_found_tasks)) {
// Already reallocated and initialized.
return FALSE;
}
threads_data_p = &task_team->tt.tt_threads_data;
nthreads = task_team->tt.tt_nproc;
maxthreads = task_team->tt.tt_max_threads;
// All threads must lock when they encounter the first task of the implicit
// task region to make sure threads_data fields are (re)initialized before
// used.
__kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
if (!TCR_4(task_team->tt.tt_found_tasks)) {
// first thread to enable tasking
kmp_team_t *team = thread->th.th_team;
int i;
is_init_thread = TRUE;
if (maxthreads < nthreads) {
if (*threads_data_p != NULL) {
kmp_thread_data_t *old_data = *threads_data_p;
kmp_thread_data_t *new_data = NULL;
KE_TRACE(
10,
("__kmp_realloc_task_threads_data: T#%d reallocating "
"threads data for task_team %p, new_size = %d, old_size = %d\n",
__kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
// Reallocate threads_data to have more elements than current array
// Cannot use __kmp_thread_realloc() because threads not around for
// kmp_reap_task_team( ). Note all new array entries are initialized
// to zero by __kmp_allocate().
new_data = (kmp_thread_data_t *)__kmp_allocate(
nthreads * sizeof(kmp_thread_data_t));
// copy old data to new data
KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
(void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
#ifdef BUILD_TIED_TASK_STACK
// GEH: Figure out if this is the right thing to do
for (i = maxthreads; i < nthreads; i++) {
kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
__kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
}
#endif // BUILD_TIED_TASK_STACK
// Install the new data and free the old data
(*threads_data_p) = new_data;
__kmp_free(old_data);
} else {
KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
"threads data for task_team %p, size = %d\n",
__kmp_gtid_from_thread(thread), task_team, nthreads));
// Make the initial allocate for threads_data array, and zero entries
// Cannot use __kmp_thread_calloc() because threads not around for
// kmp_reap_task_team( ).
ANNOTATE_IGNORE_WRITES_BEGIN();
*threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
nthreads * sizeof(kmp_thread_data_t));
ANNOTATE_IGNORE_WRITES_END();
#ifdef BUILD_TIED_TASK_STACK
// GEH: Figure out if this is the right thing to do
for (i = 0; i < nthreads; i++) {
kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
__kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
}
#endif // BUILD_TIED_TASK_STACK
}
task_team->tt.tt_max_threads = nthreads;
} else {
// If array has (more than) enough elements, go ahead and use it
KMP_DEBUG_ASSERT(*threads_data_p != NULL);
}
// initialize threads_data pointers back to thread_info structures
for (i = 0; i < nthreads; i++) {
kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
thread_data->td.td_thr = team->t.t_threads[i];
if (thread_data->td.td_deque_last_stolen >= nthreads) {
// The last stolen field survives across teams / barrier, and the number
// of threads may have changed. It's possible (likely?) that a new
// parallel region will exhibit the same behavior as previous region.
thread_data->td.td_deque_last_stolen = -1;
}
}
KMP_MB();
TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
}
__kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
return is_init_thread;
}
// __kmp_free_task_threads_data:
// Deallocates a threads_data array for a task team, including any attached
// tasking deques. Only occurs at library shutdown.
static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
__kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
if (task_team->tt.tt_threads_data != NULL) {
int i;
for (i = 0; i < task_team->tt.tt_max_threads; i++) {
__kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
}
__kmp_free(task_team->tt.tt_threads_data);
task_team->tt.tt_threads_data = NULL;
}
__kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
}
// __kmp_allocate_task_team:
// Allocates a task team associated with a specific team, taking it from
// the global task team free list if possible. Also initializes data
// structures.
static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
kmp_team_t *team) {
kmp_task_team_t *task_team = NULL;
int nthreads;
KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
(thread ? __kmp_gtid_from_thread(thread) : -1), team));
if (TCR_PTR(__kmp_free_task_teams) != NULL) {
// Take a task team from the task team pool
__kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
if (__kmp_free_task_teams != NULL) {
task_team = __kmp_free_task_teams;
TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
task_team->tt.tt_next = NULL;
}
__kmp_release_bootstrap_lock(&__kmp_task_team_lock);
}
if (task_team == NULL) {
KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
"task team for team %p\n",
__kmp_gtid_from_thread(thread), team));
// Allocate a new task team if one is not available.
