reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
//===-- release.h -----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_RELEASE_H_
#define SCUDO_RELEASE_H_

#include "common.h"
#include "list.h"

namespace scudo {

class ReleaseRecorder {
public:
  ReleaseRecorder(uptr BaseAddress, MapPlatformData *Data = nullptr)
      : BaseAddress(BaseAddress), Data(Data) {}

  uptr getReleasedRangesCount() const { return ReleasedRangesCount; }

  uptr getReleasedBytes() const { return ReleasedBytes; }

  // Releases [From, To) range of pages back to OS.
  void releasePageRangeToOS(uptr From, uptr To) {
    const uptr Size = To - From;
    releasePagesToOS(BaseAddress, From, Size, Data);
    ReleasedRangesCount++;
    ReleasedBytes += Size;
  }

private:
  uptr ReleasedRangesCount = 0;
  uptr ReleasedBytes = 0;
  uptr BaseAddress = 0;
  MapPlatformData *Data = nullptr;
};

// A packed array of Counters. Each counter occupies 2^N bits, enough to store
// counter's MaxValue. Ctor will try to allocate the required Buffer via map()
// and the caller is expected to check whether the initialization was successful
// by checking isAllocated() result. For the performance sake, none of the
// accessors check the validity of the arguments, It is assumed that Index is
// always in [0, N) range and the value is not incremented past MaxValue.
class PackedCounterArray {
public:
  PackedCounterArray(uptr NumCounters, uptr MaxValue) : N(NumCounters) {
    CHECK_GT(NumCounters, 0);
    CHECK_GT(MaxValue, 0);
    constexpr uptr MaxCounterBits = sizeof(*Buffer) * 8UL;
    // Rounding counter storage size up to the power of two allows for using
    // bit shifts calculating particular counter's Index and offset.
    const uptr CounterSizeBits =
        roundUpToPowerOfTwo(getMostSignificantSetBitIndex(MaxValue) + 1);
    CHECK_LE(CounterSizeBits, MaxCounterBits);
    CounterSizeBitsLog = getLog2(CounterSizeBits);
    CounterMask = ~(static_cast<uptr>(0)) >> (MaxCounterBits - CounterSizeBits);

    const uptr PackingRatio = MaxCounterBits >> CounterSizeBitsLog;
    CHECK_GT(PackingRatio, 0);
    PackingRatioLog = getLog2(PackingRatio);
    BitOffsetMask = PackingRatio - 1;

    BufferSize = (roundUpTo(N, static_cast<uptr>(1U) << PackingRatioLog) >>
                  PackingRatioLog) *
                 sizeof(*Buffer);
    Buffer = reinterpret_cast<uptr *>(
        map(nullptr, BufferSize, "scudo:counters", MAP_ALLOWNOMEM));
  }
  ~PackedCounterArray() {
    if (isAllocated())
      unmap(reinterpret_cast<void *>(Buffer), BufferSize);
  }

  bool isAllocated() const { return !!Buffer; }

  uptr getCount() const { return N; }

  uptr get(uptr I) const {
    DCHECK_LT(I, N);
    const uptr Index = I >> PackingRatioLog;
    const uptr BitOffset = (I & BitOffsetMask) << CounterSizeBitsLog;
    return (Buffer[Index] >> BitOffset) & CounterMask;
  }

  void inc(uptr I) const {
    DCHECK_LT(get(I), CounterMask);
    const uptr Index = I >> PackingRatioLog;
    const uptr BitOffset = (I & BitOffsetMask) << CounterSizeBitsLog;
    DCHECK_LT(BitOffset, SCUDO_WORDSIZE);
    Buffer[Index] += static_cast<uptr>(1U) << BitOffset;
  }

  void incRange(uptr From, uptr To) const {
    DCHECK_LE(From, To);
    for (uptr I = From; I <= To; I++)
      inc(I);
  }

  uptr getBufferSize() const { return BufferSize; }

private:
  const uptr N;
  uptr CounterSizeBitsLog;
  uptr CounterMask;
  uptr PackingRatioLog;
  uptr BitOffsetMask;

  uptr BufferSize;
  uptr *Buffer;
};

template <class ReleaseRecorderT> class FreePagesRangeTracker {
public:
  explicit FreePagesRangeTracker(ReleaseRecorderT *Recorder)
      : Recorder(Recorder), PageSizeLog(getLog2(getPageSizeCached())) {}

  void processNextPage(bool Freed) {
    if (Freed) {
      if (!InRange) {
        CurrentRangeStatePage = CurrentPage;
        InRange = true;
      }
    } else {
      closeOpenedRange();
    }
    CurrentPage++;
  }

  void finish() { closeOpenedRange(); }

private:
  void closeOpenedRange() {
    if (InRange) {
      Recorder->releasePageRangeToOS((CurrentRangeStatePage << PageSizeLog),
                                     (CurrentPage << PageSizeLog));
      InRange = false;
    }
  }

