reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
//===-- VPlanPredicator.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the VPlanPredicator class which contains the public
/// interfaces to predicate and linearize the VPlan region.
///
//===----------------------------------------------------------------------===//

#include "VPlanPredicator.h"
#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "VPlanPredicator"

using namespace llvm;

// Generate VPInstructions at the beginning of CurrBB that calculate the
// predicate being propagated from PredBB to CurrBB depending on the edge type
// between them. For example if:
//  i.  PredBB is controlled by predicate %BP, and
//  ii. The edge PredBB->CurrBB is the false edge, controlled by the condition
//  bit value %CBV then this function will generate the following two
//  VPInstructions at the start of CurrBB:
//   %IntermediateVal = not %CBV
//   %FinalVal        = and %BP %IntermediateVal
// It returns %FinalVal.
VPValue *VPlanPredicator::getOrCreateNotPredicate(VPBasicBlock *PredBB,
                                                  VPBasicBlock *CurrBB) {
  VPValue *CBV = PredBB->getCondBit();

  // Set the intermediate value - this is either 'CBV', or 'not CBV'
  // depending on the edge type.
  EdgeType ET = getEdgeTypeBetween(PredBB, CurrBB);
  VPValue *IntermediateVal = nullptr;
  switch (ET) {
  case EdgeType::TRUE_EDGE:
    // CurrBB is the true successor of PredBB - nothing to do here.
    IntermediateVal = CBV;
    break;

  case EdgeType::FALSE_EDGE:
    // CurrBB is the False successor of PredBB - compute not of CBV.
    IntermediateVal = Builder.createNot(CBV);
    break;
  }

  // Now AND intermediate value with PredBB's block predicate if it has one.
  VPValue *BP = PredBB->getPredicate();
  if (BP)
    return Builder.createAnd(BP, IntermediateVal);
  else
    return IntermediateVal;
}

// Generate a tree of ORs for all IncomingPredicates in  WorkList.
// Note: This function destroys the original Worklist.
//
// P1 P2 P3 P4 P5
//  \ /   \ /  /
//  OR1   OR2 /
//    \    | /
//     \   +/-+
//      \  /  |
//       OR3  |
//         \  |
//          OR4 <- Returns this
//           |
//
// The algorithm uses a worklist of predicates as its main data structure.
// We pop a pair of values from the front (e.g. P1 and P2), generate an OR
// (in this example OR1), and push it back. In this example the worklist
// contains {P3, P4, P5, OR1}.
// The process iterates until we have only one element in the Worklist (OR4).
// The last element is the root predicate which is returned.
VPValue *VPlanPredicator::genPredicateTree(std::list<VPValue *> &Worklist) {
  if (Worklist.empty())
    return nullptr;

  // The worklist initially contains all the leaf nodes. Initialize the tree
  // using them.
  while (Worklist.size() >= 2) {
    // Pop a pair of values from the front.
    VPValue *LHS = Worklist.front();
    Worklist.pop_front();
    VPValue *RHS = Worklist.front();
    Worklist.pop_front();

    // Create an OR of these values.
    VPValue *Or = Builder.createOr(LHS, RHS);

    // Push OR to the back of the worklist.
    Worklist.push_back(Or);
  }

  assert(Worklist.size() == 1 && "Expected 1 item in worklist");

  // The root is the last node in the worklist.
  VPValue *Root = Worklist.front();

  // This root needs to replace the existing block predicate. This is done in
  // the caller function.
  return Root;
}

// Return whether the edge FromBlock -> ToBlock is a TRUE_EDGE or FALSE_EDGE
VPlanPredicator::EdgeType
VPlanPredicator::getEdgeTypeBetween(VPBlockBase *FromBlock,
                                    VPBlockBase *ToBlock) {
  unsigned Count = 0;
  for (VPBlockBase *SuccBlock : FromBlock->getSuccessors()) {
    if (SuccBlock == ToBlock) {
      assert(Count < 2 && "Switch not supported currently");
      return (Count == 0) ? EdgeType::TRUE_EDGE : EdgeType::FALSE_EDGE;
    }
    Count++;
  }

  llvm_unreachable("Broken getEdgeTypeBetween");
}

// Generate all predicates needed for CurrBlock by going through its immediate
// predecessor blocks.
void VPlanPredicator::createOrPropagatePredicates(VPBlockBase *CurrBlock,
                                                  VPRegionBlock *Region) {
  // Blocks that dominate region exit inherit the predicate from the region.
  // Return after setting the predicate.
  if (VPDomTree.dominates(CurrBlock, Region->getExit())) {
    VPValue *RegionBP = Region->getPredicate();
    CurrBlock->setPredicate(RegionBP);
    return;
  }