// Cannot use __kmp_thread_malloc() because threads not around for
// kmp_reap_task_team( ).
task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
__kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
// AC: __kmp_allocate zeroes returned memory
// task_team -> tt.tt_threads_data = NULL;
// task_team -> tt.tt_max_threads = 0;
// task_team -> tt.tt_next = NULL;
}
TCW_4(task_team->tt.tt_found_tasks, FALSE);
TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
TCW_4(task_team->tt.tt_active, TRUE);
KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
"unfinished_threads init'd to %d\n",
(thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
return task_team;
}
// __kmp_free_task_team:
// Frees the task team associated with a specific thread, and adds it
// to the global task team free list.
void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
// Put task team back on free list
__kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
task_team->tt.tt_next = __kmp_free_task_teams;
TCW_PTR(__kmp_free_task_teams, task_team);
__kmp_release_bootstrap_lock(&__kmp_task_team_lock);
}
// __kmp_reap_task_teams:
// Free all the task teams on the task team free list.
// Should only be done during library shutdown.
// Cannot do anything that needs a thread structure or gtid since they are
// already gone.
void __kmp_reap_task_teams(void) {
kmp_task_team_t *task_team;
if (TCR_PTR(__kmp_free_task_teams) != NULL) {
// Free all task_teams on the free list
__kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
while ((task_team = __kmp_free_task_teams) != NULL) {
__kmp_free_task_teams = task_team->tt.tt_next;
task_team->tt.tt_next = NULL;
// Free threads_data if necessary
if (task_team->tt.tt_threads_data != NULL) {
__kmp_free_task_threads_data(task_team);
}
__kmp_free(task_team);
}
__kmp_release_bootstrap_lock(&__kmp_task_team_lock);
}
}
// __kmp_wait_to_unref_task_teams:
// Some threads could still be in the fork barrier release code, possibly
// trying to steal tasks. Wait for each thread to unreference its task team.
void __kmp_wait_to_unref_task_teams(void) {
kmp_info_t *thread;
kmp_uint32 spins;
int done;
KMP_INIT_YIELD(spins);
for (;;) {
done = TRUE;
// TODO: GEH - this may be is wrong because some sync would be necessary
// in case threads are added to the pool during the traversal. Need to
// verify that lock for thread pool is held when calling this routine.
for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
thread = thread->th.th_next_pool) {
#if KMP_OS_WINDOWS
DWORD exit_val;
#endif
if (TCR_PTR(thread->th.th_task_team) == NULL) {
KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
__kmp_gtid_from_thread(thread)));
continue;
}
#if KMP_OS_WINDOWS
// TODO: GEH - add this check for Linux* OS / OS X* as well?
if (!__kmp_is_thread_alive(thread, &exit_val)) {
thread->th.th_task_team = NULL;
continue;
}
#endif
done = FALSE; // Because th_task_team pointer is not NULL for this thread
KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
"unreference task_team\n",
__kmp_gtid_from_thread(thread)));
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
volatile void *sleep_loc;
// If the thread is sleeping, awaken it.
if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
NULL) {
KA_TRACE(
10,
("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
__kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
__kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
}
}
}
if (done) {
break;
}
// If oversubscribed or have waited a bit, yield.
KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
}
}
// __kmp_task_team_setup: Create a task_team for the current team, but use
// an already created, unused one if it already exists.
void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
// If this task_team hasn't been created yet, allocate it. It will be used in
// the region after the next.
// If it exists, it is the current task team and shouldn't be touched yet as
// it may still be in use.
if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
(always || team->t.t_nproc > 1)) {
team->t.t_task_team[this_thr->th.th_task_state] =
__kmp_allocate_task_team(this_thr, team);
KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
"for team %d at parity=%d\n",
__kmp_gtid_from_thread(this_thr),
team->t.t_task_team[this_thr->th.th_task_state],
((team != NULL) ? team->t.t_id : -1),
this_thr->th.th_task_state));
}
// After threads exit the release, they will call sync, and then point to this
// other task_team; make sure it is allocated and properly initialized. As
// threads spin in the barrier release phase, they will continue to use the
// previous task_team struct(above), until they receive the signal to stop
// checking for tasks (they can't safely reference the kmp_team_t struct,
// which could be reallocated by the master thread). No task teams are formed
// for serialized teams.
if (team->t.t_nproc > 1) {
int other_team = 1 - this_thr->th.th_task_state;
if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
team->t.t_task_team[other_team] =
__kmp_allocate_task_team(this_thr, team);
KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
"task_team %p for team %d at parity=%d\n",
__kmp_gtid_from_thread(this_thr),
team->t.t_task_team[other_team],
((team != NULL) ? team->t.t_id : -1), other_team));
} else { // Leave the old task team struct in place for the upcoming region;
// adjust as needed
kmp_task_team_t *task_team = team->t.t_task_team[other_team];
if (!task_team->tt.tt_active ||
team->t.t_nproc != task_team->tt.tt_nproc) {
TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
TCW_4(task_team->tt.tt_found_tasks, FALSE);
TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
team->t.t_nproc);
TCW_4(task_team->tt.tt_active, TRUE);
}
// if team size has changed, the first thread to enable tasking will
// realloc threads_data if necessary
KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
"%p for team %d at parity=%d\n",
__kmp_gtid_from_thread(this_thr),
team->t.t_task_team[other_team],
((team != NULL) ? team->t.t_id : -1), other_team));
}
}
}
// __kmp_task_team_sync: Propagation of task team data from team to threads
// which happens just after the release phase of a team barrier. This may be
// called by any thread, but only for teams with # threads > 1.
