reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
// RUN: %libomp-cxx-compile-and-run
// RUN: %libomp-cxx-compile -DFLG=1 && %libomp-run
// GCC-5 is needed for OpenMP 4.0 support (taskgroup)
// XFAIL: gcc-4
#include <cstdio>
#include <cmath>
#include <cassert>
#include <omp.h>

// Total number of loop iterations, should be multiple of T for this test
#define N 10000

// Flag to request lazy (1) or eager (0) allocation of reduction objects
#ifndef FLG
#define FLG 0
#endif

/*
  // initial user's code that corresponds to pseudo code of the test
  #pragma omp taskgroup task_reduction(+:i,j) task_reduction(*:x)
  {
    for( int l = 0; l < N; ++l ) {
      #pragma omp task firstprivate(l) in_reduction(+:i) in_reduction(*:x)
      {
        i += l;
        if( l%2 )
          x *= 1.0 / (l + 1);
        else
          x *= (l + 1);
      }
    }

    #pragma omp taskgroup task_reduction(-:i,k) task_reduction(+:y)
    {
      for( int l = 0; l < N; ++l ) {
        #pragma omp task firstprivate(l) in_reduction(+:j,y) \
            in_reduction(*:x) in_reduction(-:k)
        {
          j += l;
          k -= l;
          y += (double)l;
          if( l%2 )
            x *= 1.0 / (l + 1);
          else
            x *= (l + 1);
        }
        #pragma omp task firstprivate(l) in_reduction(+:y) in_reduction(-:i,k)
        {
          i -= l;
          k -= l;
          y += (double)l;
        }
        #pragma omp task firstprivate(l) in_reduction(+:j) in_reduction(*:x)
        {
          j += l;
          if( l%2 )
            x *= 1.0 / (l + 1);
          else
            x *= (l + 1);
        }
      }
    } // inner reduction

    for( int l = 0; l < N; ++l ) {
      #pragma omp task firstprivate(l) in_reduction(+:j)
        j += l;
    }
  } // outer reduction
*/

//------------------------------------------------
// OpenMP runtime library routines
#ifdef __cplusplus
extern "C" {
#endif
extern void* __kmpc_task_reduction_get_th_data(int gtid, void* tg, void* item);
extern void* __kmpc_task_reduction_init(int gtid, int num, void* data);
extern int __kmpc_global_thread_num(void*);
#ifdef __cplusplus
}
#endif

//------------------------------------------------
// Compiler-generated code

typedef struct _task_red_item {
    void       *shar; // shared reduction item
    size_t      size; // size of data item
    void       *f_init; // data initialization routine
    void       *f_fini; // data finalization routine
    void       *f_comb; // data combiner routine
    unsigned    flags;
} _task_red_item_t;

// int:+   no need in init/fini callbacks, valid for subtraction
void __red_int_add_comb(void *lhs, void *rhs) // combiner
{ *(int*)lhs += *(int*)rhs; }

// long long:+   no need in init/fini callbacks, valid for subtraction
void __red_llong_add_comb(void *lhs, void *rhs) // combiner
{ *(long long*)lhs += *(long long*)rhs; }

// double:*   no need in fini callback
void __red_dbl_mul_init(void *data) // initializer
{ *(double*)data = 1.0; }
void __red_dbl_mul_comb(void *lhs, void *rhs) // combiner
{ *(double*)lhs *= *(double*)rhs; }

// double:+   no need in init/fini callbacks
void __red_dbl_add_comb(void *lhs, void *rhs) // combiner
{ *(double*)lhs += *(double*)rhs; }

// ==============================

void calc_serial(int *pi, long long *pj, double *px, long long *pk, double *py)
{
    for( int l = 0; l < N; ++l ) {
        *pi += l;
        if( l%2 )
          *px *= 1.0 / (l + 1);
        else
          *px *= (l + 1);
    }
    for( int l = 0; l < N; ++l ) {
        *pj += l;
        *pk -= l;
        *py += (double)l;
        if( l%2 )
            *px *= 1.0 / (l + 1);
        else
            *px *= (l + 1);

        *pi -= l;
        *pk -= l;
        *py += (double)l;

        *pj += l;
        if( l%2 )
            *px *= 1.0 / (l + 1);
        else
            *px *= (l + 1);
    }
    for( int l = 0; l < N; ++l ) {
        *pj += l;
    }
}

//------------------------------------------------
// Test case
int main()
{
  int nthreads = omp_get_max_threads();
  int err = 0;
  void** ptrs = (void**)malloc(nthreads*sizeof(void*));

