1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
| //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file adds DWARF discriminators to the IR. Path discriminators are
// used to decide what CFG path was taken inside sub-graphs whose instructions
// share the same line and column number information.
//
// The main user of this is the sample profiler. Instruction samples are
// mapped to line number information. Since a single line may be spread
// out over several basic blocks, discriminators add more precise location
// for the samples.
//
// For example,
//
// 1 #define ASSERT(P)
// 2 if (!(P))
// 3 abort()
// ...
// 100 while (true) {
// 101 ASSERT (sum < 0);
// 102 ...
// 130 }
//
// when converted to IR, this snippet looks something like:
//
// while.body: ; preds = %entry, %if.end
// %0 = load i32* %sum, align 4, !dbg !15
// %cmp = icmp slt i32 %0, 0, !dbg !15
// br i1 %cmp, label %if.end, label %if.then, !dbg !15
//
// if.then: ; preds = %while.body
// call void @abort(), !dbg !15
// br label %if.end, !dbg !15
//
// Notice that all the instructions in blocks 'while.body' and 'if.then'
// have exactly the same debug information. When this program is sampled
// at runtime, the profiler will assume that all these instructions are
// equally frequent. This, in turn, will consider the edge while.body->if.then
// to be frequently taken (which is incorrect).
//
// By adding a discriminator value to the instructions in block 'if.then',
// we can distinguish instructions at line 101 with discriminator 0 from
// the instructions at line 101 with discriminator 1.
//
// For more details about DWARF discriminators, please visit
// http://wiki.dwarfstd.org/index.php?title=Path_Discriminators
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/AddDiscriminators.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "add-discriminators"
// Command line option to disable discriminator generation even in the
// presence of debug information. This is only needed when debugging
// debug info generation issues.
static cl::opt<bool> NoDiscriminators(
"no-discriminators", cl::init(false),
cl::desc("Disable generation of discriminator information."));
namespace {
// The legacy pass of AddDiscriminators.
struct AddDiscriminatorsLegacyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
AddDiscriminatorsLegacyPass() : FunctionPass(ID) {
initializeAddDiscriminatorsLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
};
} // end anonymous namespace
char AddDiscriminatorsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AddDiscriminatorsLegacyPass, "add-discriminators",
"Add DWARF path discriminators", false, false)
INITIALIZE_PASS_END(AddDiscriminatorsLegacyPass, "add-discriminators",
"Add DWARF path discriminators", false, false)
// Create the legacy AddDiscriminatorsPass.
FunctionPass *llvm::createAddDiscriminatorsPass() {
return new AddDiscriminatorsLegacyPass();
}
static bool shouldHaveDiscriminator(const Instruction *I) {
return !isa<IntrinsicInst>(I) || isa<MemIntrinsic>(I);
}
/// Assign DWARF discriminators.
///
/// To assign discriminators, we examine the boundaries of every
/// basic block and its successors. Suppose there is a basic block B1
/// with successor B2. The last instruction I1 in B1 and the first
/// instruction I2 in B2 are located at the same file and line number.
/// This situation is illustrated in the following code snippet:
///
/// if (i < 10) x = i;
///
/// entry:
/// br i1 %cmp, label %if.then, label %if.end, !dbg !10
/// if.then:
/// %1 = load i32* %i.addr, align 4, !dbg !10
/// store i32 %1, i32* %x, align 4, !dbg !10
/// br label %if.end, !dbg !10
/// if.end:
/// ret void, !dbg !12
///
/// Notice how the branch instruction in block 'entry' and all the
/// instructions in block 'if.then' have the exact same debug location
/// information (!dbg !10).
///
/// To distinguish instructions in block 'entry' from instructions in
/// block 'if.then', we generate a new lexical block for all the
/// instruction in block 'if.then' that share the same file and line
/// location with the last instruction of block 'entry'.
///
/// This new lexical block will have the same location information as
/// the previous one, but with a new DWARF discriminator value.
///
/// One of the main uses of this discriminator value is in runtime
/// sample profilers. It allows the profiler to distinguish instructions
/// at location !dbg !10 that execute on different basic blocks. This is
/// important because while the predicate 'if (x < 10)' may have been
/// executed millions of times, the assignment 'x = i' may have only
/// executed a handful of times (meaning that the entry->if.then edge is
/// seldom taken).
///
/// If we did not have discriminator information, the profiler would
/// assign the same weight to both blocks 'entry' and 'if.then', which
/// in turn will make it conclude that the entry->if.then edge is very
/// hot.
