reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of the API functions.
//
//===----------------------------------------------------------------------===//

#include "xray_interface_internal.h"

#include <cstdint>
#include <cstdio>
#include <errno.h>
#include <limits>
#include <string.h>
#include <sys/mman.h>

#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/sanitizer.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#endif

#include "sanitizer_common/sanitizer_addrhashmap.h"
#include "sanitizer_common/sanitizer_common.h"

#include "xray_defs.h"
#include "xray_flags.h"

extern __sanitizer::SpinMutex XRayInstrMapMutex;
extern __sanitizer::atomic_uint8_t XRayInitialized;
extern __xray::XRaySledMap XRayInstrMap;

namespace __xray {

#if defined(__x86_64__)
static const int16_t cSledLength = 12;
#elif defined(__aarch64__)
static const int16_t cSledLength = 32;
#elif defined(__arm__)
static const int16_t cSledLength = 28;
#elif SANITIZER_MIPS32
static const int16_t cSledLength = 48;
#elif SANITIZER_MIPS64
static const int16_t cSledLength = 64;
#elif defined(__powerpc64__)
static const int16_t cSledLength = 8;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */

// This is the function to call when we encounter the entry or exit sleds.
atomic_uintptr_t XRayPatchedFunction{0};

// This is the function to call from the arg1-enabled sleds/trampolines.
atomic_uintptr_t XRayArgLogger{0};

// This is the function to call when we encounter a custom event log call.
atomic_uintptr_t XRayPatchedCustomEvent{0};

// This is the function to call when we encounter a typed event log call.
atomic_uintptr_t XRayPatchedTypedEvent{0};

// This is the global status to determine whether we are currently
// patching/unpatching.
atomic_uint8_t XRayPatching{0};

struct TypeDescription {
  uint32_t type_id;
  std::size_t description_string_length;
};

using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
// An address map from immutable descriptors to type ids.
TypeDescriptorMapType TypeDescriptorAddressMap{};

atomic_uint32_t TypeEventDescriptorCounter{0};

// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
// undo any successful mprotect(...) changes. This is used to make a page
// writeable and executable, and upon destruction if it was successful in
// doing so returns the page into a read-only and executable page.
//
// This is only used specifically for runtime-patching of the XRay
// instrumentation points. This assumes that the executable pages are
// originally read-and-execute only.
class MProtectHelper {
  void *PageAlignedAddr;
  std::size_t MProtectLen;
  bool MustCleanup;

public:
  explicit MProtectHelper(void *PageAlignedAddr,
                          std::size_t MProtectLen,
                          std::size_t PageSize) XRAY_NEVER_INSTRUMENT
      : PageAlignedAddr(PageAlignedAddr),
        MProtectLen(MProtectLen),
        MustCleanup(false) {
#if SANITIZER_FUCHSIA
    MProtectLen = RoundUpTo(MProtectLen, PageSize);
#endif
  }

  int MakeWriteable() XRAY_NEVER_INSTRUMENT {
#if SANITIZER_FUCHSIA
    auto R = __sanitizer_change_code_protection(
        reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
    if (R != ZX_OK) {
      Report("XRay: cannot change code protection: %s\n",
             _zx_status_get_string(R));
      return -1;
    }
    MustCleanup = true;
    return 0;
#else
    auto R = mprotect(PageAlignedAddr, MProtectLen,
                      PROT_READ | PROT_WRITE | PROT_EXEC);
    if (R != -1)
      MustCleanup = true;
    return R;
#endif
  }