  // user's code ======================================
  // variables for serial calculations:
  int is = 3;
  long long js = -9999999;
  double xs = 99999.0;
  long long ks = 99999999;
  double ys = -99999999.0;
  // variables for parallel calculations:
  int ip = 3;
  long long jp = -9999999;
  double xp = 99999.0;
  long long kp = 99999999;
  double yp = -99999999.0;

  calc_serial(&is, &js, &xs, &ks, &ys);
  // ==================================================
  for (int i = 0; i < nthreads; ++i)
    ptrs[i] = NULL;
  #pragma omp parallel
  {
    #pragma omp single nowait
    {
      // outer taskgroup reduces (i,j,x)
      #pragma omp taskgroup // task_reduction(+:i,j) task_reduction(*:x)
      {
        _task_red_item_t red_data[3];
        red_data[0].shar = &ip;
        red_data[0].size = sizeof(ip);
        red_data[0].f_init = NULL; // RTL will zero thread-specific objects
        red_data[0].f_fini = NULL; // no destructors needed
        red_data[0].f_comb = (void*)&__red_int_add_comb;
        red_data[0].flags = FLG;
        red_data[1].shar = &jp;
        red_data[1].size = sizeof(jp);
        red_data[1].f_init = NULL; // RTL will zero thread-specific objects
        red_data[1].f_fini = NULL; // no destructors needed
        red_data[1].f_comb = (void*)&__red_llong_add_comb;
        red_data[1].flags = FLG;
        red_data[2].shar = &xp;
        red_data[2].size = sizeof(xp);
        red_data[2].f_init = (void*)&__red_dbl_mul_init;
        red_data[2].f_fini = NULL; // no destructors needed
        red_data[2].f_comb = (void*)&__red_dbl_mul_comb;
        red_data[2].flags = FLG;
        int gtid = __kmpc_global_thread_num(NULL);
        void* tg1 = __kmpc_task_reduction_init(gtid, 3, red_data);

        for( int l = 0; l < N; l += 2 ) {
          // 2 iterations per task to get correct x value; actually any even
          // number of iters per task will work, otherwise x looses precision
          #pragma omp task firstprivate(l) //in_reduction(+:i) in_reduction(*:x)
          {
            int gtid = __kmpc_global_thread_num(NULL);
            int *p_ip = (int*)__kmpc_task_reduction_get_th_data(gtid, tg1, &ip);
            double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
                                        gtid, tg1, &xp);
            if (!ptrs[gtid]) ptrs[gtid] = p_xp;

            // user's pseudo-code ==============================
            *p_ip += l;
            *p_xp *= (l + 1);

            *p_ip += l + 1;
            *p_xp *= 1.0 / (l + 2);
            // ==================================================
          }
        }
        // inner taskgroup reduces (i,k,y), i is same object as in outer one
        #pragma omp taskgroup // task_reduction(-:i,k) task_reduction(+:y)
        {
          _task_red_item_t red_data[3];
          red_data[0].shar = &ip;
          red_data[0].size = sizeof(ip);
          red_data[0].f_init = NULL; // RTL will zero thread-specific objects
          red_data[0].f_fini = NULL; // no destructors needed
          red_data[0].f_comb = (void*)&__red_int_add_comb;
          red_data[0].flags = FLG;
          red_data[1].shar = &kp;
          red_data[1].size = sizeof(kp);
          red_data[1].f_init = NULL; // RTL will zero thread-specific objects
          red_data[1].f_fini = NULL; // no destructors needed
          red_data[1].f_comb = (void*)&__red_llong_add_comb; // same for + and -
          red_data[1].flags = FLG;
          red_data[2].shar = &yp;
          red_data[2].size = sizeof(yp);
          red_data[2].f_init = NULL; // RTL will zero thread-specific objects
          red_data[2].f_fini = NULL; // no destructors needed
          red_data[2].f_comb = (void*)&__red_dbl_add_comb;
          red_data[2].flags = FLG;
          int gtid = __kmpc_global_thread_num(NULL);
          void* tg2 = __kmpc_task_reduction_init(gtid, 3, red_data);

          for( int l = 0; l < N; l += 2 ) {
            #pragma omp task firstprivate(l)
            // in_reduction(+:j,y) in_reduction(*:x) in_reduction(-:k)
            {
              int gtid = __kmpc_global_thread_num(NULL);
              long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
                                                gtid, tg1, &jp);
              long long *p_kp = (long long*)__kmpc_task_reduction_get_th_data(
                                                gtid, tg2, &kp);
              double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
                                          gtid, tg1, &xp);
              double *p_yp = (double*)__kmpc_task_reduction_get_th_data(
                                          gtid, tg2, &yp);
              // user's pseudo-code ==============================
              *p_jp += l;
              *p_kp -= l;
              *p_yp += (double)l;
              *p_xp *= (l + 1);