void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
// Toggle the th_task_state field, to switch which task_team this thread
// refers to
this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
// It is now safe to propagate the task team pointer from the team struct to
// the current thread.
TCW_PTR(this_thr->th.th_task_team,
team->t.t_task_team[this_thr->th.th_task_state]);
KA_TRACE(20,
("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
"%p from Team #%d (parity=%d)\n",
__kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
}
// __kmp_task_team_wait: Master thread waits for outstanding tasks after the
// barrier gather phase. Only called by master thread if #threads in team > 1 or
// if proxy tasks were created.
//
// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
// by passing in 0 optionally as the last argument. When wait is zero, master
// thread does not wait for unfinished_threads to reach 0.
void __kmp_task_team_wait(
kmp_info_t *this_thr,
kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
if (wait) {
KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
"(for unfinished_threads to reach 0) on task_team = %p\n",
__kmp_gtid_from_thread(this_thr), task_team));
// Worker threads may have dropped through to release phase, but could
// still be executing tasks. Wait here for tasks to complete. To avoid
// memory contention, only master thread checks termination condition.
kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
&task_team->tt.tt_unfinished_threads),
0U);
flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
}
// Deactivate the old task team, so that the worker threads will stop
// referencing it while spinning.
KA_TRACE(
20,
("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
"setting active to false, setting local and team's pointer to NULL\n",
__kmp_gtid_from_thread(this_thr), task_team));
KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
task_team->tt.tt_found_proxy_tasks == TRUE);
TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
TCW_SYNC_4(task_team->tt.tt_active, FALSE);
KMP_MB();
TCW_PTR(this_thr->th.th_task_team, NULL);
}
}
// __kmp_tasking_barrier:
// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
// Internal function to execute all tasks prior to a regular barrier or a join
// barrier. It is a full barrier itself, which unfortunately turns regular
// barriers into double barriers and join barriers into 1 1/2 barriers.
void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
std::atomic<kmp_uint32> *spin = RCAST(
std::atomic<kmp_uint32> *,
&team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
int flag = FALSE;
KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_INIT(spin, NULL);
#endif /* USE_ITT_BUILD */
kmp_flag_32 spin_flag(spin, 0U);
while (!spin_flag.execute_tasks(thread, gtid, TRUE,
&flag USE_ITT_BUILD_ARG(NULL), 0)) {
#if USE_ITT_BUILD
// TODO: What about itt_sync_obj??
KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
#endif /* USE_ITT_BUILD */
if (TCR_4(__kmp_global.g.g_done)) {
if (__kmp_global.g.g_abort)
__kmp_abort_thread();
break;
}
KMP_YIELD(TRUE);
}
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
#endif /* USE_ITT_BUILD */
}
// __kmp_give_task puts a task into a given thread queue if:
// - the queue for that thread was created
// - there's space in that queue
// Because of this, __kmp_push_task needs to check if there's space after
// getting the lock
static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
kmp_int32 pass) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
kmp_task_team_t *task_team = taskdata->td_task_team;
KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
taskdata, tid));
// If task_team is NULL something went really bad...
KMP_DEBUG_ASSERT(task_team != NULL);
bool result = false;
kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
if (thread_data->td.td_deque == NULL) {
// There's no queue in this thread, go find another one
// We're guaranteed that at least one thread has a queue
KA_TRACE(30,
("__kmp_give_task: thread %d has no queue while giving task %p.\n",
tid, taskdata));
return result;
}
if (TCR_4(thread_data->td.td_deque_ntasks) >=
TASK_DEQUE_SIZE(thread_data->td)) {
KA_TRACE(
30,
("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
taskdata, tid));
// if this deque is bigger than the pass ratio give a chance to another
// thread
if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
return result;
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
__kmp_realloc_task_deque(thread, thread_data);
} else {
__kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
if (TCR_4(thread_data->td.td_deque_ntasks) >=
TASK_DEQUE_SIZE(thread_data->td)) {
KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
"thread %d.\n",
taskdata, tid));
// if this deque is bigger than the pass ratio give a chance to another
// thread
if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
goto release_and_exit;
__kmp_realloc_task_deque(thread, thread_data);
}
}
// lock is held here, and there is space in the deque
thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
// Wrap index.
