1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
| #!/usr/bin/python
import pandas as pd
import numpy as np
import re
import sys
import os
import argparse
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
"""
Read the stats file produced by the OpenMP runtime
and produce a processed summary
The radar_factory original code was taken from
matplotlib.org/examples/api/radar_chart.html
We added support to handle negative values for radar charts
"""
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with num_vars axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
#theta += np.pi/2
def draw_poly_frame(self, x0, y0, r):
# TODO: use transforms to convert (x, y) to (r, theta)
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return plt.Polygon(verts, closed=True, edgecolor='k')
def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame
class RadarAxes(PolarAxes):
"""
Class for creating a radar chart (a.k.a. a spider or star chart)
http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]
def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
#for line in lines:
# self._close_line(line)
def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels,fontsize=14)
def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
return self.draw_frame(x0, y0, r)
register_projection(RadarAxes)
return theta
# Code to read the raw stats
def extractSI(s):
"""Convert a measurement with a range suffix into a suitably scaled value"""
du = s.split()
num = float(du[0])
units = du[1] if len(du) == 2 else ' '
# http://physics.nist.gov/cuu/Units/prefixes.html
factor = {'Y': 1e24,
'Z': 1e21,
'E': 1e18,
'P': 1e15,
'T': 1e12,
'G': 1e9,
'M': 1e6,
'k': 1e3,
' ': 1 ,
'm': -1e3, # Yes, I do mean that, see below for the explanation.
'u': -1e6,
'n': -1e9,
'p': -1e12,
'f': -1e15,
'a': -1e18,
'z': -1e21,
'y': -1e24}[units[0]]
# Minor trickery here is an attempt to preserve accuracy by using a single
# divide, rather than multiplying by 1/x, which introduces two roundings
# since 1/10 is not representable perfectly in IEEE floating point. (Not
# that this really matters, other than for cleanliness, since we're likely
# reading numbers with at most five decimal digits of precision).
return num*factor if factor > 0 else num/-factor
def readData(f):
line = f.readline()
fieldnames = [x.strip() for x in line.split(',')]
line = f.readline().strip()
data = []
while line != "":
if line[0] != '#':
fields = line.split(',')
data.append ((fields[0].strip(), [extractSI(v) for v in fields[1:]]))
line = f.readline().strip()
# Man, working out this next incantation out was non-trivial!
# They really want you to be snarfing data in csv or some other
# format they understand!
res = pd.DataFrame.from_items(data, columns=fieldnames[1:], orient='index')
return res
def readTimers(f):
"""Skip lines with leading #"""
line = f.readline()
while line[0] == '#':
line = f.readline()
line = line.strip()
if line == "Statistics on exit\n" or "Aggregate for all threads\n":
line = f.readline()
return readData(f)
def readCounters(f):
"""This can be just the same!"""
return readData(f)
def readFile(fname):
"""Read the statistics from the file. Return a dict with keys "timers", "counters" """
res = {}
try:
with open(fname) as f:
res["timers"] = readTimers(f)
res["counters"] = readCounters(f)
return res
except (OSError, IOError):
print "Cannot open " + fname
return None
def usefulValues(l):
"""I.e. values which are neither null nor zero"""
return [p and q for (p,q) in zip (pd.notnull(l), l != 0.0)]
def uselessValues(l):
"""I.e. values which are null or zero"""
return [not p for p in usefulValues(l)]
interestingStats = ("counters", "timers")
statProperties = {"counters" : ("Count", "Counter Statistics"),
"timers" : ("Time (ticks)", "Timer Statistics")
}
def drawChart(data, kind, filebase):
"""Draw a summary bar chart for the requested data frame into the specified file"""
data["Mean"].plot(kind="bar", logy=True, grid=True, colormap="GnBu",
yerr=data["SD"], ecolor="black")
plt.xlabel("OMP Constructs")
plt.ylabel(statProperties[kind][0])
plt.title (statProperties[kind][1])
plt.tight_layout()
plt.savefig(filebase+"_"+kind)
def normalizeValues(data, countField, factor):
"""Normalize values into a rate by dividing them all by the given factor"""
data[[k for k in data.keys() if k != countField]] /= factor
def setRadarFigure(titles):
"""Set the attributes for the radar plots"""
fig = plt.figure(figsize=(9,9))
rect = [0.1, 0.1, 0.8, 0.8]
labels = [0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 10]
matplotlib.rcParams.update({'font.size':13})
theta = radar_factory(len(titles))
ax = fig.add_axes(rect, projection='radar')
ax.set_rgrids(labels)
ax.set_varlabels(titles)
ax.text(theta[2], 1, "Linear->Log", horizontalalignment='center', color='green', fontsize=18)