  // Collect all incoming predicates in a worklist.
  std::list<VPValue *> IncomingPredicates;

  // Set the builder's insertion point to the top of the current BB
  VPBasicBlock *CurrBB = cast<VPBasicBlock>(CurrBlock->getEntryBasicBlock());
  Builder.setInsertPoint(CurrBB, CurrBB->begin());

  // For each predecessor, generate the VPInstructions required for
  // computing 'BP AND (not) CBV" at the top of CurrBB.
  // Collect the outcome of this calculation for all predecessors
  // into IncomingPredicates.
  for (VPBlockBase *PredBlock : CurrBlock->getPredecessors()) {
    // Skip back-edges
    if (VPBlockUtils::isBackEdge(PredBlock, CurrBlock, VPLI))
      continue;

    VPValue *IncomingPredicate = nullptr;
    unsigned NumPredSuccsNoBE =
        VPBlockUtils::countSuccessorsNoBE(PredBlock, VPLI);

    // If there is an unconditional branch to the currBB, then we don't create
    // edge predicates. We use the predecessor's block predicate instead.
    if (NumPredSuccsNoBE == 1)
      IncomingPredicate = PredBlock->getPredicate();
    else if (NumPredSuccsNoBE == 2) {
      // Emit recipes into CurrBlock if required
      assert(isa<VPBasicBlock>(PredBlock) && "Only BBs have multiple exits");
      IncomingPredicate =
          getOrCreateNotPredicate(cast<VPBasicBlock>(PredBlock), CurrBB);
    } else
      llvm_unreachable("FIXME: switch statement ?");

    if (IncomingPredicate)
      IncomingPredicates.push_back(IncomingPredicate);
  }

  // Logically OR all incoming predicates by building the Predicate Tree.
  VPValue *Predicate = genPredicateTree(IncomingPredicates);

  // Now update the block's predicate with the new one.
  CurrBlock->setPredicate(Predicate);
}

// Generate all predicates needed for Region.
void VPlanPredicator::predicateRegionRec(VPRegionBlock *Region) {
  VPBasicBlock *EntryBlock = cast<VPBasicBlock>(Region->getEntry());
  ReversePostOrderTraversal<VPBlockBase *> RPOT(EntryBlock);

  // Generate edge predicates and append them to the block predicate. RPO is
  // necessary since the predecessor blocks' block predicate needs to be set
  // before the current block's block predicate can be computed.
  for (VPBlockBase *Block : make_range(RPOT.begin(), RPOT.end())) {
    // TODO: Handle nested regions once we start generating the same.
    assert(!isa<VPRegionBlock>(Block) && "Nested region not expected");
    createOrPropagatePredicates(Block, Region);
  }
}

// Linearize the CFG within Region.
// TODO: Predication and linearization need RPOT for every region.
// This traversal is expensive. Since predication is not adding new
// blocks, we should be able to compute RPOT once in predication and
// reuse it here. This becomes even more important once we have nested
// regions.
void VPlanPredicator::linearizeRegionRec(VPRegionBlock *Region) {
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
  VPBlockBase *PrevBlock = nullptr;

  for (VPBlockBase *CurrBlock : make_range(RPOT.begin(), RPOT.end())) {
    // TODO: Handle nested regions once we start generating the same.
    assert(!isa<VPRegionBlock>(CurrBlock) && "Nested region not expected");

    // Linearize control flow by adding an unconditional edge between PrevBlock
    // and CurrBlock skipping loop headers and latches to keep intact loop
    // header predecessors and loop latch successors.
    if (PrevBlock && !VPLI->isLoopHeader(CurrBlock) &&
        !VPBlockUtils::blockIsLoopLatch(PrevBlock, VPLI)) {

      LLVM_DEBUG(dbgs() << "Linearizing: " << PrevBlock->getName() << "->"
                        << CurrBlock->getName() << "\n");

      PrevBlock->clearSuccessors();
      CurrBlock->clearPredecessors();
      VPBlockUtils::connectBlocks(PrevBlock, CurrBlock);
    }

    PrevBlock = CurrBlock;
  }
}

// Entry point. The driver function for the predicator.
void VPlanPredicator::predicate(void) {
  // Predicate the blocks within Region.
  predicateRegionRec(cast<VPRegionBlock>(Plan.getEntry()));

  // Linearlize the blocks with Region.
  linearizeRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
}

VPlanPredicator::VPlanPredicator(VPlan &Plan)
    : Plan(Plan), VPLI(&(Plan.getVPLoopInfo())) {
  // FIXME: Predicator is currently computing the dominator information for the
  // top region. Once we start storing dominator information in a VPRegionBlock,
  // we can avoid this recalculation.
  VPDomTree.recalculate(*(cast<VPRegionBlock>(Plan.getEntry())));
}