reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE, etc.
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <algorithm>
#include <cassert>
#include <utility>

using namespace llvm;
using namespace reassociate;
using namespace PatternMatch;

#define DEBUG_TYPE "reassociate"

STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");

#ifndef NDEBUG
/// Print out the expression identified in the Ops list.
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
  Module *M = I->getModule();
  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
       << *Ops[0].Op->getType() << '\t';
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    dbgs() << "[ ";
    Ops[i].Op->printAsOperand(dbgs(), false, M);
    dbgs() << ", #" << Ops[i].Rank << "] ";
  }
}
#endif

/// Utility class representing a non-constant Xor-operand. We classify
/// non-constant Xor-Operands into two categories:
///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
///  C2)
///    C2.1) The operand is in the form of "X | C", where C is a non-zero
///          constant.
///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
///          operand as "E | 0"
class llvm::reassociate::XorOpnd {
public:
  XorOpnd(Value *V);

  bool isInvalid() const { return SymbolicPart == nullptr; }
  bool isOrExpr() const { return isOr; }
  Value *getValue() const { return OrigVal; }
  Value *getSymbolicPart() const { return SymbolicPart; }
  unsigned getSymbolicRank() const { return SymbolicRank; }
  const APInt &getConstPart() const { return ConstPart; }

  void Invalidate() { SymbolicPart = OrigVal = nullptr; }
  void setSymbolicRank(unsigned R) { SymbolicRank = R; }

private:
  Value *OrigVal;
  Value *SymbolicPart;
  APInt ConstPart;
  unsigned SymbolicRank;
  bool isOr;
};

XorOpnd::XorOpnd(Value *V) {
  assert(!isa<ConstantInt>(V) && "No ConstantInt");
  OrigVal = V;
  Instruction *I = dyn_cast<Instruction>(V);
  SymbolicRank = 0;

  if (I && (I->getOpcode() == Instruction::Or ||
            I->getOpcode() == Instruction::And)) {
    Value *V0 = I->getOperand(0);
    Value *V1 = I->getOperand(1);
    const APInt *C;
    if (match(V0, m_APInt(C)))
      std::swap(V0, V1);

    if (match(V1, m_APInt(C))) {
      ConstPart = *C;
      SymbolicPart = V0;
      isOr = (I->getOpcode() == Instruction::Or);
      return;
    }
  }

  // view the operand as "V | 0"
  SymbolicPart = V;
  ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
  isOr = true;
}

/// Return true if V is an instruction of the specified opcode and if it
/// only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
  auto *I = dyn_cast<Instruction>(V);
  if (I && I->hasOneUse() && I->getOpcode() == Opcode)
    if (!isa<FPMathOperator>(I) || I->isFast())
      return cast<BinaryOperator>(I);
  return nullptr;
}

static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
                                        unsigned Opcode2) {
  auto *I = dyn_cast<Instruction>(V);
  if (I && I->hasOneUse() &&
      (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
    if (!isa<FPMathOperator>(I) || I->isFast())
      return cast<BinaryOperator>(I);
  return nullptr;
}

void ReassociatePass::BuildRankMap(Function &F,
                                   ReversePostOrderTraversal<Function*> &RPOT) {
  unsigned Rank = 2;

  // Assign distinct ranks to function arguments.
  for (auto &Arg : F.args()) {
    ValueRankMap[&Arg] = ++Rank;
    LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
                      << "\n");
  }

  // Traverse basic blocks in ReversePostOrder
  for (BasicBlock *BB : RPOT) {
    unsigned BBRank = RankMap[BB] = ++Rank << 16;

    // Walk the basic block, adding precomputed ranks for any instructions that
    // we cannot move.  This ensures that the ranks for these instructions are
    // all different in the block.
    for (Instruction &I : *BB)
      if (mayBeMemoryDependent(I))
        ValueRankMap[&I] = ++BBRank;
  }
}

unsigned ReassociatePass::getRank(Value *V) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    return 0;  // Otherwise it's a global or constant, rank 0.
  }

  if (unsigned Rank = ValueRankMap[I])
    return Rank;    // Rank already known?

  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
  // we can reassociate expressions for code motion!  Since we do not recurse
  // for PHI nodes, we cannot have infinite recursion here, because there
  // cannot be loops in the value graph that do not go through PHI nodes.
  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
  for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
    Rank = std::max(Rank, getRank(I->getOperand(i)));

  // If this is a 'not' or 'neg' instruction, do not count it for rank. This
  // assures us that X and ~X will have the same rank.
  if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
      !match(I, m_FNeg(m_Value())))
    ++Rank;

  LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
                    << "\n");

  return ValueRankMap[I] = Rank;
}

// Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
void ReassociatePass::canonicalizeOperands(Instruction *I) {
  assert(isa<BinaryOperator>(I) && "Expected binary operator.");
  assert(I->isCommutative() && "Expected commutative operator.");

  Value *LHS = I->getOperand(0);
  Value *RHS = I->getOperand(1);
  if (LHS == RHS || isa<Constant>(RHS))
    return;
  if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
    cast<BinaryOperator>(I)->swapOperands();
}

static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
                                 Instruction *InsertBefore, Value *FlagsOp) {
  if (S1->getType()->isIntOrIntVectorTy())
    return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
  else {
    BinaryOperator *Res =
        BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    return Res;
  }
}

static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
                                 Instruction *InsertBefore, Value *FlagsOp) {
  if (S1->getType()->isIntOrIntVectorTy())
    return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
  else {
    BinaryOperator *Res =
      BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    return Res;
  }
}

static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
                                 Instruction *InsertBefore, Value *FlagsOp) {
  if (S1->getType()->isIntOrIntVectorTy())
    return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
  else {
    BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    return Res;
  }
}

/// Replace 0-X with X*-1.
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
  assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
         "Expected a Negate!");
  // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
  unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
  Type *Ty = Neg->getType();
  Constant *NegOne = Ty->isIntOrIntVectorTy() ?
    ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);

  BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
  Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
  Res->takeName(Neg);
  Neg->replaceAllUsesWith(Res);
  Res->setDebugLoc(Neg->getDebugLoc());
  return Res;
}

/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
/// even x in Bitwidth-bit arithmetic.
static unsigned CarmichaelShift(unsigned Bitwidth) {
  if (Bitwidth < 3)
    return Bitwidth - 1;
  return Bitwidth - 2;
}

/// Add the extra weight 'RHS' to the existing weight 'LHS',
/// reducing the combined weight using any special properties of the operation.
/// The existing weight LHS represents the computation X op X op ... op X where
/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
  // If we were working with infinite precision arithmetic then the combined
  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
  // for nilpotent operations and addition, but not for idempotent operations
  // and multiplication), so it is important to correctly reduce the combined
  // weight back into range if wrapping would be wrong.

  // If RHS is zero then the weight didn't change.
  if (RHS.isMinValue())
    return;
  // If LHS is zero then the combined weight is RHS.
  if (LHS.isMinValue()) {
    LHS = RHS;
    return;
  }
  // From this point on we know that neither LHS nor RHS is zero.

  if (Instruction::isIdempotent(Opcode)) {
    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    // weight of 1.  Keeping weights at zero or one also means that wrapping is
    // not a problem.
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    return; // Return a weight of 1.
  }
  if (Instruction::isNilpotent(Opcode)) {
    // Nilpotent means X op X === 0, so reduce weights modulo 2.
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    LHS = 0; // 1 + 1 === 0 modulo 2.
    return;
  }
  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
    // TODO: Reduce the weight by exploiting nsw/nuw?
    LHS += RHS;
    return;
  }

  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
         "Unknown associative operation!");
  unsigned Bitwidth = LHS.getBitWidth();
  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
  // which by a happy accident means that they can always be represented using
  // Bitwidth bits.
  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
  // the Carmichael number).
  if (Bitwidth > 3) {
    /// CM - The value of Carmichael's lambda function.
    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    // Any weight W >= Threshold can be replaced with W - CM.
    APInt Threshold = CM + Bitwidth;
    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    // For Bitwidth 4 or more the following sum does not overflow.
    LHS += RHS;
    while (LHS.uge(Threshold))
      LHS -= CM;
  } else {
    // To avoid problems with overflow do everything the same as above but using
    // a larger type.
    unsigned CM = 1U << CarmichaelShift(Bitwidth);
    unsigned Threshold = CM + Bitwidth;
    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
           "Weights not reduced!");
    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    while (Total >= Threshold)
      Total -= CM;
    LHS = Total;
  }
}

using RepeatedValue = std::pair<Value*, APInt>;