return {'ax':ax, 'theta':theta}
def drawRadarChart(data, kind, filebase, params, color):
"""Draw the radar plots"""
tmp_lin = data * 0
tmp_log = data * 0
for key in data.keys():
if data[key] >= 1:
tmp_log[key] = np.log10(data[key])
else:
tmp_lin[key] = (data[key])
params['ax'].plot(params['theta'], tmp_log, color='b', label=filebase+"_"+kind+"_log")
params['ax'].plot(params['theta'], tmp_lin, color='r', label=filebase+"_"+kind+"_linear")
params['ax'].legend(loc='best', bbox_to_anchor=(1.4,1.2))
params['ax'].set_rlim((0, np.ceil(max(tmp_log))))
def multiAppBarChartSettings(ax, plt, index, width, n, tmp, s):
ax.set_yscale('log')
ax.legend()
ax.set_xticks(index + width * n / 2)
ax.set_xticklabels(tmp[s]['Total'].keys(), rotation=50, horizontalalignment='right')
plt.xlabel("OMP Constructs")
plt.ylabel(statProperties[s][0])
plt.title(statProperties[s][1])
plt.tight_layout()
def derivedTimerStats(data):
stats = {}
for key in data.keys():
if key == 'OMP_worker_thread_life':
totalRuntime = data['OMP_worker_thread_life']
elif key in ('FOR_static_iterations', 'OMP_PARALLEL_args',
'OMP_set_numthreads', 'FOR_dynamic_iterations'):
break
else:
stats[key] = 100 * data[key] / totalRuntime
return stats
def compPie(data):
compKeys = {}
nonCompKeys = {}
for key in data.keys():
if key in ('OMP_critical', 'OMP_single', 'OMP_serial',
'OMP_parallel', 'OMP_master', 'OMP_task_immediate',
'OMP_task_taskwait', 'OMP_task_taskyield', 'OMP_task_taskgroup',
'OMP_task_join_bar', 'OMP_task_plain_bar', 'OMP_task_taskyield'):
compKeys[key] = data[key]
else:
nonCompKeys[key] = data[key]
print "comp keys:", compKeys, "\n\n non comp keys:", nonCompKeys
return [compKeys, nonCompKeys]
def drawMainPie(data, filebase, colors):
sizes = [sum(data[0].values()), sum(data[1].values())]
explode = [0,0]
labels = ["Compute - " + "%.2f" % sizes[0], "Non Compute - " + "%.2f" % sizes[1]]
patches = plt.pie(sizes, explode, colors=colors, startangle=90)
plt.title("Time Division")
plt.axis('equal')
plt.legend(patches[0], labels, loc='best', bbox_to_anchor=(-0.1,1), fontsize=16)
plt.savefig(filebase+"_main_pie", bbox_inches='tight')
def drawSubPie(data, tag, filebase, colors):
explode = []
labels = data.keys()
sizes = data.values()
total = sum(sizes)
percent = []
for i in range(len(sizes)):
explode.append(0)
percent.append(100 * sizes[i] / total)
labels[i] = labels[i] + " - %.2f" % percent[i]
patches = plt.pie(sizes, explode=explode, colors=colors, startangle=90)
plt.title(tag+"(Percentage of Total:"+" %.2f" % (sum(data.values()))+")")
plt.tight_layout()
plt.axis('equal')
plt.legend(patches[0], labels, loc='best', bbox_to_anchor=(-0.1,1), fontsize=16)
plt.savefig(filebase+"_"+tag, bbox_inches='tight')
def main():
parser = argparse.ArgumentParser(description='''This script takes a list
of files containing each of which contain output from a stats-gathering
enabled OpenMP runtime library. Each stats file is read, parsed, and
used to produce a summary of the statistics''')
parser.add_argument('files', nargs='+',
help='files to parse which contain stats-gathering output')
command_args = parser.parse_args()
colors = ['orange', 'b', 'r', 'yellowgreen', 'lightsage', 'lightpink',
'green', 'purple', 'yellow', 'cyan', 'mediumturquoise',
'olive']
stats = {}
matplotlib.rcParams.update({'font.size':22})
for s in interestingStats:
fig, ax = plt.subplots()
width = 0.45
n = 0
index = 0
for f in command_args.files:
filebase = os.path.splitext(f)[0]
tmp = readFile(f)
data = tmp[s]['Total']
"""preventing repetition by removing rows similar to Total_OMP_work
as Total_OMP_work['Total'] is same as OMP_work['Total']"""
if s == 'counters':
elapsedTime = tmp["timers"]["Mean"]["OMP_worker_thread_life"]
normalizeValues(tmp["counters"], "SampleCount",
elapsedTime / 1.e9)
"""Plotting radar charts"""
params = setRadarFigure(data.keys())
chartType = "radar"
drawRadarChart(data, s, filebase, params, colors[n])
"""radar Charts finish here"""
plt.savefig(filebase+"_"+s+"_"+chartType, bbox_inches='tight')
elif s == 'timers':
print "overheads in "+filebase
numThreads = tmp[s]['SampleCount']['Total_OMP_parallel']
for key in data.keys():
if key[0:5] == 'Total':
del data[key]
stats[filebase] = derivedTimerStats(data)
dataSubSet = compPie(stats[filebase])
drawMainPie(dataSubSet, filebase, colors)
plt.figure(0)
drawSubPie(dataSubSet[0], "Computational Time", filebase, colors)
plt.figure(1)
drawSubPie(dataSubSet[1], "Non Computational Time", filebase, colors)
with open('derivedStats_{}.csv'.format(filebase), 'w') as f:
f.write('================={}====================\n'.format(filebase))
f.write(pd.DataFrame(stats[filebase].items()).to_csv()+'\n')
n += 1
plt.close()
if __name__ == "__main__":
main()
|