1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
| //===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of the API functions.
//
//===----------------------------------------------------------------------===//
#include "xray_interface_internal.h"
#include <cstdint>
#include <cstdio>
#include <errno.h>
#include <limits>
#include <string.h>
#include <sys/mman.h>
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/sanitizer.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#endif
#include "sanitizer_common/sanitizer_addrhashmap.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_flags.h"
extern __sanitizer::SpinMutex XRayInstrMapMutex;
extern __sanitizer::atomic_uint8_t XRayInitialized;
extern __xray::XRaySledMap XRayInstrMap;
namespace __xray {
#if defined(__x86_64__)
static const int16_t cSledLength = 12;
#elif defined(__aarch64__)
static const int16_t cSledLength = 32;
#elif defined(__arm__)
static const int16_t cSledLength = 28;
#elif SANITIZER_MIPS32
static const int16_t cSledLength = 48;
#elif SANITIZER_MIPS64
static const int16_t cSledLength = 64;
#elif defined(__powerpc64__)
static const int16_t cSledLength = 8;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
// This is the function to call when we encounter the entry or exit sleds.
atomic_uintptr_t XRayPatchedFunction{0};
// This is the function to call from the arg1-enabled sleds/trampolines.
atomic_uintptr_t XRayArgLogger{0};
// This is the function to call when we encounter a custom event log call.
atomic_uintptr_t XRayPatchedCustomEvent{0};
// This is the function to call when we encounter a typed event log call.
atomic_uintptr_t XRayPatchedTypedEvent{0};
// This is the global status to determine whether we are currently
// patching/unpatching.
atomic_uint8_t XRayPatching{0};
struct TypeDescription {
uint32_t type_id;
std::size_t description_string_length;
};
using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
// An address map from immutable descriptors to type ids.
TypeDescriptorMapType TypeDescriptorAddressMap{};
atomic_uint32_t TypeEventDescriptorCounter{0};
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
// undo any successful mprotect(...) changes. This is used to make a page
// writeable and executable, and upon destruction if it was successful in
// doing so returns the page into a read-only and executable page.
//
// This is only used specifically for runtime-patching of the XRay
// instrumentation points. This assumes that the executable pages are
// originally read-and-execute only.
class MProtectHelper {
void *PageAlignedAddr;
std::size_t MProtectLen;
bool MustCleanup;
public:
explicit MProtectHelper(void *PageAlignedAddr,
std::size_t MProtectLen,
std::size_t PageSize) XRAY_NEVER_INSTRUMENT
: PageAlignedAddr(PageAlignedAddr),
MProtectLen(MProtectLen),
MustCleanup(false) {
#if SANITIZER_FUCHSIA
MProtectLen = RoundUpTo(MProtectLen, PageSize);
#endif
}
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
#if SANITIZER_FUCHSIA
auto R = __sanitizer_change_code_protection(
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
if (R != ZX_OK) {
Report("XRay: cannot change code protection: %s\n",
_zx_status_get_string(R));
return -1;
}
MustCleanup = true;
return 0;
#else
auto R = mprotect(PageAlignedAddr, MProtectLen,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (R != -1)
MustCleanup = true;
return R;
#endif
}
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
if (MustCleanup) {
#if SANITIZER_FUCHSIA
auto R = __sanitizer_change_code_protection(
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
if (R != ZX_OK) {
Report("XRay: cannot change code protection: %s\n",
_zx_status_get_string(R));
}
#else
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
#endif
}
}
};
namespace {
bool patchSled(const XRaySledEntry &Sled, bool Enable,
int32_t FuncId) XRAY_NEVER_INSTRUMENT {
bool Success = false;
switch (Sled.Kind) {
case XRayEntryType::ENTRY:
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
break;
case XRayEntryType::EXIT:
Success = patchFunctionExit(Enable, FuncId, Sled);
break;
case XRayEntryType::TAIL:
Success = patchFunctionTailExit(Enable, FuncId, Sled);
break;
case XRayEntryType::LOG_ARGS_ENTRY:
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
break;
case XRayEntryType::CUSTOM_EVENT:
Success = patchCustomEvent(Enable, FuncId, Sled);
break;
case XRayEntryType::TYPED_EVENT:
Success = patchTypedEvent(Enable, FuncId, Sled);
break;
default:
Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
return false;
}
return Success;
}
XRayPatchingStatus patchFunction(int32_t FuncId,
bool Enable) XRAY_NEVER_INSTRUMENT {
if (!atomic_load(&XRayInitialized,
memory_order_acquire))
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
uint8_t NotPatching = false;
if (!atomic_compare_exchange_strong(
&XRayPatching, &NotPatching, true, memory_order_acq_rel))
return XRayPatchingStatus::ONGOING; // Already patching.