  ReleaseRecorderT *const Recorder;
  const uptr PageSizeLog;
  bool InRange = false;
  uptr CurrentPage = 0;
  uptr CurrentRangeStatePage = 0;
};

template <class TransferBatchT, class ReleaseRecorderT>
NOINLINE void
releaseFreeMemoryToOS(const IntrusiveList<TransferBatchT> &FreeList, uptr Base,
                      uptr AllocatedPagesCount, uptr BlockSize,
                      ReleaseRecorderT *Recorder) {
  const uptr PageSize = getPageSizeCached();

  // Figure out the number of chunks per page and whether we can take a fast
  // path (the number of chunks per page is the same for all pages).
  uptr FullPagesBlockCountMax;
  bool SameBlockCountPerPage;
  if (BlockSize <= PageSize) {
    if (PageSize % BlockSize == 0) {
      // Same number of chunks per page, no cross overs.
      FullPagesBlockCountMax = PageSize / BlockSize;
      SameBlockCountPerPage = true;
    } else if (BlockSize % (PageSize % BlockSize) == 0) {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks, but all pages contain the same
      // number of chunks.
      FullPagesBlockCountMax = PageSize / BlockSize + 1;
      SameBlockCountPerPage = true;
    } else {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks.
      FullPagesBlockCountMax = PageSize / BlockSize + 2;
      SameBlockCountPerPage = false;
    }
  } else {
    if (BlockSize % PageSize == 0) {
      // One chunk covers multiple pages, no cross overs.
      FullPagesBlockCountMax = 1;
      SameBlockCountPerPage = true;
    } else {
      // One chunk covers multiple pages, Some chunks are crossing page
      // boundaries. Some pages contain one chunk, some contain two.
      FullPagesBlockCountMax = 2;
      SameBlockCountPerPage = false;
    }
  }

  PackedCounterArray Counters(AllocatedPagesCount, FullPagesBlockCountMax);
  if (!Counters.isAllocated())
    return;

  const uptr PageSizeLog = getLog2(PageSize);
  const uptr End = Base + AllocatedPagesCount * PageSize;

  // Iterate over free chunks and count how many free chunks affect each
  // allocated page.
  if (BlockSize <= PageSize && PageSize % BlockSize == 0) {
    // Each chunk affects one page only.
    for (const auto &It : FreeList) {
      for (u32 I = 0; I < It.getCount(); I++) {
        const uptr P = reinterpret_cast<uptr>(It.get(I));
        if (P >= Base && P < End)
          Counters.inc((P - Base) >> PageSizeLog);
      }
    }
  } else {
    // In all other cases chunks might affect more than one page.
    for (const auto &It : FreeList) {
      for (u32 I = 0; I < It.getCount(); I++) {
        const uptr P = reinterpret_cast<uptr>(It.get(I));
        if (P >= Base && P < End)
          Counters.incRange((P - Base) >> PageSizeLog,
                            (P - Base + BlockSize - 1) >> PageSizeLog);
      }
    }
  }

  // Iterate over pages detecting ranges of pages with chunk Counters equal
  // to the expected number of chunks for the particular page.
  FreePagesRangeTracker<ReleaseRecorderT> RangeTracker(Recorder);
  if (SameBlockCountPerPage) {
    // Fast path, every page has the same number of chunks affecting it.
    for (uptr I = 0; I < Counters.getCount(); I++)
      RangeTracker.processNextPage(Counters.get(I) == FullPagesBlockCountMax);
  } else {
    // Slow path, go through the pages keeping count how many chunks affect
    // each page.
    const uptr Pn = BlockSize < PageSize ? PageSize / BlockSize : 1;
    const uptr Pnc = Pn * BlockSize;
    // The idea is to increment the current page pointer by the first chunk
    // size, middle portion size (the portion of the page covered by chunks
    // except the first and the last one) and then the last chunk size, adding
    // up the number of chunks on the current page and checking on every step
    // whether the page boundary was crossed.
    uptr PrevPageBoundary = 0;
    uptr CurrentBoundary = 0;
    for (uptr I = 0; I < Counters.getCount(); I++) {
      const uptr PageBoundary = PrevPageBoundary + PageSize;
      uptr BlocksPerPage = Pn;
      if (CurrentBoundary < PageBoundary) {
        if (CurrentBoundary > PrevPageBoundary)
          BlocksPerPage++;
        CurrentBoundary += Pnc;
        if (CurrentBoundary < PageBoundary) {
          BlocksPerPage++;
          CurrentBoundary += BlockSize;
        }
      }
      PrevPageBoundary = PageBoundary;

      RangeTracker.processNextPage(Counters.get(I) == BlocksPerPage);
    }
  }
  RangeTracker.finish();
}

} // namespace scudo

#endif // SCUDO_RELEASE_H_