/// Given an associative binary expression, return the leaf
/// nodes in Ops along with their weights (how many times the leaf occurs).  The
/// original expression is the same as
///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
/// op
///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
/// op
///   ...
/// op
///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
///
/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
///
/// This routine may modify the function, in which case it returns 'true'.  The
/// changes it makes may well be destructive, changing the value computed by 'I'
/// to something completely different.  Thus if the routine returns 'true' then
/// you MUST either replace I with a new expression computed from the Ops array,
/// or use RewriteExprTree to put the values back in.
///
/// A leaf node is either not a binary operation of the same kind as the root
/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
/// opcode), or is the same kind of binary operator but has a use which either
/// does not belong to the expression, or does belong to the expression but is
/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
/// of the expression, while for non-leaf nodes (except for the root 'I') every
/// use is a non-leaf node of the expression.
///
/// For example:
///           expression graph        node names
///
///                     +        |        I
///                    / \       |
///                   +   +      |      A,  B
///                  / \ / \     |
///                 *   +   *    |    C,  D,  E
///                / \ / \ / \   |
///                   +   *      |      F,  G
///
/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
///
/// The expression is maximal: if some instruction is a binary operator of the
/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
/// then the instruction also belongs to the expression, is not a leaf node of
/// it, and its operands also belong to the expression (but may be leaf nodes).
///
/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
/// order to ensure that every non-root node in the expression has *exactly one*
/// use by a non-leaf node of the expression.  This destruction means that the
/// caller MUST either replace 'I' with a new expression or use something like
/// RewriteExprTree to put the values back in if the routine indicates that it
/// made a change by returning 'true'.
///
/// In the above example either the right operand of A or the left operand of B
/// will be replaced by undef.  If it is B's operand then this gives:
///
///                     +        |        I
///                    / \       |
///                   +   +      |      A,  B - operand of B replaced with undef
///                  / \   \     |
///                 *   +   *    |    C,  D,  E
///                / \ / \ / \   |
///                   +   *      |      F,  G
///
/// Note that such undef operands can only be reached by passing through 'I'.
/// For example, if you visit operands recursively starting from a leaf node
/// then you will never see such an undef operand unless you get back to 'I',
/// which requires passing through a phi node.
///
/// Note that this routine may also mutate binary operators of the wrong type
/// that have all uses inside the expression (i.e. only used by non-leaf nodes
/// of the expression) if it can turn them into binary operators of the right
/// type and thus make the expression bigger.
static bool LinearizeExprTree(Instruction *I,
                              SmallVectorImpl<RepeatedValue> &Ops) {
  assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
         "Expected a UnaryOperator or BinaryOperator!");
  LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
  unsigned Opcode = I->getOpcode();
  assert(I->isAssociative() && I->isCommutative() &&
         "Expected an associative and commutative operation!");

  // Visit all operands of the expression, keeping track of their weight (the
  // number of paths from the expression root to the operand, or if you like
  // the number of times that operand occurs in the linearized expression).
  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
  // while A has weight two.

  // Worklist of non-leaf nodes (their operands are in the expression too) along
  // with their weights, representing a certain number of paths to the operator.
  // If an operator occurs in the worklist multiple times then we found multiple
  // ways to get to it.
  SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
  bool Changed = false;

  // Leaves of the expression are values that either aren't the right kind of
  // operation (eg: a constant, or a multiply in an add tree), or are, but have
  // some uses that are not inside the expression.  For example, in I = X + X,
  // X = A + B, the value X has two uses (by I) that are in the expression.  If
  // X has any other uses, for example in a return instruction, then we consider
  // X to be a leaf, and won't analyze it further.  When we first visit a value,
  // if it has more than one use then at first we conservatively consider it to
  // be a leaf.  Later, as the expression is explored, we may discover some more
  // uses of the value from inside the expression.  If all uses turn out to be
  // from within the expression (and the value is a binary operator of the right
  // kind) then the value is no longer considered to be a leaf, and its operands
  // are explored.

  // Leaves - Keeps track of the set of putative leaves as well as the number of
  // paths to each leaf seen so far.
  using LeafMap = DenseMap<Value *, APInt>;
  LeafMap Leaves; // Leaf -> Total weight so far.
  SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.

#ifndef NDEBUG
  SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
#endif
  while (!Worklist.empty()) {
    std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
    I = P.first; // We examine the operands of this binary operator.

    for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
      Value *Op = I->getOperand(OpIdx);
      APInt Weight = P.second; // Number of paths to this operand.
      LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
      assert(!Op->use_empty() && "No uses, so how did we get to it?!");

      // If this is a binary operation of the right kind with only one use then
      // add its operands to the expression.
      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
        assert(Visited.insert(Op).second && "Not first visit!");
        LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
        Worklist.push_back(std::make_pair(BO, Weight));
        continue;
      }

      // Appears to be a leaf.  Is the operand already in the set of leaves?
      LeafMap::iterator It = Leaves.find(Op);
      if (It == Leaves.end()) {
        // Not in the leaf map.  Must be the first time we saw this operand.
        assert(Visited.insert(Op).second && "Not first visit!");
        if (!Op->hasOneUse()) {
          // This value has uses not accounted for by the expression, so it is
          // not safe to modify.  Mark it as being a leaf.
          LLVM_DEBUG(dbgs()
                     << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
          LeafOrder.push_back(Op);
          Leaves[Op] = Weight;
          continue;
        }
        // No uses outside the expression, try morphing it.
      } else {
        // Already in the leaf map.
        assert(It != Leaves.end() && Visited.count(Op) &&
               "In leaf map but not visited!");

        // Update the number of paths to the leaf.
        IncorporateWeight(It->second, Weight, Opcode);

#if 0   // TODO: Re-enable once PR13021 is fixed.
        // The leaf already has one use from inside the expression.  As we want
        // exactly one such use, drop this new use of the leaf.
        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
        I->setOperand(OpIdx, UndefValue::get(I->getType()));
        Changed = true;

        // If the leaf is a binary operation of the right kind and we now see
        // that its multiple original uses were in fact all by nodes belonging
        // to the expression, then no longer consider it to be a leaf and add
        // its operands to the expression.
        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
          LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
          Worklist.push_back(std::make_pair(BO, It->second));
          Leaves.erase(It);
          continue;
        }
#endif

        // If we still have uses that are not accounted for by the expression
        // then it is not safe to modify the value.
        if (!Op->hasOneUse())
          continue;

        // No uses outside the expression, try morphing it.
        Weight = It->second;
        Leaves.erase(It); // Since the value may be morphed below.
      }

      // At this point we have a value which, first of all, is not a binary
      // expression of the right kind, and secondly, is only used inside the
      // expression.  This means that it can safely be modified.  See if we
      // can usefully morph it into an expression of the right kind.
      assert((!isa<Instruction>(Op) ||
              cast<Instruction>(Op)->getOpcode() != Opcode
              || (isa<FPMathOperator>(Op) &&
                  !cast<Instruction>(Op)->isFast())) &&
             "Should have been handled above!");
      assert(Op->hasOneUse() && "Has uses outside the expression tree!");

      // If this is a multiply expression, turn any internal negations into
      // multiplies by -1 so they can be reassociated.
      if (Instruction *Tmp = dyn_cast<Instruction>(Op))
        if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
            (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
          LLVM_DEBUG(dbgs()
                     << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
          Tmp = LowerNegateToMultiply(Tmp);
          LLVM_DEBUG(dbgs() << *Tmp << '\n');
          Worklist.push_back(std::make_pair(Tmp, Weight));
          Changed = true;
          continue;
        }

      // Failed to morph into an expression of the right type.  This really is
      // a leaf.
      LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
      LeafOrder.push_back(Op);
      Leaves[Op] = Weight;
    }
  }

  // The leaves, repeated according to their weights, represent the linearized
  // form of the expression.
  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    Value *V = LeafOrder[i];
    LeafMap::iterator It = Leaves.find(V);
    if (It == Leaves.end())
      // Node initially thought to be a leaf wasn't.
      continue;
    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    APInt Weight = It->second;
    if (Weight.isMinValue())
      // Leaf already output or weight reduction eliminated it.
      continue;
    // Ensure the leaf is only output once.
    It->second = 0;
    Ops.push_back(std::make_pair(V, Weight));
  }

  // For nilpotent operations or addition there may be no operands, for example
  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
  // in both cases the weight reduces to 0 causing the value to be skipped.
  if (Ops.empty()) {
    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    assert(Identity && "Associative operation without identity!");
    Ops.emplace_back(Identity, APInt(Bitwidth, 1));
  }

  return Changed;
}

/// Now that the operands for this expression tree are
/// linearized and optimized, emit them in-order.
void ReassociatePass::RewriteExprTree(BinaryOperator *I,
                                      SmallVectorImpl<ValueEntry> &Ops) {
  assert(Ops.size() > 1 && "Single values should be used directly!");

  // Since our optimizations should never increase the number of operations, the
  // new expression can usually be written reusing the existing binary operators
  // from the original expression tree, without creating any new instructions,
  // though the rewritten expression may have a completely different topology.
  // We take care to not change anything if the new expression will be the same
  // as the original.  If more than trivial changes (like commuting operands)
  // were made then we are obliged to clear out any optional subclass data like
  // nsw flags.

