1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
| //===-- xray_fdr_controller.h ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#ifndef COMPILER_RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_
#define COMPILER_RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_
#include <limits>
#include <time.h>
#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_buffer_queue.h"
#include "xray_fdr_log_writer.h"
namespace __xray {
template <size_t Version = 5> class FDRController {
BufferQueue *BQ;
BufferQueue::Buffer &B;
FDRLogWriter &W;
int (*WallClockReader)(clockid_t, struct timespec *) = 0;
uint64_t CycleThreshold = 0;
uint64_t LastFunctionEntryTSC = 0;
uint64_t LatestTSC = 0;
uint16_t LatestCPU = 0;
tid_t TId = 0;
pid_t PId = 0;
bool First = true;
uint32_t UndoableFunctionEnters = 0;
uint32_t UndoableTailExits = 0;
bool finalized() const XRAY_NEVER_INSTRUMENT {
return BQ == nullptr || BQ->finalizing();
}
bool hasSpace(size_t S) XRAY_NEVER_INSTRUMENT {
return B.Data != nullptr && B.Generation == BQ->generation() &&
W.getNextRecord() + S <= reinterpret_cast<char *>(B.Data) + B.Size;
}
constexpr int32_t mask(int32_t FuncId) const XRAY_NEVER_INSTRUMENT {
return FuncId & ((1 << 29) - 1);
}
bool getNewBuffer() XRAY_NEVER_INSTRUMENT {
if (BQ->getBuffer(B) != BufferQueue::ErrorCode::Ok)
return false;
W.resetRecord();
DCHECK_EQ(W.getNextRecord(), B.Data);
LatestTSC = 0;
LatestCPU = 0;
First = true;
UndoableFunctionEnters = 0;
UndoableTailExits = 0;
atomic_store(B.Extents, 0, memory_order_release);
return true;
}
bool setupNewBuffer() XRAY_NEVER_INSTRUMENT {
if (finalized())
return false;
DCHECK(hasSpace(sizeof(MetadataRecord) * 3));
TId = GetTid();
PId = internal_getpid();
struct timespec TS {
0, 0
};
WallClockReader(CLOCK_MONOTONIC, &TS);
MetadataRecord Metadata[] = {
// Write out a MetadataRecord to signify that this is the start of a new
// buffer, associated with a particular thread, with a new CPU. For the
// data, we have 15 bytes to squeeze as much information as we can. At
// this point we only write down the following bytes:
// - Thread ID (tid_t, cast to 4 bytes type due to Darwin being 8
// bytes)
createMetadataRecord<MetadataRecord::RecordKinds::NewBuffer>(
static_cast<int32_t>(TId)),
// Also write the WalltimeMarker record. We only really need microsecond
// precision here, and enforce across platforms that we need 64-bit
// seconds and 32-bit microseconds encoded in the Metadata record.
createMetadataRecord<MetadataRecord::RecordKinds::WalltimeMarker>(
static_cast<int64_t>(TS.tv_sec),
static_cast<int32_t>(TS.tv_nsec / 1000)),
// Also write the Pid record.
createMetadataRecord<MetadataRecord::RecordKinds::Pid>(
static_cast<int32_t>(PId)),
};
if (finalized())
return false;
return W.writeMetadataRecords(Metadata);
}
bool prepareBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
if (finalized())
return returnBuffer();
if (UNLIKELY(!hasSpace(S))) {
if (!returnBuffer())
return false;
if (!getNewBuffer())
return false;
if (!setupNewBuffer())
return false;
}
if (First) {
First = false;
W.resetRecord();
atomic_store(B.Extents, 0, memory_order_release);
return setupNewBuffer();
}
return true;
}
bool returnBuffer() XRAY_NEVER_INSTRUMENT {
if (BQ == nullptr)
return false;
First = true;
if (finalized()) {
BQ->releaseBuffer(B); // ignore result.
return false;
}
return BQ->releaseBuffer(B) == BufferQueue::ErrorCode::Ok;
}
enum class PreambleResult { NoChange, WroteMetadata, InvalidBuffer };
PreambleResult recordPreamble(uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
if (UNLIKELY(LatestCPU != CPU || LatestTSC == 0)) {
// We update our internal tracking state for the Latest TSC and CPU we've
// seen, then write out the appropriate metadata and function records.