thread_data->td.td_deque_tail =
(thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
TCW_4(thread_data->td.td_deque_ntasks,
TCR_4(thread_data->td.td_deque_ntasks) + 1);
result = true;
KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
taskdata, tid));
release_and_exit:
__kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
return result;
}
/* The finish of the proxy tasks is divided in two pieces:
- the top half is the one that can be done from a thread outside the team
- the bottom half must be run from a thread within the team
In order to run the bottom half the task gets queued back into one of the
threads of the team. Once the td_incomplete_child_task counter of the parent
is decremented the threads can leave the barriers. So, the bottom half needs
to be queued before the counter is decremented. The top half is therefore
divided in two parts:
- things that can be run before queuing the bottom half
- things that must be run after queuing the bottom half
This creates a second race as the bottom half can free the task before the
second top half is executed. To avoid this we use the
td_incomplete_child_task of the proxy task to synchronize the top and bottom
half. */
static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
taskdata->td_flags.complete = 1; // mark the task as completed
if (taskdata->td_taskgroup)
KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
// Create an imaginary children for this task so the bottom half cannot
// release the task before we have completed the second top half
KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
}
static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
kmp_int32 children = 0;
// Predecrement simulated by "- 1" calculation
children =
KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
KMP_DEBUG_ASSERT(children >= 0);
// Remove the imaginary children
KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
}
static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
kmp_info_t *thread = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
1); // top half must run before bottom half
// We need to wait to make sure the top half is finished
// Spinning here should be ok as this should happen quickly
while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
;
__kmp_release_deps(gtid, taskdata);
__kmp_free_task_and_ancestors(gtid, taskdata, thread);
}
/*!
@ingroup TASKING
@param gtid Global Thread ID of encountering thread
@param ptask Task which execution is completed
Execute the completation of a proxy task from a thread of that is part of the
team. Run first and bottom halves directly.
*/
void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
KMP_DEBUG_ASSERT(ptask != NULL);
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
KA_TRACE(
10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
gtid, taskdata));
KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
__kmp_first_top_half_finish_proxy(taskdata);
__kmp_second_top_half_finish_proxy(taskdata);
__kmp_bottom_half_finish_proxy(gtid, ptask);
KA_TRACE(10,
("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
gtid, taskdata));
}
/*!
@ingroup TASKING
@param ptask Task which execution is completed
Execute the completation of a proxy task from a thread that could not belong to
the team.
*/
void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
KMP_DEBUG_ASSERT(ptask != NULL);
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
KA_TRACE(
10,
("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
taskdata));
KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
__kmp_first_top_half_finish_proxy(taskdata);
// Enqueue task to complete bottom half completion from a thread within the
// corresponding team
kmp_team_t *team = taskdata->td_team;
kmp_int32 nthreads = team->t.t_nproc;
kmp_info_t *thread;
// This should be similar to start_k = __kmp_get_random( thread ) % nthreads
// but we cannot use __kmp_get_random here
kmp_int32 start_k = 0;
kmp_int32 pass = 1;
kmp_int32 k = start_k;
do {
// For now we're just linearly trying to find a thread
thread = team->t.t_threads[k];
k = (k + 1) % nthreads;
// we did a full pass through all the threads
if (k == start_k)
pass = pass << 1;
} while (!__kmp_give_task(thread, k, ptask, pass));
__kmp_second_top_half_finish_proxy(taskdata);
KA_TRACE(
10,
("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
taskdata));
}
kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
kmp_task_t *task) {
kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
td->td_allow_completion_event.ed.task = task;
__kmp_init_tas_lock(&td->td_allow_completion_event.lock);
}
return &td->td_allow_completion_event;
}
void __kmp_fulfill_event(kmp_event_t *event) {
if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
kmp_task_t *ptask = event->ed.task;
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
bool detached = false;
int gtid = __kmp_get_gtid();
if (taskdata->td_flags.proxy == TASK_PROXY) {
// The associated task code completed before this call and detached.
detached = true;
event->type = KMP_EVENT_UNINITIALIZED;
} else {
// The associated task has not completed but could be completing at this
// point.