  /// NodesToRewrite - Nodes from the original expression available for writing
  /// the new expression into.
  SmallVector<BinaryOperator*, 8> NodesToRewrite;
  unsigned Opcode = I->getOpcode();
  BinaryOperator *Op = I;

  /// NotRewritable - The operands being written will be the leaves of the new
  /// expression and must not be used as inner nodes (via NodesToRewrite) by
  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
  /// (if they were they would have been incorporated into the expression and so
  /// would not be leaves), so most of the time there is no danger of this.  But
  /// in rare cases a leaf may become reassociable if an optimization kills uses
  /// of it, or it may momentarily become reassociable during rewriting (below)
  /// due it being removed as an operand of one of its uses.  Ensure that misuse
  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
  /// leaves and refusing to reuse any of them as inner nodes.
  SmallPtrSet<Value*, 8> NotRewritable;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    NotRewritable.insert(Ops[i].Op);

  // ExpressionChanged - Non-null if the rewritten expression differs from the
  // original in some non-trivial way, requiring the clearing of optional flags.
  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
  BinaryOperator *ExpressionChanged = nullptr;
  for (unsigned i = 0; ; ++i) {
    // The last operation (which comes earliest in the IR) is special as both
    // operands will come from Ops, rather than just one with the other being
    // a subexpression.
    if (i+2 == Ops.size()) {
      Value *NewLHS = Ops[i].Op;
      Value *NewRHS = Ops[i+1].Op;
      Value *OldLHS = Op->getOperand(0);
      Value *OldRHS = Op->getOperand(1);

      if (NewLHS == OldLHS && NewRHS == OldRHS)
        // Nothing changed, leave it alone.
        break;

      if (NewLHS == OldRHS && NewRHS == OldLHS) {
        // The order of the operands was reversed.  Swap them.
        LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
        Op->swapOperands();
        LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
        MadeChange = true;
        ++NumChanged;
        break;
      }

      // The new operation differs non-trivially from the original. Overwrite
      // the old operands with the new ones.
      LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
      if (NewLHS != OldLHS) {
        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
        if (BO && !NotRewritable.count(BO))
          NodesToRewrite.push_back(BO);
        Op->setOperand(0, NewLHS);
      }
      if (NewRHS != OldRHS) {
        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
        if (BO && !NotRewritable.count(BO))
          NodesToRewrite.push_back(BO);
        Op->setOperand(1, NewRHS);
      }
      LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');

      ExpressionChanged = Op;
      MadeChange = true;
      ++NumChanged;

      break;
    }

    // Not the last operation.  The left-hand side will be a sub-expression
    // while the right-hand side will be the current element of Ops.
    Value *NewRHS = Ops[i].Op;
    if (NewRHS != Op->getOperand(1)) {
      LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
      if (NewRHS == Op->getOperand(0)) {
        // The new right-hand side was already present as the left operand.  If
        // we are lucky then swapping the operands will sort out both of them.
        Op->swapOperands();
      } else {
        // Overwrite with the new right-hand side.
        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
        if (BO && !NotRewritable.count(BO))
          NodesToRewrite.push_back(BO);
        Op->setOperand(1, NewRHS);
        ExpressionChanged = Op;
      }
      LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
      MadeChange = true;
      ++NumChanged;
    }

    // Now deal with the left-hand side.  If this is already an operation node
    // from the original expression then just rewrite the rest of the expression
    // into it.
    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    if (BO && !NotRewritable.count(BO)) {
      Op = BO;
      continue;
    }

    // Otherwise, grab a spare node from the original expression and use that as
    // the left-hand side.  If there are no nodes left then the optimizers made
    // an expression with more nodes than the original!  This usually means that
    // they did something stupid but it might mean that the problem was just too
    // hard (finding the mimimal number of multiplications needed to realize a
    // multiplication expression is NP-complete).  Whatever the reason, smart or
    // stupid, create a new node if there are none left.
    BinaryOperator *NewOp;
    if (NodesToRewrite.empty()) {
      Constant *Undef = UndefValue::get(I->getType());
      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
                                     Undef, Undef, "", I);
      if (NewOp->getType()->isFPOrFPVectorTy())
        NewOp->setFastMathFlags(I->getFastMathFlags());
    } else {
      NewOp = NodesToRewrite.pop_back_val();
    }

    LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
    Op->setOperand(0, NewOp);
    LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
    ExpressionChanged = Op;
    MadeChange = true;
    ++NumChanged;
    Op = NewOp;
  }

  // If the expression changed non-trivially then clear out all subclass data
  // starting from the operator specified in ExpressionChanged, and compactify
  // the operators to just before the expression root to guarantee that the
  // expression tree is dominated by all of Ops.
  if (ExpressionChanged)
    do {
      // Preserve FastMathFlags.
      if (isa<FPMathOperator>(I)) {
        FastMathFlags Flags = I->getFastMathFlags();
        ExpressionChanged->clearSubclassOptionalData();
        ExpressionChanged->setFastMathFlags(Flags);
      } else
        ExpressionChanged->clearSubclassOptionalData();

      if (ExpressionChanged == I)
        break;

      // Discard any debug info related to the expressions that has changed (we
      // can leave debug infor related to the root, since the result of the
      // expression tree should be the same even after reassociation).
      replaceDbgUsesWithUndef(ExpressionChanged);

      ExpressionChanged->moveBefore(I);
      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
    } while (true);

  // Throw away any left over nodes from the original expression.
  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    RedoInsts.insert(NodesToRewrite[i]);
}

/// Insert instructions before the instruction pointed to by BI,
/// that computes the negative version of the value specified.  The negative
/// version of the value is returned, and BI is left pointing at the instruction
/// that should be processed next by the reassociation pass.
/// Also add intermediate instructions to the redo list that are modified while
/// pushing the negates through adds.  These will be revisited to see if
/// additional opportunities have been exposed.
static Value *NegateValue(Value *V, Instruction *BI,
                          ReassociatePass::OrderedSet &ToRedo) {
  if (auto *C = dyn_cast<Constant>(V))
    return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
                                              ConstantExpr::getNeg(C);

  // We are trying to expose opportunity for reassociation.  One of the things
  // that we want to do to achieve this is to push a negation as deep into an
  // expression chain as possible, to expose the add instructions.  In practice,
  // this means that we turn this:
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
  // the constants.  We assume that instcombine will clean up the mess later if
  // we introduce tons of unnecessary negation instructions.
  //
  if (BinaryOperator *I =
          isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
    // Push the negates through the add.
    I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
    I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
    if (I->getOpcode() == Instruction::Add) {
      I->setHasNoUnsignedWrap(false);
      I->setHasNoSignedWrap(false);
    }

    // We must move the add instruction here, because the neg instructions do
    // not dominate the old add instruction in general.  By moving it, we are
    // assured that the neg instructions we just inserted dominate the
    // instruction we are about to insert after them.
    //
    I->moveBefore(BI);
    I->setName(I->getName()+".neg");

    // Add the intermediate negates to the redo list as processing them later
    // could expose more reassociating opportunities.
    ToRedo.insert(I);
    return I;
  }

  // Okay, we need to materialize a negated version of V with an instruction.
  // Scan the use lists of V to see if we have one already.
  for (User *U : V->users()) {
    if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
      continue;

    // We found one!  Now we have to make sure that the definition dominates
    // this use.  We do this by moving it to the entry block (if it is a
    // non-instruction value) or right after the definition.  These negates will
    // be zapped by reassociate later, so we don't need much finesse here.
    Instruction *TheNeg = cast<Instruction>(U);

    // Verify that the negate is in this function, V might be a constant expr.
    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
      continue;

    bool FoundCatchSwitch = false;

    BasicBlock::iterator InsertPt;
    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
        InsertPt = II->getNormalDest()->begin();
      } else {
        InsertPt = ++InstInput->getIterator();
      }

      const BasicBlock *BB = InsertPt->getParent();

      // Make sure we don't move anything before PHIs or exception
      // handling pads.
      while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
                                       InsertPt->isEHPad())) {
        if (isa<CatchSwitchInst>(InsertPt))
          // A catchswitch cannot have anything in the block except
          // itself and PHIs.  We'll bail out below.
          FoundCatchSwitch = true;
        ++InsertPt;
      }
    } else {
      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    }

    // We found a catchswitch in the block where we want to move the
    // neg.  We cannot move anything into that block.  Bail and just
    // create the neg before BI, as if we hadn't found an existing
    // neg.
    if (FoundCatchSwitch)
      break;

    TheNeg->moveBefore(&*InsertPt);
    if (TheNeg->getOpcode() == Instruction::Sub) {
      TheNeg->setHasNoUnsignedWrap(false);
      TheNeg->setHasNoSignedWrap(false);
    } else {
      TheNeg->andIRFlags(BI);
    }
    ToRedo.insert(TheNeg);
    return TheNeg;
  }

  // Insert a 'neg' instruction that subtracts the value from zero to get the
  // negation.
  BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
  ToRedo.insert(NewNeg);
  return NewNeg;
}

/// Return true if we should break up this subtract of X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(Instruction *Sub) {
  // If this is a negation, we can't split it up!
  if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 
    return false;

  // Don't breakup X - undef.
  if (isa<UndefValue>(Sub->getOperand(1)))
    return false;