LatestTSC = TSC;
LatestCPU = CPU;
if (B.Generation != BQ->generation())
return PreambleResult::InvalidBuffer;
W.writeMetadata<MetadataRecord::RecordKinds::NewCPUId>(CPU, TSC);
return PreambleResult::WroteMetadata;
}
DCHECK_EQ(LatestCPU, CPU);
if (UNLIKELY(LatestTSC > TSC ||
TSC - LatestTSC >
uint64_t{std::numeric_limits<int32_t>::max()})) {
// Either the TSC has wrapped around from the last TSC we've seen or the
// delta is too large to fit in a 32-bit signed integer, so we write a
// wrap-around record.
LatestTSC = TSC;
if (B.Generation != BQ->generation())
return PreambleResult::InvalidBuffer;
W.writeMetadata<MetadataRecord::RecordKinds::TSCWrap>(TSC);
return PreambleResult::WroteMetadata;
}
return PreambleResult::NoChange;
}
bool rewindRecords(int32_t FuncId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
// Undo one enter record, because at this point we are either at the state
// of:
// - We are exiting a function that we recently entered.
// - We are exiting a function that was the result of a sequence of tail
// exits, and we can check whether the tail exits can be re-wound.
//
FunctionRecord F;
W.undoWrites(sizeof(FunctionRecord));
if (B.Generation != BQ->generation())
return false;
internal_memcpy(&F, W.getNextRecord(), sizeof(FunctionRecord));
DCHECK(F.RecordKind ==
uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
"Expected to find function entry recording when rewinding.");
DCHECK_EQ(F.FuncId, FuncId & ~(0x0F << 28));
LatestTSC -= F.TSCDelta;
if (--UndoableFunctionEnters != 0) {
LastFunctionEntryTSC -= F.TSCDelta;
return true;
}
LastFunctionEntryTSC = 0;
auto RewindingTSC = LatestTSC;
auto RewindingRecordPtr = W.getNextRecord() - sizeof(FunctionRecord);
while (UndoableTailExits) {
if (B.Generation != BQ->generation())
return false;
internal_memcpy(&F, RewindingRecordPtr, sizeof(FunctionRecord));
DCHECK_EQ(F.RecordKind,
uint8_t(FunctionRecord::RecordKinds::FunctionTailExit));
RewindingTSC -= F.TSCDelta;
RewindingRecordPtr -= sizeof(FunctionRecord);
if (B.Generation != BQ->generation())
return false;
internal_memcpy(&F, RewindingRecordPtr, sizeof(FunctionRecord));
// This tail call exceeded the threshold duration. It will not be erased.
