1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
| //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and other sanitizer
// run-time libraries and implements Fuchsia-specific functions from
// sanitizer_common.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_fuchsia.h"
#if SANITIZER_FUCHSIA
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include <limits.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <zircon/errors.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
namespace __sanitizer {
void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
uptr internal_sched_yield() {
zx_status_t status = _zx_nanosleep(0);
CHECK_EQ(status, ZX_OK);
return 0; // Why doesn't this return void?
}
static void internal_nanosleep(zx_time_t ns) {
zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
CHECK_EQ(status, ZX_OK);
}
unsigned int internal_sleep(unsigned int seconds) {
internal_nanosleep(ZX_SEC(seconds));
return 0;
}
u64 NanoTime() {
zx_time_t time;
zx_status_t status = _zx_clock_get(ZX_CLOCK_UTC, &time);
CHECK_EQ(status, ZX_OK);
return time;
}
u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
uptr internal_getpid() {
zx_info_handle_basic_t info;
zx_status_t status =
_zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
sizeof(info), NULL, NULL);
CHECK_EQ(status, ZX_OK);
uptr pid = static_cast<uptr>(info.koid);
CHECK_EQ(pid, info.koid);
return pid;
}
uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
tid_t GetTid() { return GetThreadSelf(); }
void Abort() { abort(); }
int Atexit(void (*function)(void)) { return atexit(function); }
void SleepForSeconds(int seconds) { internal_sleep(seconds); }
void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
pthread_attr_t attr;
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
void *base;
size_t size;
CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
CHECK_EQ(pthread_attr_destroy(&attr), 0);
*stack_bottom = reinterpret_cast<uptr>(base);
*stack_top = *stack_bottom + size;
}
void InitializePlatformEarly() {}
void MaybeReexec() {}
void CheckASLR() {}
void CheckMPROTECT() {}
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}
void PrintModuleMap() {}
bool SignalContext::IsStackOverflow() const { return false; }
void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
BlockingMutex::BlockingMutex() {
// NOTE! It's important that this use internal_memset, because plain
// memset might be intercepted (e.g., actually be __asan_memset).
// Defining this so the compiler initializes each field, e.g.:
// BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
// might result in the compiler generating a call to memset, which would
// have the same problem.
internal_memset(this, 0, sizeof(*this));
}
void BlockingMutex::Lock() {
CHECK_EQ(owner_, 0);
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
return;
while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
zx_status_t status =
_zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
if (status != ZX_ERR_BAD_STATE) // Normal race.
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::Unlock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
CHECK_NE(v, MtxUnlocked);
if (v == MtxSleeping) {
zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::CheckLocked() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}
uptr GetPageSize() { return PAGE_SIZE; }
uptr GetMmapGranularity() { return PAGE_SIZE; }
sanitizer_shadow_bounds_t ShadowBounds;
uptr GetMaxUserVirtualAddress() {
ShadowBounds = __sanitizer_shadow_bounds();
return ShadowBounds.memory_limit - 1;
}
uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
bool raw_report, bool die_for_nomem) {
size = RoundUpTo(size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
raw_report);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
uintptr_t addr;
status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
vmo, 0, size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
raw_report);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
return DoAnonymousMmapOrDie(size, mem_type, false, false);
}
uptr ReservedAddressRange::Init(uptr init_size, const char *name,
uptr fixed_addr) {
init_size = RoundUpTo(init_size, PAGE_SIZE);
DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
uintptr_t base;
zx_handle_t vmar;
zx_status_t status =
_zx_vmar_allocate(
_zx_vmar_root_self(),
ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
0, init_size, &vmar, &base);
if (status != ZX_OK)
ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
base_ = reinterpret_cast<void *>(base);
size_ = init_size;
name_ = name;
os_handle_ = vmar;
return reinterpret_cast<uptr>(base_);
}
static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
void *base, const char *name, bool die_for_nomem) {
uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
map_size = RoundUpTo(map_size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
return 0;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
DCHECK_GE(base + size_, map_size + offset);
uintptr_t addr;
status =
_zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
offset, vmo, 0, map_size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
}
return 0;
}
IncreaseTotalMmap(map_size);
return addr;
}
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name_, false);
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name_, true);
}
void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
if (!addr || !size) return;
size = RoundUpTo(size, PAGE_SIZE);
zx_status_t status =
_zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
if (status != ZX_OK) {
Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
SanitizerToolName, size, size, addr);
CHECK("unable to unmap" && 0);
}
DecreaseTotalMmap(size);
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
CHECK_LE(size, size_);
const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
if (addr == reinterpret_cast<uptr>(base_)) {
if (size == size_) {
// Destroying the vmar effectively unmaps the whole mapping.