  // Don't bother to break this up unless either the LHS is an associable add or
  // subtract or if this is only used by one.
  Value *V0 = Sub->getOperand(0);
  if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
      isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
    return true;
  Value *V1 = Sub->getOperand(1);
  if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
      isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
    return true;
  Value *VB = Sub->user_back();
  if (Sub->hasOneUse() &&
      (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
       isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
    return true;

  return false;
}

/// If we have (X-Y), and if either X is an add, or if this is only used by an
/// add, transform this into (X+(0-Y)) to promote better reassociation.
static BinaryOperator *BreakUpSubtract(Instruction *Sub,
                                       ReassociatePass::OrderedSet &ToRedo) {
  // Convert a subtract into an add and a neg instruction. This allows sub
  // instructions to be commuted with other add instructions.
  //
  // Calculate the negative value of Operand 1 of the sub instruction,
  // and set it as the RHS of the add instruction we just made.
  Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
  BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
  New->takeName(Sub);

  // Everyone now refers to the add instruction.
  Sub->replaceAllUsesWith(New);
  New->setDebugLoc(Sub->getDebugLoc());

  LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
  return New;
}

/// If this is a shift of a reassociable multiply or is used by one, change
/// this into a multiply by a constant to assist with further reassociation.
static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));

  BinaryOperator *Mul =
    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
  Mul->takeName(Shl);

  // Everyone now refers to the mul instruction.
  Shl->replaceAllUsesWith(Mul);
  Mul->setDebugLoc(Shl->getDebugLoc());

  // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
  // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
  // handling.
  bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
  bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
  if (NSW && NUW)
    Mul->setHasNoSignedWrap(true);
  Mul->setHasNoUnsignedWrap(NUW);
  return Mul;
}

/// Scan backwards and forwards among values with the same rank as element i
/// to see if X exists.  If X does not exist, return i.  This is useful when
/// scanning for 'x' when we see '-x' because they both get the same rank.
static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
                                  unsigned i, Value *X) {
  unsigned XRank = Ops[i].Rank;
  unsigned e = Ops.size();
  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
    if (Ops[j].Op == X)
      return j;
    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
      if (Instruction *I2 = dyn_cast<Instruction>(X))
        if (I1->isIdenticalTo(I2))
          return j;
  }
  // Scan backwards.
  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
    if (Ops[j].Op == X)
      return j;
    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
      if (Instruction *I2 = dyn_cast<Instruction>(X))
        if (I1->isIdenticalTo(I2))
          return j;
  }
  return i;
}

/// Emit a tree of add instructions, summing Ops together
/// and returning the result.  Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I,
                                  SmallVectorImpl<WeakTrackingVH> &Ops) {
  if (Ops.size() == 1) return Ops.back();

  Value *V1 = Ops.back();
  Ops.pop_back();
  Value *V2 = EmitAddTreeOfValues(I, Ops);
  return CreateAdd(V2, V1, "reass.add", I, I);
}

/// If V is an expression tree that is a multiplication sequence,
/// and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
  if (!BO)
    return nullptr;

  SmallVector<RepeatedValue, 8> Tree;
  MadeChange |= LinearizeExprTree(BO, Tree);
  SmallVector<ValueEntry, 8> Factors;
  Factors.reserve(Tree.size());
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    RepeatedValue E = Tree[i];
    Factors.append(E.second.getZExtValue(),
                   ValueEntry(getRank(E.first), E.first));
  }

  bool FoundFactor = false;
  bool NeedsNegate = false;
  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    if (Factors[i].Op == Factor) {
      FoundFactor = true;
      Factors.erase(Factors.begin()+i);
      break;
    }

    // If this is a negative version of this factor, remove it.
    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
        if (FC1->getValue() == -FC2->getValue()) {
          FoundFactor = NeedsNegate = true;
          Factors.erase(Factors.begin()+i);
          break;
        }
    } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
      if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
        const APFloat &F1 = FC1->getValueAPF();
        APFloat F2(FC2->getValueAPF());
        F2.changeSign();
        if (F1.compare(F2) == APFloat::cmpEqual) {
          FoundFactor = NeedsNegate = true;
          Factors.erase(Factors.begin() + i);
          break;
        }
      }
    }
  }

  if (!FoundFactor) {
    // Make sure to restore the operands to the expression tree.
    RewriteExprTree(BO, Factors);
    return nullptr;
  }

  BasicBlock::iterator InsertPt = ++BO->getIterator();

  // If this was just a single multiply, remove the multiply and return the only
  // remaining operand.
  if (Factors.size() == 1) {
    RedoInsts.insert(BO);
    V = Factors[0].Op;
  } else {
    RewriteExprTree(BO, Factors);
    V = BO;
  }

  if (NeedsNegate)
    V = CreateNeg(V, "neg", &*InsertPt, BO);

  return V;
}

/// If V is a single-use multiply, recursively add its operands as factors,
/// otherwise add V to the list of factors.
///
/// Ops is the top-level list of add operands we're trying to factor.
static void FindSingleUseMultiplyFactors(Value *V,
                                         SmallVectorImpl<Value*> &Factors) {
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
  if (!BO) {
    Factors.push_back(V);
    return;
  }

  // Otherwise, add the LHS and RHS to the list of factors.
  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
}

/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
/// This optimizes based on identities.  If it can be reduced to a single Value,
/// it is returned, otherwise the Ops list is mutated as necessary.
static Value *OptimizeAndOrXor(unsigned Opcode,
                               SmallVectorImpl<ValueEntry> &Ops) {
  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    // First, check for X and ~X in the operand list.
    assert(i < Ops.size());
    Value *X;
    if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
      unsigned FoundX = FindInOperandList(Ops, i, X);
      if (FoundX != i) {
        if (Opcode == Instruction::And)   // ...&X&~X = 0
          return Constant::getNullValue(X->getType());

        if (Opcode == Instruction::Or)    // ...|X|~X = -1
          return Constant::getAllOnesValue(X->getType());
      }
    }

    // Next, check for duplicate pairs of values, which we assume are next to
    // each other, due to our sorting criteria.
    assert(i < Ops.size());
    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
        // Drop duplicate values for And and Or.
        Ops.erase(Ops.begin()+i);
        --i; --e;
        ++NumAnnihil;
        continue;
      }

      // Drop pairs of values for Xor.
      assert(Opcode == Instruction::Xor);
      if (e == 2)
        return Constant::getNullValue(Ops[0].Op->getType());

      // Y ^ X^X -> Y
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
      i -= 1; e -= 2;
      ++NumAnnihil;
    }
  }
  return nullptr;
}

/// Helper function of CombineXorOpnd(). It creates a bitwise-and
/// instruction with the given two operands, and return the resulting
/// instruction. There are two special cases: 1) if the constant operand is 0,
/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
/// be returned.
static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
                             const APInt &ConstOpnd) {
  if (ConstOpnd.isNullValue())
    return nullptr;

  if (ConstOpnd.isAllOnesValue())
    return Opnd;

  Instruction *I = BinaryOperator::CreateAnd(
      Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
      InsertBefore);
  I->setDebugLoc(InsertBefore->getDebugLoc());
  return I;
}

// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
// into "R ^ C", where C would be 0, and R is a symbolic value.
//
// If it was successful, true is returned, and the "R" and "C" is returned
// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
// and both "Res" and "ConstOpnd" remain unchanged.
bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
                                     APInt &ConstOpnd, Value *&Res) {
  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
  //                       = (x & ~c1) ^ (c1 ^ c2)
  // It is useful only when c1 == c2.
  if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
    return false;

  if (!Opnd1->getValue()->hasOneUse())
    return false;

  const APInt &C1 = Opnd1->getConstPart();
  if (C1 != ConstOpnd)
    return false;

  Value *X = Opnd1->getSymbolicPart();
  Res = createAndInstr(I, X, ~C1);
  // ConstOpnd was C2, now C1 ^ C2.
  ConstOpnd ^= C1;

  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
    RedoInsts.insert(T);
  return true;
}

// Helper function of OptimizeXor(). It tries to simplify
// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
// symbolic value.
//
// If it was successful, true is returned, and the "R" and "C" is returned
// via "Res" and "ConstOpnd", respectively (If the entire expression is
// evaluated to a constant, the Res is set to NULL); otherwise, false is
// returned, and both "Res" and "ConstOpnd" remain unchanged.
bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
                                     XorOpnd *Opnd2, APInt &ConstOpnd,
                                     Value *&Res) {
  Value *X = Opnd1->getSymbolicPart();
  if (X != Opnd2->getSymbolicPart())
    return false;

  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
  int DeadInstNum = 1;
  if (Opnd1->getValue()->hasOneUse())
    DeadInstNum++;
  if (Opnd2->getValue()->hasOneUse())
    DeadInstNum++;

  // Xor-Rule 2:
  //  (x | c1) ^ (x & c2)
  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
  //
  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
    if (Opnd2->isOrExpr())
      std::swap(Opnd1, Opnd2);

    const APInt &C1 = Opnd1->getConstPart();
    const APInt &C2 = Opnd2->getConstPart();
    APInt C3((~C1) ^ C2);

    // Do not increase code size!
    if (!C3.isNullValue() && !C3.isAllOnesValue()) {
      int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
      if (NewInstNum > DeadInstNum)
        return false;
    }