if ((TSC - RewindingTSC) >= CycleThreshold) {
UndoableTailExits = 0;
return true;
}
--UndoableTailExits;
W.undoWrites(sizeof(FunctionRecord) * 2);
LatestTSC = RewindingTSC;
}
return true;
}
public:
template <class WallClockFunc>
FDRController(BufferQueue *BQ, BufferQueue::Buffer &B, FDRLogWriter &W,
WallClockFunc R, uint64_t C) XRAY_NEVER_INSTRUMENT
: BQ(BQ),
B(B),
W(W),
WallClockReader(R),
CycleThreshold(C) {}
bool functionEnter(int32_t FuncId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
if (finalized() ||
!prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
return returnBuffer();
auto PreambleStatus = recordPreamble(TSC, CPU);
if (PreambleStatus == PreambleResult::InvalidBuffer)
return returnBuffer();
if (PreambleStatus == PreambleResult::WroteMetadata) {
UndoableFunctionEnters = 1;
UndoableTailExits = 0;
} else {
++UndoableFunctionEnters;
}
auto Delta = TSC - LatestTSC;
LastFunctionEntryTSC = TSC;
LatestTSC = TSC;
return W.writeFunction(FDRLogWriter::FunctionRecordKind::Enter,
mask(FuncId), Delta);
}
bool functionTailExit(int32_t FuncId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
if (finalized())
return returnBuffer();
if (!prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
return returnBuffer();
auto PreambleStatus = recordPreamble(TSC, CPU);
if (PreambleStatus == PreambleResult::InvalidBuffer)
return returnBuffer();
if (PreambleStatus == PreambleResult::NoChange &&
UndoableFunctionEnters != 0 &&
TSC - LastFunctionEntryTSC < CycleThreshold)
return rewindRecords(FuncId, TSC, CPU);
UndoableTailExits = UndoableFunctionEnters ? UndoableTailExits + 1 : 0;
UndoableFunctionEnters = 0;
auto Delta = TSC - LatestTSC;
LatestTSC = TSC;
return W.writeFunction(FDRLogWriter::FunctionRecordKind::TailExit,
mask(FuncId), Delta);
}
bool functionEnterArg(int32_t FuncId, uint64_t TSC, uint16_t CPU,
uint64_t Arg) XRAY_NEVER_INSTRUMENT {
if (finalized() ||
!prepareBuffer((2 * sizeof(MetadataRecord)) + sizeof(FunctionRecord)) ||
recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
return returnBuffer();
auto Delta = TSC - LatestTSC;
LatestTSC = TSC;
LastFunctionEntryTSC = 0;
UndoableFunctionEnters = 0;
UndoableTailExits = 0;
return W.writeFunctionWithArg(FDRLogWriter::FunctionRecordKind::EnterArg,
mask(FuncId), Delta, Arg);
}
bool functionExit(int32_t FuncId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
if (finalized() ||
!prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
return returnBuffer();
auto PreambleStatus = recordPreamble(TSC, CPU);
if (PreambleStatus == PreambleResult::InvalidBuffer)
return returnBuffer();
if (PreambleStatus == PreambleResult::NoChange &&
UndoableFunctionEnters != 0 &&
TSC - LastFunctionEntryTSC < CycleThreshold)
return rewindRecords(FuncId, TSC, CPU);
auto Delta = TSC - LatestTSC;
LatestTSC = TSC;
UndoableFunctionEnters = 0;
UndoableTailExits = 0;
return W.writeFunction(FDRLogWriter::FunctionRecordKind::Exit, mask(FuncId),
Delta);
}
bool customEvent(uint64_t TSC, uint16_t CPU, const void *Event,
int32_t EventSize) XRAY_NEVER_INSTRUMENT {
if (finalized() ||
!prepareBuffer((2 * sizeof(MetadataRecord)) + EventSize) ||
recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
return returnBuffer();
auto Delta = TSC - LatestTSC;
LatestTSC = TSC;
UndoableFunctionEnters = 0;
UndoableTailExits = 0;
return W.writeCustomEvent(Delta, Event, EventSize);
}
bool typedEvent(uint64_t TSC, uint16_t CPU, uint16_t EventType,
const void *Event, int32_t EventSize) XRAY_NEVER_INSTRUMENT {
if (finalized() ||
!prepareBuffer((2 * sizeof(MetadataRecord)) + EventSize) ||
recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
return returnBuffer();
auto Delta = TSC - LatestTSC;
LatestTSC = TSC;
UndoableFunctionEnters = 0;
UndoableTailExits = 0;
return W.writeTypedEvent(Delta, EventType, Event, EventSize);
}
bool flush() XRAY_NEVER_INSTRUMENT {
if (finalized()) {
returnBuffer(); // ignore result.
return true;
}
return returnBuffer();
}
};
} // namespace __xray
#endif // COMPILER-RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_
|