  ~MProtectHelper() XRAY_NEVER_INSTRUMENT {
    if (MustCleanup) {
#if SANITIZER_FUCHSIA
      auto R = __sanitizer_change_code_protection(
          reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
      if (R != ZX_OK) {
        Report("XRay: cannot change code protection: %s\n",
               _zx_status_get_string(R));
      }
#else
      mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
#endif
    }
  }
};

namespace {

bool patchSled(const XRaySledEntry &Sled, bool Enable,
               int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  bool Success = false;
  switch (Sled.Kind) {
  case XRayEntryType::ENTRY:
    Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
    break;
  case XRayEntryType::EXIT:
    Success = patchFunctionExit(Enable, FuncId, Sled);
    break;
  case XRayEntryType::TAIL:
    Success = patchFunctionTailExit(Enable, FuncId, Sled);
    break;
  case XRayEntryType::LOG_ARGS_ENTRY:
    Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
    break;
  case XRayEntryType::CUSTOM_EVENT:
    Success = patchCustomEvent(Enable, FuncId, Sled);
    break;
  case XRayEntryType::TYPED_EVENT:
    Success = patchTypedEvent(Enable, FuncId, Sled);
    break;
  default:
    Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
    return false;
  }
  return Success;
}

XRayPatchingStatus patchFunction(int32_t FuncId,
                                 bool Enable) XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.

  uint8_t NotPatching = false;
  if (!atomic_compare_exchange_strong(
          &XRayPatching, &NotPatching, true, memory_order_acq_rel))
    return XRayPatchingStatus::ONGOING; // Already patching.

  // Next, we look for the function index.
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }

  // If we don't have an index, we can't patch individual functions.
  if (InstrMap.Functions == 0)
    return XRayPatchingStatus::NOT_INITIALIZED;

  // FuncId must be a positive number, less than the number of functions
  // instrumented.
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
    Report("Invalid function id provided: %d\n", FuncId);
    return XRayPatchingStatus::FAILED;
  }

  // Now we patch ths sleds for this specific function.
  auto SledRange = InstrMap.SledsIndex[FuncId - 1];
  auto *f = SledRange.Begin;
  auto *e = SledRange.End;

  bool SucceedOnce = false;
  while (f != e)
    SucceedOnce |= patchSled(*f++, Enable, FuncId);

  atomic_store(&XRayPatching, false,
                            memory_order_release);

  if (!SucceedOnce) {
    Report("Failed patching any sled for function '%d'.", FuncId);
    return XRayPatchingStatus::FAILED;
  }

  return XRayPatchingStatus::SUCCESS;
}

// controlPatching implements the common internals of the patching/unpatching
// implementation. |Enable| defines whether we're enabling or disabling the
// runtime XRay instrumentation.
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.

  uint8_t NotPatching = false;
  if (!atomic_compare_exchange_strong(
          &XRayPatching, &NotPatching, true, memory_order_acq_rel))
    return XRayPatchingStatus::ONGOING; // Already patching.

  uint8_t PatchingSuccess = false;
  auto XRayPatchingStatusResetter =
      at_scope_exit([&PatchingSuccess] {
        if (!PatchingSuccess)
          atomic_store(&XRayPatching, false,
                                    memory_order_release);
      });

  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }
  if (InstrMap.Entries == 0)
    return XRayPatchingStatus::NOT_INITIALIZED;

  uint32_t FuncId = 1;
  uint64_t CurFun = 0;

  // First we want to find the bounds for which we have instrumentation points,
  // and try to get as few calls to mprotect(...) as possible. We're assuming
  // that all the sleds for the instrumentation map are contiguous as a single
  // set of pages. When we do support dynamic shared object instrumentation,
  // we'll need to do this for each set of page load offsets per DSO loaded. For
  // now we're assuming we can mprotect the whole section of text between the
  // minimum sled address and the maximum sled address (+ the largest sled
  // size).
  auto MinSled = InstrMap.Sleds[0];
  auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1];
  for (std::size_t I = 0; I < InstrMap.Entries; I++) {
    const auto &Sled = InstrMap.Sleds[I];
    if (Sled.Address < MinSled.Address)
      MinSled = Sled;
    if (Sled.Address > MaxSled.Address)
      MaxSled = Sled;
  }

  const size_t PageSize = flags()->xray_page_size_override > 0
                              ? flags()->xray_page_size_override
                              : GetPageSizeCached();
  if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
    Report("System page size is not a power of two: %lld\n", PageSize);
    return XRayPatchingStatus::FAILED;
  }

