1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
| //===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// fuzzer::InputCorpus
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_CORPUS
#define LLVM_FUZZER_CORPUS
#include "FuzzerDataFlowTrace.h"
#include "FuzzerDefs.h"
#include "FuzzerIO.h"
#include "FuzzerRandom.h"
#include "FuzzerSHA1.h"
#include "FuzzerTracePC.h"
#include <algorithm>
#include <numeric>
#include <random>
#include <unordered_set>
namespace fuzzer {
struct InputInfo {
Unit U; // The actual input data.
uint8_t Sha1[kSHA1NumBytes]; // Checksum.
// Number of features that this input has and no smaller input has.
size_t NumFeatures = 0;
size_t Tmp = 0; // Used by ValidateFeatureSet.
// Stats.
size_t NumExecutedMutations = 0;
size_t NumSuccessfullMutations = 0;
bool MayDeleteFile = false;
bool Reduced = false;
bool HasFocusFunction = false;
Vector<uint32_t> UniqFeatureSet;
Vector<uint8_t> DataFlowTraceForFocusFunction;
};
class InputCorpus {
static const size_t kFeatureSetSize = 1 << 21;
public:
InputCorpus(const std::string &OutputCorpus) : OutputCorpus(OutputCorpus) {
memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
}
~InputCorpus() {
for (auto II : Inputs)
delete II;
}
size_t size() const { return Inputs.size(); }
size_t SizeInBytes() const {
size_t Res = 0;
for (auto II : Inputs)
Res += II->U.size();
return Res;
}
size_t NumActiveUnits() const {
size_t Res = 0;
for (auto II : Inputs)
Res += !II->U.empty();
return Res;
}
size_t MaxInputSize() const {
size_t Res = 0;
for (auto II : Inputs)
Res = std::max(Res, II->U.size());
return Res;
}
size_t NumInputsThatTouchFocusFunction() {
return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
return II->HasFocusFunction;
});
}
size_t NumInputsWithDataFlowTrace() {
return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
return !II->DataFlowTraceForFocusFunction.empty();
});
}
bool empty() const { return Inputs.empty(); }
const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
bool HasFocusFunction,
const Vector<uint32_t> &FeatureSet,
const DataFlowTrace &DFT, const InputInfo *BaseII) {
assert(!U.empty());
if (FeatureDebug)
Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
Inputs.push_back(new InputInfo());
InputInfo &II = *Inputs.back();
II.U = U;
II.NumFeatures = NumFeatures;
II.MayDeleteFile = MayDeleteFile;
II.UniqFeatureSet = FeatureSet;
II.HasFocusFunction = HasFocusFunction;
std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
ComputeSHA1(U.data(), U.size(), II.Sha1);
auto Sha1Str = Sha1ToString(II.Sha1);
Hashes.insert(Sha1Str);
if (HasFocusFunction)
if (auto V = DFT.Get(Sha1Str))
II.DataFlowTraceForFocusFunction = *V;
// This is a gross heuristic.
// Ideally, when we add an element to a corpus we need to know its DFT.
// But if we don't, we'll use the DFT of its base input.
if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
UpdateCorpusDistribution();
PrintCorpus();
// ValidateFeatureSet();
return &II;
}
// Debug-only
void PrintUnit(const Unit &U) {
if (!FeatureDebug) return;
for (uint8_t C : U) {
if (C != 'F' && C != 'U' && C != 'Z')
C = '.';
Printf("%c", C);
}
}
// Debug-only
void PrintFeatureSet(const Vector<uint32_t> &FeatureSet) {
if (!FeatureDebug) return;
Printf("{");
for (uint32_t Feature: FeatureSet)
Printf("%u,", Feature);
Printf("}");
}
// Debug-only
void PrintCorpus() {
if (!FeatureDebug) return;
Printf("======= CORPUS:\n");
int i = 0;
for (auto II : Inputs) {
if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
Printf("[%2d] ", i);
Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
PrintUnit(II->U);
Printf(" ");
PrintFeatureSet(II->UniqFeatureSet);
Printf("\n");
}
i++;
}
}
void Replace(InputInfo *II, const Unit &U) {
assert(II->U.size() > U.size());
Hashes.erase(Sha1ToString(II->Sha1));
DeleteFile(*II);
ComputeSHA1(U.data(), U.size(), II->Sha1);
Hashes.insert(Sha1ToString(II->Sha1));
II->U = U;
II->Reduced = true;
UpdateCorpusDistribution();
}
bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
bool HasUnit(const std::string &H) { return Hashes.count(H); }
InputInfo &ChooseUnitToMutate(Random &Rand) {
InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
assert(!II.U.empty());
return II;
}
// Returns an index of random unit from the corpus to mutate.