// Next, we look for the function index.
XRaySledMap InstrMap;
{
SpinMutexLock Guard(&XRayInstrMapMutex);
InstrMap = XRayInstrMap;
}
// If we don't have an index, we can't patch individual functions.
if (InstrMap.Functions == 0)
return XRayPatchingStatus::NOT_INITIALIZED;
// FuncId must be a positive number, less than the number of functions
// instrumented.
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
Report("Invalid function id provided: %d\n", FuncId);
return XRayPatchingStatus::FAILED;
}
// Now we patch ths sleds for this specific function.
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
auto *f = SledRange.Begin;
auto *e = SledRange.End;
bool SucceedOnce = false;
while (f != e)
SucceedOnce |= patchSled(*f++, Enable, FuncId);
atomic_store(&XRayPatching, false,
memory_order_release);
if (!SucceedOnce) {
Report("Failed patching any sled for function '%d'.", FuncId);
return XRayPatchingStatus::FAILED;
}
return XRayPatchingStatus::SUCCESS;
}
// controlPatching implements the common internals of the patching/unpatching
// implementation. |Enable| defines whether we're enabling or disabling the
// runtime XRay instrumentation.
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
if (!atomic_load(&XRayInitialized,
memory_order_acquire))
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
uint8_t NotPatching = false;
if (!atomic_compare_exchange_strong(
&XRayPatching, &NotPatching, true, memory_order_acq_rel))
return XRayPatchingStatus::ONGOING; // Already patching.
uint8_t PatchingSuccess = false;
auto XRayPatchingStatusResetter =
at_scope_exit([&PatchingSuccess] {
if (!PatchingSuccess)
atomic_store(&XRayPatching, false,
memory_order_release);
});
XRaySledMap InstrMap;
{
SpinMutexLock Guard(&XRayInstrMapMutex);
InstrMap = XRayInstrMap;
}
if (InstrMap.Entries == 0)
return XRayPatchingStatus::NOT_INITIALIZED;
uint32_t FuncId = 1;
uint64_t CurFun = 0;
// First we want to find the bounds for which we have instrumentation points,
// and try to get as few calls to mprotect(...) as possible. We're assuming
// that all the sleds for the instrumentation map are contiguous as a single
// set of pages. When we do support dynamic shared object instrumentation,
// we'll need to do this for each set of page load offsets per DSO loaded. For
// now we're assuming we can mprotect the whole section of text between the
// minimum sled address and the maximum sled address (+ the largest sled
// size).
auto MinSled = InstrMap.Sleds[0];
auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1];
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
const auto &Sled = InstrMap.Sleds[I];
if (Sled.Address < MinSled.Address)
MinSled = Sled;
if (Sled.Address > MaxSled.Address)
MaxSled = Sled;
}
const size_t PageSize = flags()->xray_page_size_override > 0
? flags()->xray_page_size_override
: GetPageSizeCached();
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
Report("System page size is not a power of two: %lld\n", PageSize);
return XRayPatchingStatus::FAILED;
}
void *PageAlignedAddr =
reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
size_t MProtectLen =
(MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
if (Protector.MakeWriteable() == -1) {
Report("Failed mprotect: %d\n", errno);
return XRayPatchingStatus::FAILED;
}
for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
auto &Sled = InstrMap.Sleds[I];
auto F = Sled.Function;
if (CurFun == 0)
CurFun = F;
if (F != CurFun) {
++FuncId;
CurFun = F;
}
patchSled(Sled, Enable, FuncId);
}
atomic_store(&XRayPatching, false,
memory_order_release);
PatchingSuccess = true;
return XRayPatchingStatus::SUCCESS;
}
XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
bool Enable) XRAY_NEVER_INSTRUMENT {
XRaySledMap InstrMap;
{
SpinMutexLock Guard(&XRayInstrMapMutex);
InstrMap = XRayInstrMap;
}
// FuncId must be a positive number, less than the number of functions
// instrumented.