              *p_jp += l + 1;
              *p_kp -= l + 1;
              *p_yp += (double)(l + 1);
              *p_xp *= 1.0 / (l + 2);
              // =================================================
{
  // the following code is here just to check __kmpc_task_reduction_get_th_data:
  int tid = omp_get_thread_num();
  void *addr1;
  void *addr2;
  addr1 = __kmpc_task_reduction_get_th_data(gtid, tg1, &xp); // from shared
  addr2 = __kmpc_task_reduction_get_th_data(gtid, tg1, addr1); // from private
  if (addr1 != addr2) {
    #pragma omp atomic
      ++err;
    printf("Wrong thread-specific addresses %d s:%p p:%p\n", tid, addr1, addr2);
  }
  // from neighbour w/o taskgroup (should start lookup from current tg2)
  if (tid > 0) {
    if (ptrs[tid-1]) {
      addr2 = __kmpc_task_reduction_get_th_data(gtid, NULL, ptrs[tid-1]);
      if (addr1 != addr2) {
        #pragma omp atomic
          ++err;
        printf("Wrong thread-specific addresses %d s:%p n:%p\n",
               tid, addr1, addr2);
      }
    }
  } else {
    if (ptrs[nthreads-1]) {
      addr2 = __kmpc_task_reduction_get_th_data(gtid, NULL, ptrs[nthreads-1]);
      if (addr1 != addr2) {
        #pragma omp atomic
          ++err;
        printf("Wrong thread-specific addresses %d s:%p n:%p\n",
               tid, addr1, addr2);
      }
    }
  }
  // ----------------------------------------------
}
            }
            #pragma omp task firstprivate(l)
            // in_reduction(+:y) in_reduction(-:i,k)
            {
              int gtid = __kmpc_global_thread_num(NULL);
              int *p_ip = (int*)__kmpc_task_reduction_get_th_data(
                                    gtid, tg2, &ip);
              long long *p_kp = (long long*)__kmpc_task_reduction_get_th_data(
                                                gtid, tg2, &kp);
              double *p_yp = (double*)__kmpc_task_reduction_get_th_data(
                                          gtid, tg2, &yp);

              // user's pseudo-code ==============================
              *p_ip -= l;
              *p_kp -= l;
              *p_yp += (double)l;

              *p_ip -= l + 1;
              *p_kp -= l + 1;
              *p_yp += (double)(l + 1);
              // =================================================
            }
            #pragma omp task firstprivate(l)
            // in_reduction(+:j) in_reduction(*:x)
            {
              int gtid = __kmpc_global_thread_num(NULL);
              long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
                                                gtid, tg1, &jp);
              double *p_xp = (double*)__kmpc_task_reduction_get_th_data(
                                          gtid, tg1, &xp);
              // user's pseudo-code ==============================
              *p_jp += l;
              *p_xp *= (l + 1);

              *p_jp += l + 1;
              *p_xp *= 1.0 / (l + 2);
              // =================================================
            }
          }
        } // inner reduction

        for( int l = 0; l < N; l += 2 ) {
          #pragma omp task firstprivate(l) // in_reduction(+:j)
          {
            int gtid = __kmpc_global_thread_num(NULL);
            long long *p_jp = (long long*)__kmpc_task_reduction_get_th_data(
                                              gtid, tg1, &jp);
            // user's pseudo-code ==============================
            *p_jp += l;
            *p_jp += l + 1;
            // =================================================
          }
        }
      } // outer reduction
    } // end single
  } // end parallel
  // check results
#if _DEBUG
  printf("reduction flags = %u\n", FLG);
#endif
  if (ip == is && jp == js && ks == kp &&
      fabs(xp - xs) < 0.01 && fabs(yp - ys) < 0.01)
    printf("passed\n");
  else
    printf("failed,\n ser:(%d %lld %f %lld %f)\n par:(%d %lld %f %lld %f)\n",
      is, js, xs, ks, ys,
      ip, jp, xp, kp, yp);
  return 0;
}