_zx_vmar_destroy(vmar);
_zx_handle_close(vmar);
os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
DecreaseTotalMmap(size);
return;
}
} else {
CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
}
// Partial unmapping does not affect the fact that the initial range is still
// reserved, and the resulting unmapped memory can't be reused.
UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
}
// This should never be called.
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
UNIMPLEMENTED();
}
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK_GE(size, PAGE_SIZE);
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
// Map a larger size to get a chunk of address space big enough that
// it surely contains an aligned region of the requested size. Then
// overwrite the aligned middle portion with a mapping from the
// beginning of the VMO, and unmap the excess before and after.
size_t map_size = size + alignment;
uintptr_t addr;
status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
vmo, 0, map_size, &addr);
if (status == ZX_OK) {
uintptr_t map_addr = addr;
uintptr_t map_end = map_addr + map_size;
addr = RoundUpTo(map_addr, alignment);
uintptr_t end = addr + size;
if (addr != map_addr) {
zx_info_vmar_t info;
status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
sizeof(info), NULL, NULL);
if (status == ZX_OK) {
uintptr_t new_addr;
status = _zx_vmar_map(
_zx_vmar_root_self(),
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
addr - info.base, vmo, 0, size, &new_addr);
if (status == ZX_OK) CHECK_EQ(new_addr, addr);
}
}
if (status == ZX_OK && addr != map_addr)
status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
if (status == ZX_OK && end != map_end)
status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
}
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void UnmapOrDie(void *addr, uptr size) {
UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
}
// This is used on the shadow mapping, which cannot be changed.
// Zircon doesn't have anything like MADV_DONTNEED.
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
void DumpProcessMap() {
// TODO(mcgrathr): write it
return;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
// TODO(mcgrathr): Figure out a better way.
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status == ZX_OK) {
status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
_zx_handle_close(vmo);
}
return status == ZX_OK;
}
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len, error_t *errno_p) {
zx_handle_t vmo;
zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
if (status == ZX_OK) {
uint64_t vmo_size;
status = _zx_vmo_get_size(vmo, &vmo_size);
if (status == ZX_OK) {
if (vmo_size < max_len) max_len = vmo_size;
size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
uintptr_t addr;
status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
map_size, &addr);
if (status == ZX_OK) {
*buff = reinterpret_cast<char *>(addr);
*buff_size = map_size;
*read_len = max_len;
}
}
_zx_handle_close(vmo);
}
if (status != ZX_OK && errno_p) *errno_p = status;
return status == ZX_OK;
}
void RawWrite(const char *buffer) {
constexpr size_t size = 128;
static _Thread_local char line[size];
static _Thread_local size_t lastLineEnd = 0;
static _Thread_local size_t cur = 0;
while (*buffer) {
if (cur >= size) {
if (lastLineEnd == 0)
lastLineEnd = size;
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
if (*buffer == '\n')
lastLineEnd = cur + 1;
line[cur++] = *buffer++;
}
// Flush all complete lines before returning.
if (lastLineEnd != 0) {
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
}
void CatastrophicErrorWrite(const char *buffer, uptr length) {
__sanitizer_log_write(buffer, length);
}
char **StoredArgv;
char **StoredEnviron;
char **GetArgv() { return StoredArgv; }
char **GetEnviron() { return StoredEnviron; }
const char *GetEnv(const char *name) {
if (StoredEnviron) {
uptr NameLen = internal_strlen(name);
for (char **Env = StoredEnviron; *Env != 0; Env++) {
if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
return (*Env) + NameLen + 1;
}
}
return nullptr;
}
uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
const char *argv0 = "<UNKNOWN>";
if (StoredArgv && StoredArgv[0]) {
argv0 = StoredArgv[0];
}
internal_strncpy(buf, argv0, buf_len);
return internal_strlen(buf);
}
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
uptr MainThreadStackBase, MainThreadStackSize;
bool GetRandom(void *buffer, uptr length, bool blocking) {
CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
_zx_cprng_draw(buffer, length);
return true;
}
u32 GetNumberOfCPUs() {
return zx_system_get_num_cpus();
}
uptr GetRSS() { UNIMPLEMENTED(); }
} // namespace __sanitizer
using namespace __sanitizer;
extern "C" {
void __sanitizer_startup_hook(int argc, char **argv, char **envp,
void *stack_base, size_t stack_size) {
__sanitizer::StoredArgv = argv;
__sanitizer::StoredEnviron = envp;
__sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
__sanitizer::MainThreadStackSize = stack_size;
}
void __sanitizer_set_report_path(const char *path) {
// Handle the initialization code in each sanitizer, but no other calls.
// This setting is never consulted on Fuchsia.
DCHECK_EQ(path, common_flags()->log_path);
}
void __sanitizer_set_report_fd(void *fd) {
UNREACHABLE("not available on Fuchsia");
}
} // extern "C"
#endif // SANITIZER_FUCHSIA
|