reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the guard widening pass.  The semantics of the
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
// more often that it did before the transform.  This optimization is called
// "widening" and can be used hoist and common runtime checks in situations like
// these:
//
//    %cmp0 = 7 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    %cmp1 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
//    ...
//
// =>
//
//    %cmp0 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    ...
//
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
// generic implementation of the same function, which will have the correct
// semantics from that point onward.  It is always _legal_ to deoptimize (so
// replacing %cmp0 with false is "correct"), though it may not always be
// profitable to do so.
//
// NB! This pass is a work in progress.  It hasn't been tuned to be "production
// ready" yet.  It is known to have quadriatic running time and will not scale
// to large numbers of guards
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GuardWidening.h"
#include <functional>
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

using namespace llvm;

#define DEBUG_TYPE "guard-widening"

STATISTIC(GuardsEliminated, "Number of eliminated guards");
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");

static cl::opt<bool> WidenFrequentBranches(
    "guard-widening-widen-frequent-branches", cl::Hidden,
    cl::desc("Widen conditions of explicit branches into dominating guards in "
             "case if their taken frequency exceeds threshold set by "
             "guard-widening-frequent-branch-threshold option"),
    cl::init(false));

static cl::opt<unsigned> FrequentBranchThreshold(
    "guard-widening-frequent-branch-threshold", cl::Hidden,
    cl::desc("When WidenFrequentBranches is set to true, this option is used "
             "to determine which branches are frequently taken. The criteria "
             "that a branch is taken more often than "
             "((FrequentBranchThreshold - 1) / FrequentBranchThreshold), then "
             "it is considered frequently taken"),
    cl::init(1000));

static cl::opt<bool>
    WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
                      cl::desc("Whether or not we should widen guards  "
                               "expressed as branches by widenable conditions"),
                      cl::init(true));

namespace {

// Get the condition of \p I. It can either be a guard or a conditional branch.
static Value *getCondition(Instruction *I) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    return GI->getArgOperand(0);
  }
  if (isGuardAsWidenableBranch(I)) {
    auto *Cond = cast<BranchInst>(I)->getCondition();
    return cast<BinaryOperator>(Cond)->getOperand(0);
  }
  return cast<BranchInst>(I)->getCondition();
}

// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
// conditional branch.
static void setCondition(Instruction *I, Value *NewCond) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    GI->setArgOperand(0, NewCond);
    return;
  }
  cast<BranchInst>(I)->setCondition(NewCond);
}

// Eliminates the guard instruction properly.
static void eliminateGuard(Instruction *GuardInst) {
  GuardInst->eraseFromParent();
  ++GuardsEliminated;
}

class GuardWideningImpl {
  DominatorTree &DT;
  PostDominatorTree *PDT;
  LoopInfo &LI;
  BranchProbabilityInfo *BPI;

  /// Together, these describe the region of interest.  This might be all of
  /// the blocks within a function, or only a given loop's blocks and preheader.
  DomTreeNode *Root;
  std::function<bool(BasicBlock*)> BlockFilter;

  /// The set of guards and conditional branches whose conditions have been
  /// widened into dominating guards.
  SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;

  /// The set of guards which have been widened to include conditions to other
  /// guards.
  DenseSet<Instruction *> WidenedGuards;

  /// Try to eliminate instruction \p Instr by widening it into an earlier
  /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
  /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
  /// maps BasicBlocks to the set of guards seen in that block.
  bool eliminateInstrViaWidening(
      Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
      const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
          GuardsPerBlock, bool InvertCondition = false);

  /// Used to keep track of which widening potential is more effective.
  enum WideningScore {
    /// Don't widen.
    WS_IllegalOrNegative,

    /// Widening is performance neutral as far as the cycles spent in check
    /// conditions goes (but can still help, e.g., code layout, having less
    /// deopt state).
    WS_Neutral,

    /// Widening is profitable.
    WS_Positive,

    /// Widening is very profitable.  Not significantly different from \c
    /// WS_Positive, except by the order.
    WS_VeryPositive
  };

  static StringRef scoreTypeToString(WideningScore WS);

  /// Compute the score for widening the condition in \p DominatedInstr
  /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
  /// inverted condition of the dominating guard.
  WideningScore computeWideningScore(Instruction *DominatedInstr,
                                     Instruction *DominatingGuard,
                                     bool InvertCond);