    Res = createAndInstr(I, X, C3);
    ConstOpnd ^= C1;
  } else if (Opnd1->isOrExpr()) {
    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
    //
    const APInt &C1 = Opnd1->getConstPart();
    const APInt &C2 = Opnd2->getConstPart();
    APInt C3 = C1 ^ C2;

    // Do not increase code size
    if (!C3.isNullValue() && !C3.isAllOnesValue()) {
      int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
      if (NewInstNum > DeadInstNum)
        return false;
    }

    Res = createAndInstr(I, X, C3);
    ConstOpnd ^= C3;
  } else {
    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
    //
    const APInt &C1 = Opnd1->getConstPart();
    const APInt &C2 = Opnd2->getConstPart();
    APInt C3 = C1 ^ C2;
    Res = createAndInstr(I, X, C3);
  }

  // Put the original operands in the Redo list; hope they will be deleted
  // as dead code.
  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
    RedoInsts.insert(T);
  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
    RedoInsts.insert(T);

  return true;
}

/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
/// to a single Value, it is returned, otherwise the Ops list is mutated as
/// necessary.
Value *ReassociatePass::OptimizeXor(Instruction *I,
                                    SmallVectorImpl<ValueEntry> &Ops) {
  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
    return V;

  if (Ops.size() == 1)
    return nullptr;

  SmallVector<XorOpnd, 8> Opnds;
  SmallVector<XorOpnd*, 8> OpndPtrs;
  Type *Ty = Ops[0].Op->getType();
  APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);

  // Step 1: Convert ValueEntry to XorOpnd
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    Value *V = Ops[i].Op;
    const APInt *C;
    // TODO: Support non-splat vectors.
    if (match(V, m_APInt(C))) {
      ConstOpnd ^= *C;
    } else {
      XorOpnd O(V);
      O.setSymbolicRank(getRank(O.getSymbolicPart()));
      Opnds.push_back(O);
    }
  }

  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
  //  when new elements are added to the vector.
  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
    OpndPtrs.push_back(&Opnds[i]);

  // Step 2: Sort the Xor-Operands in a way such that the operands containing
  //  the same symbolic value cluster together. For instance, the input operand
  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
  //  ("x | 123", "x & 789", "y & 456").
  //
  //  The purpose is twofold:
  //  1) Cluster together the operands sharing the same symbolic-value.
  //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
  //     could potentially shorten crital path, and expose more loop-invariants.
  //     Note that values' rank are basically defined in RPO order (FIXME).
  //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
  //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
  //     "z" in the order of X-Y-Z is better than any other orders.
  llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
    return LHS->getSymbolicRank() < RHS->getSymbolicRank();
  });

  // Step 3: Combine adjacent operands
  XorOpnd *PrevOpnd = nullptr;
  bool Changed = false;
  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
    XorOpnd *CurrOpnd = OpndPtrs[i];
    // The combined value
    Value *CV;

    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
    if (!ConstOpnd.isNullValue() &&
        CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
      Changed = true;
      if (CV)
        *CurrOpnd = XorOpnd(CV);
      else {
        CurrOpnd->Invalidate();
        continue;
      }
    }

    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
      PrevOpnd = CurrOpnd;
      continue;
    }

    // step 3.2: When previous and current operands share the same symbolic
    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
      // Remove previous operand
      PrevOpnd->Invalidate();
      if (CV) {
        *CurrOpnd = XorOpnd(CV);
        PrevOpnd = CurrOpnd;
      } else {
        CurrOpnd->Invalidate();
        PrevOpnd = nullptr;
      }
      Changed = true;
    }
  }

  // Step 4: Reassemble the Ops
  if (Changed) {
    Ops.clear();
    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
      XorOpnd &O = Opnds[i];
      if (O.isInvalid())
        continue;
      ValueEntry VE(getRank(O.getValue()), O.getValue());
      Ops.push_back(VE);
    }
    if (!ConstOpnd.isNullValue()) {
      Value *C = ConstantInt::get(Ty, ConstOpnd);
      ValueEntry VE(getRank(C), C);
      Ops.push_back(VE);
    }
    unsigned Sz = Ops.size();
    if (Sz == 1)
      return Ops.back().Op;
    if (Sz == 0) {
      assert(ConstOpnd.isNullValue());
      return ConstantInt::get(Ty, ConstOpnd);
    }
  }

  return nullptr;
}

/// Optimize a series of operands to an 'add' instruction.  This
/// optimizes based on identities.  If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
Value *ReassociatePass::OptimizeAdd(Instruction *I,
                                    SmallVectorImpl<ValueEntry> &Ops) {
  // Scan the operand lists looking for X and -X pairs.  If we find any, we
  // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
  // scan for any
  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.

  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    Value *TheOp = Ops[i].Op;
    // Check to see if we've seen this operand before.  If so, we factor all
    // instances of the operand together.  Due to our sorting criteria, we know
    // that these need to be next to each other in the vector.
    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
      // Rescan the list, remove all instances of this operand from the expr.
      unsigned NumFound = 0;
      do {
        Ops.erase(Ops.begin()+i);
        ++NumFound;
      } while (i != Ops.size() && Ops[i].Op == TheOp);

      LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
                        << '\n');
      ++NumFactor;

      // Insert a new multiply.
      Type *Ty = TheOp->getType();
      Constant *C = Ty->isIntOrIntVectorTy() ?
        ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
      Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);

      // Now that we have inserted a multiply, optimize it. This allows us to
      // handle cases that require multiple factoring steps, such as this:
      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
      RedoInsts.insert(Mul);

      // If every add operand was a duplicate, return the multiply.
      if (Ops.empty())
        return Mul;

      // Otherwise, we had some input that didn't have the dupe, such as
      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
      // things being added by this operation.
      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));

      --i;
      e = Ops.size();
      continue;
    }

    // Check for X and -X or X and ~X in the operand list.
    Value *X;
    if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
        !match(TheOp, m_FNeg(m_Value(X))))
      continue;

    unsigned FoundX = FindInOperandList(Ops, i, X);
    if (FoundX == i)
      continue;

    // Remove X and -X from the operand list.
    if (Ops.size() == 2 &&
        (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
      return Constant::getNullValue(X->getType());

    // Remove X and ~X from the operand list.
    if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
      return Constant::getAllOnesValue(X->getType());

    Ops.erase(Ops.begin()+i);
    if (i < FoundX)
      --FoundX;
    else
      --i;   // Need to back up an extra one.
    Ops.erase(Ops.begin()+FoundX);
    ++NumAnnihil;
    --i;     // Revisit element.
    e -= 2;  // Removed two elements.

    // if X and ~X we append -1 to the operand list.
    if (match(TheOp, m_Not(m_Value()))) {
      Value *V = Constant::getAllOnesValue(X->getType());
      Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
      e += 1;
    }
  }

  // Scan the operand list, checking to see if there are any common factors
  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
  // To efficiently find this, we count the number of times a factor occurs
  // for any ADD operands that are MULs.
  DenseMap<Value*, unsigned> FactorOccurrences;

  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
  // where they are actually the same multiply.
  unsigned MaxOcc = 0;
  Value *MaxOccVal = nullptr;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    BinaryOperator *BOp =
        isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
    if (!BOp)
      continue;

    // Compute all of the factors of this added value.
    SmallVector<Value*, 8> Factors;
    FindSingleUseMultiplyFactors(BOp, Factors);
    assert(Factors.size() > 1 && "Bad linearize!");

    // Add one to FactorOccurrences for each unique factor in this op.
    SmallPtrSet<Value*, 8> Duplicates;
    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
      Value *Factor = Factors[i];
      if (!Duplicates.insert(Factor).second)
        continue;

      unsigned Occ = ++FactorOccurrences[Factor];
      if (Occ > MaxOcc) {
        MaxOcc = Occ;
        MaxOccVal = Factor;
      }

      // If Factor is a negative constant, add the negated value as a factor
      // because we can percolate the negate out.  Watch for minint, which
      // cannot be positivified.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
        if (CI->isNegative() && !CI->isMinValue(true)) {
          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
          if (!Duplicates.insert(Factor).second)
            continue;
          unsigned Occ = ++FactorOccurrences[Factor];
          if (Occ > MaxOcc) {
            MaxOcc = Occ;
            MaxOccVal = Factor;
          }
        }
      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
        if (CF->isNegative()) {
          APFloat F(CF->getValueAPF());
          F.changeSign();
          Factor = ConstantFP::get(CF->getContext(), F);
          if (!Duplicates.insert(Factor).second)
            continue;
          unsigned Occ = ++FactorOccurrences[Factor];
          if (Occ > MaxOcc) {
            MaxOcc = Occ;
            MaxOccVal = Factor;
          }
        }
      }
    }
  }

  // If any factor occurred more than one time, we can pull it out.
  if (MaxOcc > 1) {
    LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
                      << '\n');
    ++NumFactor;

    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
    // this, we could otherwise run into situations where removing a factor
    // from an expression will drop a use of maxocc, and this can cause
    // RemoveFactorFromExpression on successive values to behave differently.
    Instruction *DummyInst =
        I->getType()->isIntOrIntVectorTy()
            ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
            : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);