///
/// To decide where to create new discriminator values, this function
/// traverses the CFG and examines instruction at basic block boundaries.
/// If the last instruction I1 of a block B1 is at the same file and line
/// location as instruction I2 of successor B2, then it creates a new
/// lexical block for I2 and all the instruction in B2 that share the same
/// file and line location as I2. This new lexical block will have a
/// different discriminator number than I1.
static bool addDiscriminators(Function &F) {
// If the function has debug information, but the user has disabled
// discriminators, do nothing.
// Simlarly, if the function has no debug info, do nothing.
if (NoDiscriminators || !F.getSubprogram())
return false;
bool Changed = false;
using Location = std::pair<StringRef, unsigned>;
using BBSet = DenseSet<const BasicBlock *>;
using LocationBBMap = DenseMap<Location, BBSet>;
using LocationDiscriminatorMap = DenseMap<Location, unsigned>;
using LocationSet = DenseSet<Location>;
LocationBBMap LBM;
LocationDiscriminatorMap LDM;
// Traverse all instructions in the function. If the source line location
// of the instruction appears in other basic block, assign a new
// discriminator for this instruction.
for (BasicBlock &B : F) {
for (auto &I : B.getInstList()) {
// Not all intrinsic calls should have a discriminator.
// We want to avoid a non-deterministic assignment of discriminators at
// different debug levels. We still allow discriminators on memory
// intrinsic calls because those can be early expanded by SROA into
// pairs of loads and stores, and the expanded load/store instructions
// should have a valid discriminator.
if (!shouldHaveDiscriminator(&I))
continue;
const DILocation *DIL = I.getDebugLoc();
if (!DIL)
continue;
Location L = std::make_pair(DIL->getFilename(), DIL->getLine());
auto &BBMap = LBM[L];
auto R = BBMap.insert(&B);
if (BBMap.size() == 1)
continue;
// If we could insert more than one block with the same line+file, a
// discriminator is needed to distinguish both instructions.
// Only the lowest 7 bits are used to represent a discriminator to fit
// it in 1 byte ULEB128 representation.
unsigned Discriminator = R.second ? ++LDM[L] : LDM[L];
auto NewDIL = DIL->cloneWithBaseDiscriminator(Discriminator);
if (!NewDIL) {
LLVM_DEBUG(dbgs() << "Could not encode discriminator: "
<< DIL->getFilename() << ":" << DIL->getLine() << ":"
<< DIL->getColumn() << ":" << Discriminator << " "
<< I << "\n");
} else {
I.setDebugLoc(NewDIL.getValue());
LLVM_DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":"
<< DIL->getColumn() << ":" << Discriminator << " " << I
<< "\n");
}
Changed = true;
}
}
// Traverse all instructions and assign new discriminators to call
// instructions with the same lineno that are in the same basic block.
// Sample base profile needs to distinguish different function calls within
// a same source line for correct profile annotation.
for (BasicBlock &B : F) {
LocationSet CallLocations;
for (auto &I : B.getInstList()) {
// We bypass intrinsic calls for the following two reasons:
// 1) We want to avoid a non-deterministic assigment of
// discriminators.
// 2) We want to minimize the number of base discriminators used.
if (!isa<InvokeInst>(I) && (!isa<CallInst>(I) || isa<IntrinsicInst>(I)))
continue;
DILocation *CurrentDIL = I.getDebugLoc();
if (!CurrentDIL)
continue;
Location L =
std::make_pair(CurrentDIL->getFilename(), CurrentDIL->getLine());
if (!CallLocations.insert(L).second) {
unsigned Discriminator = ++LDM[L];
auto NewDIL = CurrentDIL->cloneWithBaseDiscriminator(Discriminator);
if (!NewDIL) {
LLVM_DEBUG(dbgs()
<< "Could not encode discriminator: "
<< CurrentDIL->getFilename() << ":"
<< CurrentDIL->getLine() << ":" << CurrentDIL->getColumn()
<< ":" << Discriminator << " " << I << "\n");
} else {
I.setDebugLoc(NewDIL.getValue());
Changed = true;
}
}
}
}
return Changed;
}
bool AddDiscriminatorsLegacyPass::runOnFunction(Function &F) {
return addDiscriminators(F);
}
PreservedAnalyses AddDiscriminatorsPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!addDiscriminators(F))
return PreservedAnalyses::all();
// FIXME: should be all()
return PreservedAnalyses::none();
}
|