// We need to take the lock to avoid races
__kmp_acquire_tas_lock(&event->lock, gtid);
if (taskdata->td_flags.proxy == TASK_PROXY)
detached = true;
event->type = KMP_EVENT_UNINITIALIZED;
__kmp_release_tas_lock(&event->lock, gtid);
}
if (detached) {
// If the task detached complete the proxy task
if (gtid >= 0) {
kmp_team_t *team = taskdata->td_team;
kmp_info_t *thread = __kmp_get_thread();
if (thread->th.th_team == team) {
__kmpc_proxy_task_completed(gtid, ptask);
return;
}
}
// fallback
__kmpc_proxy_task_completed_ooo(ptask);
}
}
}
// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
// for taskloop
//
// thread: allocating thread
// task_src: pointer to source task to be duplicated
// returns: a pointer to the allocated kmp_task_t structure (task).
kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
kmp_task_t *task;
kmp_taskdata_t *taskdata;
kmp_taskdata_t *taskdata_src;
kmp_taskdata_t *parent_task = thread->th.th_current_task;
size_t shareds_offset;
size_t task_size;
KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
task_src));
taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
TASK_FULL); // it should not be proxy task
KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
task_size = taskdata_src->td_size_alloc;
// Allocate a kmp_taskdata_t block and a kmp_task_t block.
KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
task_size));
#if USE_FAST_MEMORY
taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
#else
taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
#endif /* USE_FAST_MEMORY */
KMP_MEMCPY(taskdata, taskdata_src, task_size);
task = KMP_TASKDATA_TO_TASK(taskdata);
// Initialize new task (only specific fields not affected by memcpy)
taskdata->td_task_id = KMP_GEN_TASK_ID();
if (task->shareds != NULL) { // need setup shareds pointer
shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
task->shareds = &((char *)taskdata)[shareds_offset];
KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
0);
}
taskdata->td_alloc_thread = thread;
taskdata->td_parent = parent_task;
taskdata->td_taskgroup =
parent_task
->td_taskgroup; // task inherits the taskgroup from the parent task
// Only need to keep track of child task counts if team parallel and tasking
// not serialized
if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
if (parent_task->td_taskgroup)
KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
// Only need to keep track of allocated child tasks for explicit tasks since
// implicit not deallocated
if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
}
KA_TRACE(20,
("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
thread, taskdata, taskdata->td_parent));
#if OMPT_SUPPORT
if (UNLIKELY(ompt_enabled.enabled))
__ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
#endif
return task;
}
// Routine optionally generated by the compiler for setting the lastprivate flag
// and calling needed constructors for private/firstprivate objects
// (used to form taskloop tasks from pattern task)
// Parameters: dest task, src task, lastprivate flag.
typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
// class to encapsulate manipulating loop bounds in a taskloop task.
// this abstracts away the Intel vs GOMP taskloop interface for setting/getting
// the loop bound variables.
class kmp_taskloop_bounds_t {
kmp_task_t *task;
const kmp_taskdata_t *taskdata;
size_t lower_offset;
size_t upper_offset;
public:
kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
: task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
lower_offset((char *)lb - (char *)task),
upper_offset((char *)ub - (char *)task) {
KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
}
kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
: task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
size_t get_lower_offset() const { return lower_offset; }
size_t get_upper_offset() const { return upper_offset; }
kmp_uint64 get_lb() const {
kmp_int64 retval;
#if defined(KMP_GOMP_COMPAT)
// Intel task just returns the lower bound normally
if (!taskdata->td_flags.native) {
retval = *(kmp_int64 *)((char *)task + lower_offset);
} else {
// GOMP task has to take into account the sizeof(long)
if (taskdata->td_size_loop_bounds == 4) {
kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
retval = (kmp_int64)*lb;
} else {
kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
retval = (kmp_int64)*lb;
}
}
#else
retval = *(kmp_int64 *)((char *)task + lower_offset);
#endif // defined(KMP_GOMP_COMPAT)
return retval;
}
kmp_uint64 get_ub() const {
kmp_int64 retval;
#if defined(KMP_GOMP_COMPAT)
// Intel task just returns the upper bound normally
if (!taskdata->td_flags.native) {
retval = *(kmp_int64 *)((char *)task + upper_offset);
} else {
// GOMP task has to take into account the sizeof(long)
if (taskdata->td_size_loop_bounds == 4) {
kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
retval = (kmp_int64)*ub;
} else {
kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
retval = (kmp_int64)*ub;
}
}
#else
retval = *(kmp_int64 *)((char *)task + upper_offset);
#endif // defined(KMP_GOMP_COMPAT)
return retval;
}
void set_lb(kmp_uint64 lb) {
#if defined(KMP_GOMP_COMPAT)
// Intel task just sets the lower bound normally
if (!taskdata->td_flags.native) {
*(kmp_uint64 *)((char *)task + lower_offset) = lb;
} else {
// GOMP task has to take into account the sizeof(long)
if (taskdata->td_size_loop_bounds == 4) {
kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
*lower = (kmp_uint32)lb;
} else {
kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
*lower = (kmp_uint64)lb;
}
}
#else
*(kmp_uint64 *)((char *)task + lower_offset) = lb;
#endif // defined(KMP_GOMP_COMPAT)
}
void set_ub(kmp_uint64 ub) {
#if defined(KMP_GOMP_COMPAT)
// Intel task just sets the upper bound normally
if (!taskdata->td_flags.native) {
*(kmp_uint64 *)((char *)task + upper_offset) = ub;
} else {
// GOMP task has to take into account the sizeof(long)
if (taskdata->td_size_loop_bounds == 4) {
kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
*upper = (kmp_uint32)ub;
} else {
kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
*upper = (kmp_uint64)ub;
}
}
#else
*(kmp_uint64 *)((char *)task + upper_offset) = ub;
#endif // defined(KMP_GOMP_COMPAT)
}
};
// __kmp_taskloop_linear: Start tasks of the taskloop linearly
//
// loc Source location information
// gtid Global thread ID
// task Pattern task, exposes the loop iteration range
// lb Pointer to loop lower bound in task structure
// ub Pointer to loop upper bound in task structure
// st Loop stride
// ub_glob Global upper bound (used for lastprivate check)
// num_tasks Number of tasks to execute
// grainsize Number of loop iterations per task
// extras Number of chunks with grainsize+1 iterations
// tc Iterations count
// task_dup Tasks duplication routine
// codeptr_ra Return address for OMPT events
void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
kmp_uint64 ub_glob, kmp_uint64 num_tasks,
kmp_uint64 grainsize, kmp_uint64 extras,
kmp_uint64 tc,
#if OMPT_SUPPORT
void *codeptr_ra,
#endif
void *task_dup) {
KMP_COUNT_BLOCK(OMP_TASKLOOP);
KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
// compiler provides global bounds here
kmp_taskloop_bounds_t task_bounds(task, lb, ub);
kmp_uint64 lower = task_bounds.get_lb();
kmp_uint64 upper = task_bounds.get_ub();
kmp_uint64 i;
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskdata_t *current_task = thread->th.th_current_task;
kmp_task_t *next_task;
kmp_int32 lastpriv = 0;
KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
KMP_DEBUG_ASSERT(num_tasks > extras);
KMP_DEBUG_ASSERT(num_tasks > 0);
KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
"extras %lld, i=%lld,%lld(%d)%lld, dup %p\n",
gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st,
task_dup));
// Launch num_tasks tasks, assign grainsize iterations each task
for (i = 0; i < num_tasks; ++i) {
kmp_uint64 chunk_minus_1;
if (extras == 0) {
chunk_minus_1 = grainsize - 1;
} else {
chunk_minus_1 = grainsize;
--extras; // first extras iterations get bigger chunk (grainsize+1)
}
upper = lower + st * chunk_minus_1;
if (i == num_tasks - 1) {
// schedule the last task, set lastprivate flag if needed
if (st == 1) { // most common case
KMP_DEBUG_ASSERT(upper == *ub);
if (upper == ub_glob)
lastpriv = 1;
} else if (st > 0) { // positive loop stride
KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
if ((kmp_uint64)st > ub_glob - upper)
lastpriv = 1;
} else { // negative loop stride
KMP_DEBUG_ASSERT(upper + st < *ub);
if (upper - ub_glob < (kmp_uint64)(-st))
lastpriv = 1;
}
}
next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
kmp_taskloop_bounds_t next_task_bounds =
kmp_taskloop_bounds_t(next_task, task_bounds);
// adjust task-specific bounds
next_task_bounds.set_lb(lower);
if (next_taskdata->td_flags.native) {
next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
} else {
next_task_bounds.set_ub(upper);
}
if (ptask_dup != NULL) // set lastprivate flag, construct fistprivates, etc.
ptask_dup(next_task, task, lastpriv);
KA_TRACE(40,
("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
"upper %lld stride %lld, (offsets %p %p)\n",
gtid, i, next_task, lower, upper, st,
next_task_bounds.get_lower_offset(),
next_task_bounds.get_upper_offset()));
#if OMPT_SUPPORT
__kmp_omp_taskloop_task(NULL, gtid, next_task,
codeptr_ra); // schedule new task
#else
__kmp_omp_task(gtid, next_task, true); // schedule new task
#endif
lower = upper + st; // adjust lower bound for the next iteration
}
// free the pattern task and exit
__kmp_task_start(gtid, task, current_task); // make internal bookkeeping
// do not execute the pattern task, just do internal bookkeeping
__kmp_task_finish<false>(gtid, task, current_task);
}
// Structure to keep taskloop parameters for auxiliary task
// kept in the shareds of the task structure.