  /// Helper to check if \p V can be hoisted to \p InsertPos.
  bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
    SmallPtrSet<const Instruction *, 8> Visited;
    return isAvailableAt(V, InsertPos, Visited);
  }

  bool isAvailableAt(const Value *V, const Instruction *InsertPos,
                     SmallPtrSetImpl<const Instruction *> &Visited) const;

  /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
  /// isAvailableAt returned true.
  void makeAvailableAt(Value *V, Instruction *InsertPos) const;

  /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
  /// to generate an expression computing the logical AND of \p Cond0 and (\p
  /// Cond1 XOR \p InvertCondition).
  /// Return true if the expression computing the AND is only as
  /// expensive as computing one of the two. If \p InsertPt is true then
  /// actually generate the resulting expression, make it available at \p
  /// InsertPt and return it in \p Result (else no change to the IR is made).
  bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
                       Value *&Result, bool InvertCondition);

  /// Represents a range check of the form \c Base + \c Offset u< \c Length,
  /// with the constraint that \c Length is not negative.  \c CheckInst is the
  /// pre-existing instruction in the IR that computes the result of this range
  /// check.
  class RangeCheck {
    const Value *Base;
    const ConstantInt *Offset;
    const Value *Length;
    ICmpInst *CheckInst;

  public:
    explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
                        const Value *Length, ICmpInst *CheckInst)
        : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}

    void setBase(const Value *NewBase) { Base = NewBase; }
    void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }

    const Value *getBase() const { return Base; }
    const ConstantInt *getOffset() const { return Offset; }
    const APInt &getOffsetValue() const { return getOffset()->getValue(); }
    const Value *getLength() const { return Length; };
    ICmpInst *getCheckInst() const { return CheckInst; }

    void print(raw_ostream &OS, bool PrintTypes = false) {
      OS << "Base: ";
      Base->printAsOperand(OS, PrintTypes);
      OS << " Offset: ";
      Offset->printAsOperand(OS, PrintTypes);
      OS << " Length: ";
      Length->printAsOperand(OS, PrintTypes);
    }

    LLVM_DUMP_METHOD void dump() {
      print(dbgs());
      dbgs() << "\n";
    }
  };

  /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
  /// append them to \p Checks.  Returns true on success, may clobber \c Checks
  /// on failure.
  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
    SmallPtrSet<const Value *, 8> Visited;
    return parseRangeChecks(CheckCond, Checks, Visited);
  }

  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
                        SmallPtrSetImpl<const Value *> &Visited);

  /// Combine the checks in \p Checks into a smaller set of checks and append
  /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
  /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
  /// and \p CombinedChecks on success and on failure.
  bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
                          SmallVectorImpl<RangeCheck> &CombinedChecks) const;

  /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
  /// computing only one of the two expressions?
  bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
    Value *ResultUnused;
    return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
                           InvertCond);
  }

  /// If \p InvertCondition is false, Widen \p ToWiden to fail if
  /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
  /// true (in addition to whatever it is already checking).
  void widenGuard(Instruction *ToWiden, Value *NewCondition,
                  bool InvertCondition) {
    Value *Result;
    widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
                    InvertCondition);
    Value *WidenableCondition = nullptr;
    if (isGuardAsWidenableBranch(ToWiden)) {
      auto *Cond = cast<BranchInst>(ToWiden)->getCondition();
      WidenableCondition = cast<BinaryOperator>(Cond)->getOperand(1);
    }
    if (WidenableCondition)
      Result = BinaryOperator::CreateAnd(Result, WidenableCondition,
                                         "guard.chk", ToWiden);
    setCondition(ToWiden, Result);
  }

public:

  explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
                             LoopInfo &LI, BranchProbabilityInfo *BPI,
                             DomTreeNode *Root,
                             std::function<bool(BasicBlock*)> BlockFilter)
    : DT(DT), PDT(PDT), LI(LI), BPI(BPI), Root(Root), BlockFilter(BlockFilter)
        {}