    SmallVector<WeakTrackingVH, 4> NewMulOps;
    for (unsigned i = 0; i != Ops.size(); ++i) {
      // Only try to remove factors from expressions we're allowed to.
      BinaryOperator *BOp =
          isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
      if (!BOp)
        continue;

      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
        // The factorized operand may occur several times.  Convert them all in
        // one fell swoop.
        for (unsigned j = Ops.size(); j != i;) {
          --j;
          if (Ops[j].Op == Ops[i].Op) {
            NewMulOps.push_back(V);
            Ops.erase(Ops.begin()+j);
          }
        }
        --i;
      }
    }

    // No need for extra uses anymore.
    DummyInst->deleteValue();

    unsigned NumAddedValues = NewMulOps.size();
    Value *V = EmitAddTreeOfValues(I, NewMulOps);

    // Now that we have inserted the add tree, optimize it. This allows us to
    // handle cases that require multiple factoring steps, such as this:
    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
    (void)NumAddedValues;
    if (Instruction *VI = dyn_cast<Instruction>(V))
      RedoInsts.insert(VI);

    // Create the multiply.
    Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);

    // Rerun associate on the multiply in case the inner expression turned into
    // a multiply.  We want to make sure that we keep things in canonical form.
    RedoInsts.insert(V2);

    // If every add operand included the factor (e.g. "A*B + A*C"), then the
    // entire result expression is just the multiply "A*(B+C)".
    if (Ops.empty())
      return V2;

    // Otherwise, we had some input that didn't have the factor, such as
    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
    // things being added by this operation.
    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
  }

  return nullptr;
}

/// Build up a vector of value/power pairs factoring a product.
///
/// Given a series of multiplication operands, build a vector of factors and
/// the powers each is raised to when forming the final product. Sort them in
/// the order of descending power.
///
///      (x*x)          -> [(x, 2)]
///     ((x*x)*x)       -> [(x, 3)]
///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
///
/// \returns Whether any factors have a power greater than one.
static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
                                   SmallVectorImpl<Factor> &Factors) {
  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
  // Compute the sum of powers of simplifiable factors.
  unsigned FactorPowerSum = 0;
  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
    Value *Op = Ops[Idx-1].Op;

    // Count the number of occurrences of this value.
    unsigned Count = 1;
    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
      ++Count;
    // Track for simplification all factors which occur 2 or more times.
    if (Count > 1)
      FactorPowerSum += Count;
  }

  // We can only simplify factors if the sum of the powers of our simplifiable
  // factors is 4 or higher. When that is the case, we will *always* have
  // a simplification. This is an important invariant to prevent cyclicly
  // trying to simplify already minimal formations.
  if (FactorPowerSum < 4)
    return false;

  // Now gather the simplifiable factors, removing them from Ops.
  FactorPowerSum = 0;
  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
    Value *Op = Ops[Idx-1].Op;

    // Count the number of occurrences of this value.
    unsigned Count = 1;
    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
      ++Count;
    if (Count == 1)
      continue;
    // Move an even number of occurrences to Factors.
    Count &= ~1U;
    Idx -= Count;
    FactorPowerSum += Count;
    Factors.push_back(Factor(Op, Count));
    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
  }

  // None of the adjustments above should have reduced the sum of factor powers
  // below our mininum of '4'.
  assert(FactorPowerSum >= 4);

  llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
    return LHS.Power > RHS.Power;
  });
  return true;
}

/// Build a tree of multiplies, computing the product of Ops.
static Value *buildMultiplyTree(IRBuilder<> &Builder,
                                SmallVectorImpl<Value*> &Ops) {
  if (Ops.size() == 1)
    return Ops.back();

  Value *LHS = Ops.pop_back_val();
  do {
    if (LHS->getType()->isIntOrIntVectorTy())
      LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
    else
      LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
  } while (!Ops.empty());

  return LHS;
}

/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
///
/// Given a vector of values raised to various powers, where no two values are
/// equal and the powers are sorted in decreasing order, compute the minimal
/// DAG of multiplies to compute the final product, and return that product
/// value.
Value *
ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
                                         SmallVectorImpl<Factor> &Factors) {
  assert(Factors[0].Power);
  SmallVector<Value *, 4> OuterProduct;
  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
    if (Factors[Idx].Power != Factors[LastIdx].Power) {
      LastIdx = Idx;
      continue;
    }

    // We want to multiply across all the factors with the same power so that
    // we can raise them to that power as a single entity. Build a mini tree
    // for that.
    SmallVector<Value *, 4> InnerProduct;
    InnerProduct.push_back(Factors[LastIdx].Base);
    do {
      InnerProduct.push_back(Factors[Idx].Base);
      ++Idx;
    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);

    // Reset the base value of the first factor to the new expression tree.
    // We'll remove all the factors with the same power in a second pass.
    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
    if (Instruction *MI = dyn_cast<Instruction>(M))
      RedoInsts.insert(MI);

    LastIdx = Idx;
  }
  // Unique factors with equal powers -- we've folded them into the first one's
  // base.
  Factors.erase(std::unique(Factors.begin(), Factors.end(),
                            [](const Factor &LHS, const Factor &RHS) {
                              return LHS.Power == RHS.Power;
                            }),
                Factors.end());

  // Iteratively collect the base of each factor with an add power into the
  // outer product, and halve each power in preparation for squaring the
  // expression.
  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
    if (Factors[Idx].Power & 1)
      OuterProduct.push_back(Factors[Idx].Base);
    Factors[Idx].Power >>= 1;
  }
  if (Factors[0].Power) {
    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
    OuterProduct.push_back(SquareRoot);
    OuterProduct.push_back(SquareRoot);
  }
  if (OuterProduct.size() == 1)
    return OuterProduct.front();

  Value *V = buildMultiplyTree(Builder, OuterProduct);
  return V;
}

Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
                                    SmallVectorImpl<ValueEntry> &Ops) {
  // We can only optimize the multiplies when there is a chain of more than
  // three, such that a balanced tree might require fewer total multiplies.
  if (Ops.size() < 4)
    return nullptr;

  // Try to turn linear trees of multiplies without other uses of the
  // intermediate stages into minimal multiply DAGs with perfect sub-expression
  // re-use.
  SmallVector<Factor, 4> Factors;
  if (!collectMultiplyFactors(Ops, Factors))
    return nullptr; // All distinct factors, so nothing left for us to do.

  IRBuilder<> Builder(I);
  // The reassociate transformation for FP operations is performed only
  // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
  // to the newly generated operations.
  if (auto FPI = dyn_cast<FPMathOperator>(I))
    Builder.setFastMathFlags(FPI->getFastMathFlags());

  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
  if (Ops.empty())
    return V;

  ValueEntry NewEntry = ValueEntry(getRank(V), V);
  Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
  return nullptr;
}

Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
                                           SmallVectorImpl<ValueEntry> &Ops) {
  // Now that we have the linearized expression tree, try to optimize it.
  // Start by folding any constants that we found.
  Constant *Cst = nullptr;
  unsigned Opcode = I->getOpcode();
  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
  }
  // If there was nothing but constants then we are done.
  if (Ops.empty())
    return Cst;

  // Put the combined constant back at the end of the operand list, except if
  // there is no point.  For example, an add of 0 gets dropped here, while a
  // multiplication by zero turns the whole expression into zero.
  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
      return Cst;
    Ops.push_back(ValueEntry(0, Cst));
  }

  if (Ops.size() == 1) return Ops[0].Op;

  // Handle destructive annihilation due to identities between elements in the
  // argument list here.
  unsigned NumOps = Ops.size();
  switch (Opcode) {
  default: break;
  case Instruction::And:
  case Instruction::Or:
    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
      return Result;
    break;

  case Instruction::Xor:
    if (Value *Result = OptimizeXor(I, Ops))
      return Result;
    break;

  case Instruction::Add:
  case Instruction::FAdd:
    if (Value *Result = OptimizeAdd(I, Ops))
      return Result;
    break;

  case Instruction::Mul:
  case Instruction::FMul:
    if (Value *Result = OptimizeMul(I, Ops))
      return Result;
    break;
  }

  if (Ops.size() != NumOps)
    return OptimizeExpression(I, Ops);
  return nullptr;
}

// Remove dead instructions and if any operands are trivially dead add them to
// Insts so they will be removed as well.
void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
                                                OrderedSet &Insts) {
  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
  SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
  ValueRankMap.erase(I);
  Insts.remove(I);
  RedoInsts.remove(I);
  I->eraseFromParent();
  for (auto Op : Ops)
    if (Instruction *OpInst = dyn_cast<Instruction>(Op))
      if (OpInst->use_empty())
        Insts.insert(OpInst);
}

/// Zap the given instruction, adding interesting operands to the work list.
void ReassociatePass::EraseInst(Instruction *I) {
  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
  LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());

  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
  // Erase the dead instruction.
  ValueRankMap.erase(I);
  RedoInsts.remove(I);
  I->eraseFromParent();
  // Optimize its operands.
  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
      // If this is a node in an expression tree, climb to the expression root
      // and add that since that's where optimization actually happens.
      unsigned Opcode = Op->getOpcode();
      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
             Visited.insert(Op).second)
        Op = Op->user_back();