typedef struct __taskloop_params {
kmp_task_t *task;
kmp_uint64 *lb;
kmp_uint64 *ub;
void *task_dup;
kmp_int64 st;
kmp_uint64 ub_glob;
kmp_uint64 num_tasks;
kmp_uint64 grainsize;
kmp_uint64 extras;
kmp_uint64 tc;
kmp_uint64 num_t_min;
#if OMPT_SUPPORT
void *codeptr_ra;
#endif
} __taskloop_params_t;
void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64,
#if OMPT_SUPPORT
void *,
#endif
void *);
// Execute part of the the taskloop submitted as a task.
int __kmp_taskloop_task(int gtid, void *ptask) {
__taskloop_params_t *p =
(__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
kmp_task_t *task = p->task;
kmp_uint64 *lb = p->lb;
kmp_uint64 *ub = p->ub;
void *task_dup = p->task_dup;
// p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
kmp_int64 st = p->st;
kmp_uint64 ub_glob = p->ub_glob;
kmp_uint64 num_tasks = p->num_tasks;
kmp_uint64 grainsize = p->grainsize;
kmp_uint64 extras = p->extras;
kmp_uint64 tc = p->tc;
kmp_uint64 num_t_min = p->num_t_min;
#if OMPT_SUPPORT
void *codeptr_ra = p->codeptr_ra;
#endif
#if KMP_DEBUG
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
KMP_DEBUG_ASSERT(task != NULL);
KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
" %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
task_dup));
#endif
KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
if (num_tasks > num_t_min)
__kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
grainsize, extras, tc, num_t_min,
#if OMPT_SUPPORT
codeptr_ra,
#endif
task_dup);
else
__kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
grainsize, extras, tc,
#if OMPT_SUPPORT
codeptr_ra,
#endif
task_dup);
KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
return 0;
}
// Schedule part of the the taskloop as a task,
// execute the rest of the the taskloop.
//
// loc Source location information
// gtid Global thread ID
// task Pattern task, exposes the loop iteration range
// lb Pointer to loop lower bound in task structure
// ub Pointer to loop upper bound in task structure
// st Loop stride
// ub_glob Global upper bound (used for lastprivate check)
// num_tasks Number of tasks to execute
// grainsize Number of loop iterations per task
// extras Number of chunks with grainsize+1 iterations
// tc Iterations count
// num_t_min Threashold to launch tasks recursively
// task_dup Tasks duplication routine
// codeptr_ra Return address for OMPT events
void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
kmp_uint64 ub_glob, kmp_uint64 num_tasks,
kmp_uint64 grainsize, kmp_uint64 extras,
kmp_uint64 tc, kmp_uint64 num_t_min,
#if OMPT_SUPPORT
void *codeptr_ra,
#endif
void *task_dup) {
#if KMP_DEBUG
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
KMP_DEBUG_ASSERT(task != NULL);
KMP_DEBUG_ASSERT(num_tasks > num_t_min);
KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
" %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
task_dup));
#endif
p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
kmp_uint64 lower = *lb;
kmp_info_t *thread = __kmp_threads[gtid];
// kmp_taskdata_t *current_task = thread->th.th_current_task;
kmp_task_t *next_task;
size_t lower_offset =
(char *)lb - (char *)task; // remember offset of lb in the task structure
size_t upper_offset =
(char *)ub - (char *)task; // remember offset of ub in the task structure
KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
KMP_DEBUG_ASSERT(num_tasks > extras);
KMP_DEBUG_ASSERT(num_tasks > 0);
// split the loop in two halves
kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
kmp_uint64 gr_size0 = grainsize;
kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
if (n_tsk0 <= extras) {
gr_size0++; // integrate extras into grainsize
ext0 = 0; // no extra iters in 1st half
ext1 = extras - n_tsk0; // remaining extras
tc0 = gr_size0 * n_tsk0;
tc1 = tc - tc0;
} else { // n_tsk0 > extras
ext1 = 0; // no extra iters in 2nd half
ext0 = extras;
tc1 = grainsize * n_tsk1;
tc0 = tc - tc1;
}
ub0 = lower + st * (tc0 - 1);
lb1 = ub0 + st;
// create pattern task for 2nd half of the loop
next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
// adjust lower bound (upper bound is not changed) for the 2nd half
*(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
if (ptask_dup != NULL) // construct fistprivates, etc.
ptask_dup(next_task, task, 0);
*ub = ub0; // adjust upper bound for the 1st half
// create auxiliary task for 2nd half of the loop
kmp_task_t *new_task =
__kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
sizeof(__taskloop_params_t), &__kmp_taskloop_task);
__taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
p->task = next_task;
p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
p->task_dup = task_dup;
p->st = st;
p->ub_glob = ub_glob;
p->num_tasks = n_tsk1;
p->grainsize = grainsize;
p->extras = ext1;
p->tc = tc1;
p->num_t_min = num_t_min;
#if OMPT_SUPPORT
p->codeptr_ra = codeptr_ra;
#endif
#if OMPT_SUPPORT
// schedule new task with correct return address for OMPT events
__kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
#else
__kmp_omp_task(gtid, new_task, true); // schedule new task
#endif
// execute the 1st half of current subrange
if (n_tsk0 > num_t_min)
__kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
ext0, tc0, num_t_min,
#if OMPT_SUPPORT
codeptr_ra,
#endif
task_dup);
else
__kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
gr_size0, ext0, tc0,
#if OMPT_SUPPORT
codeptr_ra,
#endif
task_dup);
KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid));
}
/*!