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
Report("Invalid function id provided: %d\n", FuncId);
return XRayPatchingStatus::FAILED;
}
const size_t PageSize = flags()->xray_page_size_override > 0
? flags()->xray_page_size_override
: GetPageSizeCached();
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
Report("Provided page size is not a power of two: %lld\n", PageSize);
return XRayPatchingStatus::FAILED;
}
// Here we compute the minumum sled and maximum sled associated with a
// particular function ID.
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
auto *f = SledRange.Begin;
auto *e = SledRange.End;
auto MinSled = *f;
auto MaxSled = *(SledRange.End - 1);
while (f != e) {
if (f->Address < MinSled.Address)
MinSled = *f;
if (f->Address > MaxSled.Address)
MaxSled = *f;
++f;
}
void *PageAlignedAddr =
reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
size_t MProtectLen =
(MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
if (Protector.MakeWriteable() == -1) {
Report("Failed mprotect: %d\n", errno);
return XRayPatchingStatus::FAILED;
}
return patchFunction(FuncId, Enable);
}
} // namespace
} // namespace __xray
using namespace __xray;
// The following functions are declared `extern "C" {...}` in the header, hence
// they're defined in the global namespace.
int __xray_set_handler(void (*entry)(int32_t,
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
if (atomic_load(&XRayInitialized,
memory_order_acquire)) {
atomic_store(&__xray::XRayPatchedFunction,
reinterpret_cast<uintptr_t>(entry),
memory_order_release);
return 1;
}
return 0;
}
int __xray_set_customevent_handler(void (*entry)(void *, size_t))
XRAY_NEVER_INSTRUMENT {
if (atomic_load(&XRayInitialized,
memory_order_acquire)) {
atomic_store(&__xray::XRayPatchedCustomEvent,
reinterpret_cast<uintptr_t>(entry),
memory_order_release);
return 1;
}
return 0;
}
int __xray_set_typedevent_handler(void (*entry)(
uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT {
if (atomic_load(&XRayInitialized,
memory_order_acquire)) {
atomic_store(&__xray::XRayPatchedTypedEvent,
reinterpret_cast<uintptr_t>(entry),
memory_order_release);
return 1;
}
return 0;
}
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
return __xray_set_handler(nullptr);
}
int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
return __xray_set_customevent_handler(nullptr);
}
int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
return __xray_set_typedevent_handler(nullptr);
}
uint16_t __xray_register_event_type(
const char *const event_type) XRAY_NEVER_INSTRUMENT {
TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
if (h.created()) {
h->type_id = atomic_fetch_add(
&TypeEventDescriptorCounter, 1, memory_order_acq_rel);
h->description_string_length = strnlen(event_type, 1024);
}
return h->type_id;
}
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
return controlPatching(true);
}
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
return controlPatching(false);
}
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
return mprotectAndPatchFunction(FuncId, true);
}
XRayPatchingStatus
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
return mprotectAndPatchFunction(FuncId, false);
}
int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
if (!atomic_load(&XRayInitialized,
memory_order_acquire))
return 0;
// A relaxed write might not be visible even if the current thread gets
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
// have this handler installed for consistency of collected data across CPUs.
atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
memory_order_release);
return 1;
}
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayInstrMapMutex);
if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
return 0;
return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
// sled might be a local entry, which is always +8 based on the global entry.
// Always return the global entry.
#ifdef __PPC__
& ~0xf
#endif
;
}
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
SpinMutexLock Guard(&XRayInstrMapMutex);
return XRayInstrMap.Functions;
}
|