1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
| ; RUN: opt %loadPolly -polly-stmt-granularity=bb -polly-allow-differing-element-types -polly-scops -polly-allow-nonaffine -analyze < %s | FileCheck %s
; RUN: opt %loadPolly -polly-stmt-granularity=bb -polly-allow-differing-element-types -polly-codegen -polly-allow-nonaffine -analyze
;
; // Check that accessing one array with different types works,
; // even though some accesses are non-affine.
; void multiple_types(char *Short, short *Char, char *Double) {
; for (long i = 0; i < 100; i++) {
; Short[i] = *(short *)&Short[i & 8];
; Char[i] = *(float *)&Char[i & 8];
; Double[i] = *(double *)&Double[i & 8];
; }
; }
;
; CHECK: Arrays {
; CHECK: i16 MemRef_Short[*]; // Element size 2
; CHECK: i8 MemRef_Char[*]; // Element size 1
; CHECK: i32 MemRef_Double[*]; // Element size 4
; CHECK: }
;
; CHECK: Statements {
; CHECK-NEXT: Stmt_bb2
; CHECK-NEXT: Domain :=
; CHECK-NEXT: { Stmt_bb2[i0] : 0 <= i0 <= 99 };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: { Stmt_bb2[i0] -> [i0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Short[16] : 16*floor((8 + i0)/16) > i0; Stmt_bb2[i0] -> MemRef_Short[0] : 16*floor((8 + i0)/16) <= i0 }
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Short[o0] : 2i0 <= o0 <= 1 + 2i0 };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Char[32] : 16*floor((8 + i0)/16) > i0; Stmt_bb2[i0] -> MemRef_Char[0] : 16*floor((8 + i0)/16) <= i0 }
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Char[o0] : 4i0 <= o0 <= 3 + 4i0 };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Double[o0] : 0 <= o0 <= 9 and ((o0 >= 8 and 16*floor((8 + i0)/16) > i0) or (o0 <= 1 and 16*floor((8 + i0)/16) <= i0)) }
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: { Stmt_bb2[i0] -> MemRef_Double[i0] };
; CHECK-NEXT: }
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @multiple_types(i32* noalias %Short, i32* noalias %Char, i32* noalias %Double) {
bb:
br label %bb1
bb1: ; preds = %bb20, %bb
%i.0 = phi i64 [ 0, %bb ], [ %tmp21, %bb20 ]
%exitcond = icmp ne i64 %i.0, 100
br i1 %exitcond, label %bb2, label %bb22
bb2: ; preds = %bb1
%quad = and i64 %i.0, 8
%tmp3 = getelementptr inbounds i32, i32* %Short, i64 %quad
%tmp4 = bitcast i32* %tmp3 to i16*
%tmp5 = load i16, i16* %tmp4, align 2
%tmp6 = zext i16 %tmp5 to i32
%tmp7 = getelementptr inbounds i32, i32* %Short, i64 %i.0
store i32 %tmp6, i32* %tmp7, align 1
%tmp9 = getelementptr inbounds i32, i32* %Char, i64 %quad
%tmp10 = bitcast i32* %tmp9 to i8*
%tmp11 = load i8, i8* %tmp10, align 4
%tmp12 = zext i8 %tmp11 to i32
%tmp13 = getelementptr inbounds i32, i32* %Char, i64 %i.0
store i32 %tmp12, i32* %tmp13, align 1
%tmp15 = getelementptr inbounds i32, i32* %Double, i64 %quad
%tmp16 = bitcast i32* %tmp15 to double*
%tmp17 = load double, double* %tmp16, align 8
%tmp18 = fptosi double %tmp17 to i32
%tmp19 = getelementptr inbounds i32, i32* %Double, i64 %i.0
store i32 %tmp18, i32* %tmp19, align 1
br label %bb20
bb20: ; preds = %bb2
%tmp21 = add nuw nsw i64 %i.0, 1
br label %bb1
bb22: ; preds = %bb1
ret void
}
|