@ingroup TASKING
@param loc Source location information
@param gtid Global thread ID
@param task Task structure
@param if_val Value of the if clause
@param lb Pointer to loop lower bound in task structure
@param ub Pointer to loop upper bound in task structure
@param st Loop stride
@param nogroup Flag, 1 if no taskgroup needs to be added, 0 otherwise
@param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
@param grainsize Schedule value if specified
@param task_dup Tasks duplication routine
Execute the taskloop construct.
*/
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
int sched, kmp_uint64 grainsize, void *task_dup) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
KMP_DEBUG_ASSERT(task != NULL);
if (nogroup == 0) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_taskgroup(loc, gtid);
}
// =========================================================================
// calculate loop parameters
kmp_taskloop_bounds_t task_bounds(task, lb, ub);
kmp_uint64 tc;
// compiler provides global bounds here
kmp_uint64 lower = task_bounds.get_lb();
kmp_uint64 upper = task_bounds.get_ub();
kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
kmp_uint64 num_tasks = 0, extras = 0;
kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
kmp_info_t *thread = __kmp_threads[gtid];
kmp_taskdata_t *current_task = thread->th.th_current_task;
KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
"grain %llu(%d), dup %p\n",
gtid, taskdata, lower, upper, st, grainsize, sched, task_dup));
// compute trip count
if (st == 1) { // most common case
tc = upper - lower + 1;
} else if (st < 0) {
tc = (lower - upper) / (-st) + 1;
} else { // st > 0
tc = (upper - lower) / st + 1;
}
if (tc == 0) {
KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
// free the pattern task and exit
__kmp_task_start(gtid, task, current_task);
// do not execute anything for zero-trip loop
__kmp_task_finish<false>(gtid, task, current_task);
return;
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
&(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
}
#endif
if (num_tasks_min == 0)
// TODO: can we choose better default heuristic?
num_tasks_min =
KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
// compute num_tasks/grainsize based on the input provided
switch (sched) {
case 0: // no schedule clause specified, we can choose the default
// let's try to schedule (team_size*10) tasks
grainsize = thread->th.th_team_nproc * 10;
KMP_FALLTHROUGH();
case 2: // num_tasks provided
if (grainsize > tc) {
num_tasks = tc; // too big num_tasks requested, adjust values
grainsize = 1;
extras = 0;
} else {
num_tasks = grainsize;
grainsize = tc / num_tasks;
extras = tc % num_tasks;
}
break;
case 1: // grainsize provided
if (grainsize > tc) {
num_tasks = 1; // too big grainsize requested, adjust values
grainsize = tc;
extras = 0;
} else {
num_tasks = tc / grainsize;
// adjust grainsize for balanced distribution of iterations
grainsize = tc / num_tasks;
extras = tc % num_tasks;
}
break;
default:
KMP_ASSERT2(0, "unknown scheduling of taskloop");
}
KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
KMP_DEBUG_ASSERT(num_tasks > extras);
KMP_DEBUG_ASSERT(num_tasks > 0);
// =========================================================================
// check if clause value first
// Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
if (if_val == 0) { // if(0) specified, mark task as serial
taskdata->td_flags.task_serial = 1;
taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
// always start serial tasks linearly
__kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
grainsize, extras, tc,
#if OMPT_SUPPORT
OMPT_GET_RETURN_ADDRESS(0),
#endif
task_dup);
// !taskdata->td_flags.native => currently force linear spawning of tasks
// for GOMP_taskloop
} else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
"(%lld), grain %llu, extras %llu\n",
gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
__kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
grainsize, extras, tc, num_tasks_min,
#if OMPT_SUPPORT
OMPT_GET_RETURN_ADDRESS(0),
#endif
task_dup);
} else {
KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
"(%lld), grain %llu, extras %llu\n",
gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
__kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
grainsize, extras, tc,
#if OMPT_SUPPORT
OMPT_GET_RETURN_ADDRESS(0),
#endif
task_dup);
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
&(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
}
#endif
if (nogroup == 0) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_end_taskgroup(loc, gtid);
}
KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
}
|