      // The instruction we're going to push may be coming from a
      // dead block, and Reassociate skips the processing of unreachable
      // blocks because it's a waste of time and also because it can
      // lead to infinite loop due to LLVM's non-standard definition
      // of dominance.
      if (ValueRankMap.find(Op) != ValueRankMap.end())
        RedoInsts.insert(Op);
    }

  MadeChange = true;
}

/// Recursively analyze an expression to build a list of instructions that have
/// negative floating-point constant operands. The caller can then transform
/// the list to create positive constants for better reassociation and CSE.
static void getNegatibleInsts(Value *V,
                              SmallVectorImpl<Instruction *> &Candidates) {
  // Handle only one-use instructions. Combining negations does not justify
  // replicating instructions.
  Instruction *I;
  if (!match(V, m_OneUse(m_Instruction(I))))
    return;

  // Handle expressions of multiplications and divisions.
  // TODO: This could look through floating-point casts.
  const APFloat *C;
  switch (I->getOpcode()) {
    case Instruction::FMul:
      // Not expecting non-canonical code here. Bail out and wait.
      if (match(I->getOperand(0), m_Constant()))
        break;

      if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
        Candidates.push_back(I);
        LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
      }
      getNegatibleInsts(I->getOperand(0), Candidates);
      getNegatibleInsts(I->getOperand(1), Candidates);
      break;
    case Instruction::FDiv:
      // Not expecting non-canonical code here. Bail out and wait.
      if (match(I->getOperand(0), m_Constant()) &&
          match(I->getOperand(1), m_Constant()))
        break;

      if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
          (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
        Candidates.push_back(I);
        LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
      }
      getNegatibleInsts(I->getOperand(0), Candidates);
      getNegatibleInsts(I->getOperand(1), Candidates);
      break;
    default:
      break;
  }
}

/// Given an fadd/fsub with an operand that is a one-use instruction
/// (the fadd/fsub), try to change negative floating-point constants into
/// positive constants to increase potential for reassociation and CSE.
Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
                                                              Instruction *Op,
                                                              Value *OtherOp) {
  assert((I->getOpcode() == Instruction::FAdd ||
          I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");

  // Collect instructions with negative FP constants from the subtree that ends
  // in Op.
  SmallVector<Instruction *, 4> Candidates;
  getNegatibleInsts(Op, Candidates);
  if (Candidates.empty())
    return nullptr;

  // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
  // resulting subtract will be broken up later.  This can get us into an
  // infinite loop during reassociation.
  bool IsFSub = I->getOpcode() == Instruction::FSub;
  bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
  if (NeedsSubtract && ShouldBreakUpSubtract(I))
    return nullptr;

  for (Instruction *Negatible : Candidates) {
    const APFloat *C;
    if (match(Negatible->getOperand(0), m_APFloat(C))) {
      assert(!match(Negatible->getOperand(1), m_Constant()) &&
             "Expecting only 1 constant operand");
      assert(C->isNegative() && "Expected negative FP constant");
      Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
      MadeChange = true;
    }
    if (match(Negatible->getOperand(1), m_APFloat(C))) {
      assert(!match(Negatible->getOperand(0), m_Constant()) &&
             "Expecting only 1 constant operand");
      assert(C->isNegative() && "Expected negative FP constant");
      Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
      MadeChange = true;
    }
  }
  assert(MadeChange == true && "Negative constant candidate was not changed");

  // Negations cancelled out.
  if (Candidates.size() % 2 == 0)
    return I;

  // Negate the final operand in the expression by flipping the opcode of this
  // fadd/fsub.
  assert(Candidates.size() % 2 == 1 && "Expected odd number");
  IRBuilder<> Builder(I);
  Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
                          : Builder.CreateFSubFMF(OtherOp, Op, I);
  I->replaceAllUsesWith(NewInst);
  RedoInsts.insert(I);
  return dyn_cast<Instruction>(NewInst);
}

/// Canonicalize expressions that contain a negative floating-point constant
/// of the following form:
///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
///
/// The fadd/fsub opcode may be switched to allow folding a negation into the
/// input instruction.
Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
  LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
  Value *X;
  Instruction *Op;
  if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
    if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
      I = R;
  if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
    if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
      I = R;
  if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
    if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
      I = R;
  return I;
}

/// Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
void ReassociatePass::OptimizeInst(Instruction *I) {
  // Only consider operations that we understand.
  if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
    return;

  if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
    // If an operand of this shift is a reassociable multiply, or if the shift
    // is used by a reassociable multiply or add, turn into a multiply.
    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
        (I->hasOneUse() &&
         (isReassociableOp(I->user_back(), Instruction::Mul) ||
          isReassociableOp(I->user_back(), Instruction::Add)))) {
      Instruction *NI = ConvertShiftToMul(I);
      RedoInsts.insert(I);
      MadeChange = true;
      I = NI;
    }

  // Commute binary operators, to canonicalize the order of their operands.
  // This can potentially expose more CSE opportunities, and makes writing other
  // transformations simpler.
  if (I->isCommutative())
    canonicalizeOperands(I);

  // Canonicalize negative constants out of expressions.
  if (Instruction *Res = canonicalizeNegFPConstants(I))
    I = Res;

  // Don't optimize floating-point instructions unless they are 'fast'.
  if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
    return;

  // Do not reassociate boolean (i1) expressions.  We want to preserve the
  // original order of evaluation for short-circuited comparisons that
  // SimplifyCFG has folded to AND/OR expressions.  If the expression
  // is not further optimized, it is likely to be transformed back to a
  // short-circuited form for code gen, and the source order may have been
  // optimized for the most likely conditions.
  if (I->getType()->isIntegerTy(1))
    return;

  // If this is a subtract instruction which is not already in negate form,
  // see if we can convert it to X+-Y.
  if (I->getOpcode() == Instruction::Sub) {
    if (ShouldBreakUpSubtract(I)) {
      Instruction *NI = BreakUpSubtract(I, RedoInsts);
      RedoInsts.insert(I);
      MadeChange = true;
      I = NI;
    } else if (match(I, m_Neg(m_Value()))) {
      // Otherwise, this is a negation.  See if the operand is a multiply tree
      // and if this is not an inner node of a multiply tree.
      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
          (!I->hasOneUse() ||
           !isReassociableOp(I->user_back(), Instruction::Mul))) {
        Instruction *NI = LowerNegateToMultiply(I);
        // If the negate was simplified, revisit the users to see if we can
        // reassociate further.
        for (User *U : NI->users()) {
          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
            RedoInsts.insert(Tmp);
        }
        RedoInsts.insert(I);
        MadeChange = true;
        I = NI;
      }
    }
  } else if (I->getOpcode() == Instruction::FNeg ||
             I->getOpcode() == Instruction::FSub) {
    if (ShouldBreakUpSubtract(I)) {
      Instruction *NI = BreakUpSubtract(I, RedoInsts);
      RedoInsts.insert(I);
      MadeChange = true;
      I = NI;
    } else if (match(I, m_FNeg(m_Value()))) {
      // Otherwise, this is a negation.  See if the operand is a multiply tree
      // and if this is not an inner node of a multiply tree.
      Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
                                           I->getOperand(0);
      if (isReassociableOp(Op, Instruction::FMul) &&
          (!I->hasOneUse() ||
           !isReassociableOp(I->user_back(), Instruction::FMul))) {
        // If the negate was simplified, revisit the users to see if we can
        // reassociate further.
        Instruction *NI = LowerNegateToMultiply(I);
        for (User *U : NI->users()) {
          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
            RedoInsts.insert(Tmp);
        }
        RedoInsts.insert(I);
        MadeChange = true;
        I = NI;
      }
    }
  }

  // If this instruction is an associative binary operator, process it.
  if (!I->isAssociative()) return;
  BinaryOperator *BO = cast<BinaryOperator>(I);

  // If this is an interior node of a reassociable tree, ignore it until we
  // get to the root of the tree, to avoid N^2 analysis.
  unsigned Opcode = BO->getOpcode();
  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
    // During the initial run we will get to the root of the tree.
    // But if we get here while we are redoing instructions, there is no
    // guarantee that the root will be visited. So Redo later
    if (BO->user_back() != BO &&
        BO->getParent() == BO->user_back()->getParent())
      RedoInsts.insert(BO->user_back());
    return;
  }

  // If this is an add tree that is used by a sub instruction, ignore it
  // until we process the subtract.
  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
    return;
  if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
    return;

  ReassociateExpression(BO);
}

void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
  // First, walk the expression tree, linearizing the tree, collecting the
  // operand information.
  SmallVector<RepeatedValue, 8> Tree;
  MadeChange |= LinearizeExprTree(I, Tree);
  SmallVector<ValueEntry, 8> Ops;
  Ops.reserve(Tree.size());
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    RepeatedValue E = Tree[i];
    Ops.append(E.second.getZExtValue(),
               ValueEntry(getRank(E.first), E.first));
  }

  LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');