  void *PageAlignedAddr =
      reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
  size_t MProtectLen =
      (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
  MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
  if (Protector.MakeWriteable() == -1) {
    Report("Failed mprotect: %d\n", errno);
    return XRayPatchingStatus::FAILED;
  }

  for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
    auto &Sled = InstrMap.Sleds[I];
    auto F = Sled.Function;
    if (CurFun == 0)
      CurFun = F;
    if (F != CurFun) {
      ++FuncId;
      CurFun = F;
    }
    patchSled(Sled, Enable, FuncId);
  }
  atomic_store(&XRayPatching, false,
                            memory_order_release);
  PatchingSuccess = true;
  return XRayPatchingStatus::SUCCESS;
}

XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
                                            bool Enable) XRAY_NEVER_INSTRUMENT {
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }

  // FuncId must be a positive number, less than the number of functions
  // instrumented.
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
    Report("Invalid function id provided: %d\n", FuncId);
    return XRayPatchingStatus::FAILED;
  }

  const size_t PageSize = flags()->xray_page_size_override > 0
                              ? flags()->xray_page_size_override
                              : GetPageSizeCached();
  if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
    Report("Provided page size is not a power of two: %lld\n", PageSize);
    return XRayPatchingStatus::FAILED;
  }

  // Here we compute the minumum sled and maximum sled associated with a
  // particular function ID.
  auto SledRange = InstrMap.SledsIndex[FuncId - 1];
  auto *f = SledRange.Begin;
  auto *e = SledRange.End;
  auto MinSled = *f;
  auto MaxSled = *(SledRange.End - 1);
  while (f != e) {
    if (f->Address < MinSled.Address)
      MinSled = *f;
    if (f->Address > MaxSled.Address)
      MaxSled = *f;
    ++f;
  }

  void *PageAlignedAddr =
      reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
  size_t MProtectLen =
      (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
  MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
  if (Protector.MakeWriteable() == -1) {
    Report("Failed mprotect: %d\n", errno);
    return XRayPatchingStatus::FAILED;
  }
  return patchFunction(FuncId, Enable);
}

} // namespace

} // namespace __xray

using namespace __xray;

// The following functions are declared `extern "C" {...}` in the header, hence
// they're defined in the global namespace.

int __xray_set_handler(void (*entry)(int32_t,
                                     XRayEntryType)) XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {

    atomic_store(&__xray::XRayPatchedFunction,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}

int __xray_set_customevent_handler(void (*entry)(void *, size_t))
    XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {
    atomic_store(&__xray::XRayPatchedCustomEvent,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}

int __xray_set_typedevent_handler(void (*entry)(
    uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {
    atomic_store(&__xray::XRayPatchedTypedEvent,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}

int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_handler(nullptr);
}

int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_customevent_handler(nullptr);
}

int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_typedevent_handler(nullptr);
}

uint16_t __xray_register_event_type(
    const char *const event_type) XRAY_NEVER_INSTRUMENT {
  TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
  if (h.created()) {
    h->type_id = atomic_fetch_add(
        &TypeEventDescriptorCounter, 1, memory_order_acq_rel);
    h->description_string_length = strnlen(event_type, 1024);
  }
  return h->type_id;
}

XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
  return controlPatching(true);
}

XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
  return controlPatching(false);
}

XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  return mprotectAndPatchFunction(FuncId, true);
}

XRayPatchingStatus
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  return mprotectAndPatchFunction(FuncId, false);
}

int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return 0;

  // A relaxed write might not be visible even if the current thread gets
  // scheduled on a different CPU/NUMA node.  We need to wait for everyone to
  // have this handler installed for consistency of collected data across CPUs.
  atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
                            memory_order_release);
  return 1;
}

int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }

uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  SpinMutexLock Guard(&XRayInstrMapMutex);
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
    return 0;
  return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
// sled might be a local entry, which is always +8 based on the global entry.
// Always return the global entry.
#ifdef __PPC__
         & ~0xf
#endif
      ;
}

size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
  SpinMutexLock Guard(&XRayInstrMapMutex);
  return XRayInstrMap.Functions;
}