size_t ChooseUnitIdxToMutate(Random &Rand) {
size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
assert(Idx < Inputs.size());
return Idx;
}
void PrintStats() {
for (size_t i = 0; i < Inputs.size(); i++) {
const auto &II = *Inputs[i];
Printf(" [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
Sha1ToString(II.Sha1).c_str(), II.U.size(),
II.NumExecutedMutations, II.NumSuccessfullMutations, II.HasFocusFunction);
}
}
void PrintFeatureSet() {
for (size_t i = 0; i < kFeatureSetSize; i++) {
if(size_t Sz = GetFeature(i))
Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
}
Printf("\n\t");
for (size_t i = 0; i < Inputs.size(); i++)
if (size_t N = Inputs[i]->NumFeatures)
Printf(" %zd=>%zd ", i, N);
Printf("\n");
}
void DeleteFile(const InputInfo &II) {
if (!OutputCorpus.empty() && II.MayDeleteFile)
RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
}
void DeleteInput(size_t Idx) {
InputInfo &II = *Inputs[Idx];
DeleteFile(II);
Unit().swap(II.U);
if (FeatureDebug)
Printf("EVICTED %zd\n", Idx);
}
bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
assert(NewSize);
Idx = Idx % kFeatureSetSize;
uint32_t OldSize = GetFeature(Idx);
if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
if (OldSize > 0) {
size_t OldIdx = SmallestElementPerFeature[Idx];
InputInfo &II = *Inputs[OldIdx];
assert(II.NumFeatures > 0);
II.NumFeatures--;
if (II.NumFeatures == 0)
DeleteInput(OldIdx);
} else {
NumAddedFeatures++;
}
NumUpdatedFeatures++;
if (FeatureDebug)
Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
SmallestElementPerFeature[Idx] = Inputs.size();
InputSizesPerFeature[Idx] = NewSize;
return true;
}
return false;
}
size_t NumFeatures() const { return NumAddedFeatures; }
size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }
private:
static const bool FeatureDebug = false;
size_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }
void ValidateFeatureSet() {
if (FeatureDebug)
PrintFeatureSet();
for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
if (GetFeature(Idx))
Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
for (auto II: Inputs) {
if (II->Tmp != II->NumFeatures)
Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
assert(II->Tmp == II->NumFeatures);
II->Tmp = 0;
}
}
// Updates the probability distribution for the units in the corpus.
// Must be called whenever the corpus or unit weights are changed.
//
// Hypothesis: units added to the corpus last are more interesting.
//
// Hypothesis: inputs with infrequent features are more interesting.
void UpdateCorpusDistribution() {
size_t N = Inputs.size();
assert(N);
Intervals.resize(N + 1);
Weights.resize(N);
std::iota(Intervals.begin(), Intervals.end(), 0);
for (size_t i = 0; i < N; i++)
Weights[i] = Inputs[i]->NumFeatures
? (i + 1) * (Inputs[i]->HasFocusFunction ? 1000 : 1)
: 0.;
if (FeatureDebug) {
for (size_t i = 0; i < N; i++)
Printf("%zd ", Inputs[i]->NumFeatures);
Printf("SCORE\n");
for (size_t i = 0; i < N; i++)
Printf("%f ", Weights[i]);
Printf("Weights\n");
}
CorpusDistribution = std::piecewise_constant_distribution<double>(
Intervals.begin(), Intervals.end(), Weights.begin());
}
std::piecewise_constant_distribution<double> CorpusDistribution;
Vector<double> Intervals;
Vector<double> Weights;
std::unordered_set<std::string> Hashes;
Vector<InputInfo*> Inputs;
size_t NumAddedFeatures = 0;
size_t NumUpdatedFeatures = 0;
uint32_t InputSizesPerFeature[kFeatureSetSize];
uint32_t SmallestElementPerFeature[kFeatureSetSize];
std::string OutputCorpus;
};
} // namespace fuzzer
#endif // LLVM_FUZZER_CORPUS
|