  // Now that we have linearized the tree to a list and have gathered all of
  // the operands and their ranks, sort the operands by their rank.  Use a
  // stable_sort so that values with equal ranks will have their relative
  // positions maintained (and so the compiler is deterministic).  Note that
  // this sorts so that the highest ranking values end up at the beginning of
  // the vector.
  llvm::stable_sort(Ops);

  // Now that we have the expression tree in a convenient
  // sorted form, optimize it globally if possible.
  if (Value *V = OptimizeExpression(I, Ops)) {
    if (V == I)
      // Self-referential expression in unreachable code.
      return;
    // This expression tree simplified to something that isn't a tree,
    // eliminate it.
    LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
    I->replaceAllUsesWith(V);
    if (Instruction *VI = dyn_cast<Instruction>(V))
      if (I->getDebugLoc())
        VI->setDebugLoc(I->getDebugLoc());
    RedoInsts.insert(I);
    ++NumAnnihil;
    return;
  }

  // We want to sink immediates as deeply as possible except in the case where
  // this is a multiply tree used only by an add, and the immediate is a -1.
  // In this case we reassociate to put the negation on the outside so that we
  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
  if (I->hasOneUse()) {
    if (I->getOpcode() == Instruction::Mul &&
        cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
        isa<ConstantInt>(Ops.back().Op) &&
        cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
      ValueEntry Tmp = Ops.pop_back_val();
      Ops.insert(Ops.begin(), Tmp);
    } else if (I->getOpcode() == Instruction::FMul &&
               cast<Instruction>(I->user_back())->getOpcode() ==
                   Instruction::FAdd &&
               isa<ConstantFP>(Ops.back().Op) &&
               cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
      ValueEntry Tmp = Ops.pop_back_val();
      Ops.insert(Ops.begin(), Tmp);
    }
  }

  LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');

  if (Ops.size() == 1) {
    if (Ops[0].Op == I)
      // Self-referential expression in unreachable code.
      return;

    // This expression tree simplified to something that isn't a tree,
    // eliminate it.
    I->replaceAllUsesWith(Ops[0].Op);
    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
      OI->setDebugLoc(I->getDebugLoc());
    RedoInsts.insert(I);
    return;
  }

  if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
    // Find the pair with the highest count in the pairmap and move it to the
    // back of the list so that it can later be CSE'd.
    // example:
    //   a*b*c*d*e
    // if c*e is the most "popular" pair, we can express this as
    //   (((c*e)*d)*b)*a
    unsigned Max = 1;
    unsigned BestRank = 0;
    std::pair<unsigned, unsigned> BestPair;
    unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
    for (unsigned i = 0; i < Ops.size() - 1; ++i)
      for (unsigned j = i + 1; j < Ops.size(); ++j) {
        unsigned Score = 0;
        Value *Op0 = Ops[i].Op;
        Value *Op1 = Ops[j].Op;
        if (std::less<Value *>()(Op1, Op0))
          std::swap(Op0, Op1);
        auto it = PairMap[Idx].find({Op0, Op1});
        if (it != PairMap[Idx].end()) {
          // Functions like BreakUpSubtract() can erase the Values we're using
          // as keys and create new Values after we built the PairMap. There's a
          // small chance that the new nodes can have the same address as
          // something already in the table. We shouldn't accumulate the stored
          // score in that case as it refers to the wrong Value.
          if (it->second.isValid())
            Score += it->second.Score;
        }

        unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
        if (Score > Max || (Score == Max && MaxRank < BestRank)) {
          BestPair = {i, j};
          Max = Score;
          BestRank = MaxRank;
        }
      }
    if (Max > 1) {
      auto Op0 = Ops[BestPair.first];
      auto Op1 = Ops[BestPair.second];
      Ops.erase(&Ops[BestPair.second]);
      Ops.erase(&Ops[BestPair.first]);
      Ops.push_back(Op0);
      Ops.push_back(Op1);
    }
  }
  // Now that we ordered and optimized the expressions, splat them back into
  // the expression tree, removing any unneeded nodes.
  RewriteExprTree(I, Ops);
}

void
ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
  // Make a "pairmap" of how often each operand pair occurs.
  for (BasicBlock *BI : RPOT) {
    for (Instruction &I : *BI) {
      if (!I.isAssociative())
        continue;

      // Ignore nodes that aren't at the root of trees.
      if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
        continue;

      // Collect all operands in a single reassociable expression.
      // Since Reassociate has already been run once, we can assume things
      // are already canonical according to Reassociation's regime.
      SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
      SmallVector<Value *, 8> Ops;
      while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
        Value *Op = Worklist.pop_back_val();
        Instruction *OpI = dyn_cast<Instruction>(Op);
        if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
          Ops.push_back(Op);
          continue;
        }
        // Be paranoid about self-referencing expressions in unreachable code.
        if (OpI->getOperand(0) != OpI)
          Worklist.push_back(OpI->getOperand(0));
        if (OpI->getOperand(1) != OpI)
          Worklist.push_back(OpI->getOperand(1));
      }
      // Skip extremely long expressions.
      if (Ops.size() > GlobalReassociateLimit)
        continue;

      // Add all pairwise combinations of operands to the pair map.
      unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
      SmallSet<std::pair<Value *, Value*>, 32> Visited;
      for (unsigned i = 0; i < Ops.size() - 1; ++i) {
        for (unsigned j = i + 1; j < Ops.size(); ++j) {
          // Canonicalize operand orderings.
          Value *Op0 = Ops[i];
          Value *Op1 = Ops[j];
          if (std::less<Value *>()(Op1, Op0))
            std::swap(Op0, Op1);
          if (!Visited.insert({Op0, Op1}).second)
            continue;
          auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
          if (!res.second) {
            // If either key value has been erased then we've got the same
            // address by coincidence. That can't happen here because nothing is
            // erasing values but it can happen by the time we're querying the
            // map.
            assert(res.first->second.isValid() && "WeakVH invalidated");
            ++res.first->second.Score;
          }
        }
      }
    }
  }
}

PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
  // Get the functions basic blocks in Reverse Post Order. This order is used by
  // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
  // blocks (it has been seen that the analysis in this pass could hang when
  // analysing dead basic blocks).
  ReversePostOrderTraversal<Function *> RPOT(&F);

  // Calculate the rank map for F.
  BuildRankMap(F, RPOT);

  // Build the pair map before running reassociate.
  // Technically this would be more accurate if we did it after one round
  // of reassociation, but in practice it doesn't seem to help much on
  // real-world code, so don't waste the compile time running reassociate
  // twice.
  // If a user wants, they could expicitly run reassociate twice in their
  // pass pipeline for further potential gains.
  // It might also be possible to update the pair map during runtime, but the
  // overhead of that may be large if there's many reassociable chains.
  BuildPairMap(RPOT);

  MadeChange = false;

  // Traverse the same blocks that were analysed by BuildRankMap.
  for (BasicBlock *BI : RPOT) {
    assert(RankMap.count(&*BI) && "BB should be ranked.");
    // Optimize every instruction in the basic block.
    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
      if (isInstructionTriviallyDead(&*II)) {
        EraseInst(&*II++);
      } else {
        OptimizeInst(&*II);
        assert(II->getParent() == &*BI && "Moved to a different block!");
        ++II;
      }

    // Make a copy of all the instructions to be redone so we can remove dead
    // instructions.
    OrderedSet ToRedo(RedoInsts);
    // Iterate over all instructions to be reevaluated and remove trivially dead
    // instructions. If any operand of the trivially dead instruction becomes
    // dead mark it for deletion as well. Continue this process until all
    // trivially dead instructions have been removed.
    while (!ToRedo.empty()) {
      Instruction *I = ToRedo.pop_back_val();
      if (isInstructionTriviallyDead(I)) {
        RecursivelyEraseDeadInsts(I, ToRedo);
        MadeChange = true;
      }
    }

    // Now that we have removed dead instructions, we can reoptimize the
    // remaining instructions.
    while (!RedoInsts.empty()) {
      Instruction *I = RedoInsts.front();
      RedoInsts.erase(RedoInsts.begin());
      if (isInstructionTriviallyDead(I))
        EraseInst(I);
      else
        OptimizeInst(I);
    }
  }

  // We are done with the rank map and pair map.
  RankMap.clear();
  ValueRankMap.clear();
  for (auto &Entry : PairMap)
    Entry.clear();

  if (MadeChange) {
    PreservedAnalyses PA;
    PA.preserveSet<CFGAnalyses>();
    PA.preserve<GlobalsAA>();
    return PA;
  }

  return PreservedAnalyses::all();
}

namespace {

  class ReassociateLegacyPass : public FunctionPass {
    ReassociatePass Impl;

  public:
    static char ID; // Pass identification, replacement for typeid

    ReassociateLegacyPass() : FunctionPass(ID) {
      initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override {
      if (skipFunction(F))
        return false;

      FunctionAnalysisManager DummyFAM;
      auto PA = Impl.run(F, DummyFAM);
      return !PA.areAllPreserved();
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addPreserved<GlobalsAAWrapperPass>();
    }
  };

} // end anonymous namespace

char ReassociateLegacyPass::ID = 0;

INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
                "Reassociate expressions", false, false)

// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() {
  return new ReassociateLegacyPass();
}