1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
| ; RUN: opt %loadPolly -basicaa -polly-stmt-granularity=bb -polly-scops -analyze -polly-allow-modref-calls \
; RUN: < %s | FileCheck %s
; RUN: opt %loadPolly -basicaa -polly-stmt-granularity=bb -polly-codegen -polly-allow-modref-calls \
; RUN: -disable-output < %s
;
; Verify that we model the may-write access of the prefetch intrinsic
; correctly, thus that A is accessed by it but B is not.
;
; CHECK: Stmt_for_body
; CHECK-NEXT: Domain :=
; CHECK-NEXT: { Stmt_for_body[i0] : 0 <= i0 <= 1023 };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: { Stmt_for_body[i0] -> [i0] };
; CHECK-NEXT: MayWriteAccess := [Reduction Type: NONE]
; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_A[o0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE]
; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_B[i0] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE]
; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_A[i0] };
;
; void jd(int *restirct A, int *restrict B) {
; for (int i = 0; i < 1024; i++) {
; @llvm.prefetch(A);
; A[i] = B[i];
; }
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @jd(i32* noalias %A, i32* noalias %B) {
entry:
br label %for.body
for.body: ; preds = %entry, %for.inc
%i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
%arrayidx = getelementptr inbounds i32, i32* %A, i64 %i
%arrayidx1 = getelementptr inbounds i32, i32* %B, i64 %i
%bc = bitcast i32* %arrayidx to i8*
call void @f(i8* %bc, i32 1, i32 1, i32 1)
%tmp = load i32, i32* %arrayidx1
store i32 %tmp, i32* %arrayidx, align 4
br label %for.inc
for.inc: ; preds = %for.body
%i.next = add nuw nsw i64 %i, 1
%exitcond = icmp ne i64 %i.next, 1024
br i1 %exitcond, label %for.body, label %for.end
for.end: ; preds = %for.inc
ret void
}
declare void @f(i8*, i32, i32, i32) #0
attributes #0 = { argmemonly nounwind }
|