  /// The entry point for this pass.
  bool run();
};
}

static bool isSupportedGuardInstruction(const Instruction *Insn) {
  if (isGuard(Insn))
    return true;
  if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
    return true;
  return false;
}

bool GuardWideningImpl::run() {
  DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
  bool Changed = false;
  Optional<BranchProbability> LikelyTaken = None;
  if (WidenFrequentBranches && BPI) {
    unsigned Threshold = FrequentBranchThreshold;
    assert(Threshold > 0 && "Zero threshold makes no sense!");
    LikelyTaken = BranchProbability(Threshold - 1, Threshold);
  }

  for (auto DFI = df_begin(Root), DFE = df_end(Root);
       DFI != DFE; ++DFI) {
    auto *BB = (*DFI)->getBlock();
    if (!BlockFilter(BB))
      continue;

    auto &CurrentList = GuardsInBlock[BB];

    for (auto &I : *BB)
      if (isSupportedGuardInstruction(&I))
        CurrentList.push_back(cast<Instruction>(&I));

    for (auto *II : CurrentList)
      Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
    if (WidenFrequentBranches && BPI)
      if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
        if (BI->isConditional()) {
          // If one of branches of a conditional is likely taken, try to
          // eliminate it.
          if (BPI->getEdgeProbability(BB, 0U) >= *LikelyTaken)
            Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock);
          else if (BPI->getEdgeProbability(BB, 1U) >= *LikelyTaken)
            Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock,
                                                 /*InvertCondition*/true);
        }
  }

  assert(EliminatedGuardsAndBranches.empty() || Changed);
  for (auto *I : EliminatedGuardsAndBranches)
    if (!WidenedGuards.count(I)) {
      assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
      if (isSupportedGuardInstruction(I))
        eliminateGuard(I);
      else {
        assert(isa<BranchInst>(I) &&
               "Eliminated something other than guard or branch?");
        ++CondBranchEliminated;
      }
    }

  return Changed;
}

bool GuardWideningImpl::eliminateInstrViaWidening(
    Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
    const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
        GuardsInBlock, bool InvertCondition) {
  // Ignore trivial true or false conditions. These instructions will be
  // trivially eliminated by any cleanup pass. Do not erase them because other
  // guards can possibly be widened into them.
  if (isa<ConstantInt>(getCondition(Instr)))
    return false;

  Instruction *BestSoFar = nullptr;
  auto BestScoreSoFar = WS_IllegalOrNegative;

  // In the set of dominating guards, find the one we can merge GuardInst with
  // for the most profit.
  for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
    auto *CurBB = DFSI.getPath(i)->getBlock();
    if (!BlockFilter(CurBB))
      break;
    assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
    const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;

    auto I = GuardsInCurBB.begin();
    auto E = Instr->getParent() == CurBB
                 ? std::find(GuardsInCurBB.begin(), GuardsInCurBB.end(), Instr)
                 : GuardsInCurBB.end();

#ifndef NDEBUG
    {
      unsigned Index = 0;
      for (auto &I : *CurBB) {
        if (Index == GuardsInCurBB.size())
          break;
        if (GuardsInCurBB[Index] == &I)
          Index++;
      }
      assert(Index == GuardsInCurBB.size() &&
             "Guards expected to be in order!");
    }
#endif

    assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");

    for (auto *Candidate : make_range(I, E)) {
      auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
      LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
                        << " and " << *getCondition(Candidate) << " is "
                        << scoreTypeToString(Score) << "\n");
      if (Score > BestScoreSoFar) {
        BestScoreSoFar = Score;
        BestSoFar = Candidate;
      }
    }
  }

  if (BestScoreSoFar == WS_IllegalOrNegative) {
    LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
    return false;
  }

  assert(BestSoFar != Instr && "Should have never visited same guard!");
  assert(DT.dominates(BestSoFar, Instr) && "Should be!");

  LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
                    << " with score " << scoreTypeToString(BestScoreSoFar)
                    << "\n");
  widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
  auto NewGuardCondition = InvertCondition
                               ? ConstantInt::getFalse(Instr->getContext())
                               : ConstantInt::getTrue(Instr->getContext());
  setCondition(Instr, NewGuardCondition);
  EliminatedGuardsAndBranches.push_back(Instr);
  WidenedGuards.insert(BestSoFar);
  return true;
}

GuardWideningImpl::WideningScore
GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
                                        Instruction *DominatingGuard,
                                        bool InvertCond) {
  Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
  Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
  bool HoistingOutOfLoop = false;

  if (DominatingGuardLoop != DominatedInstrLoop) {
    // Be conservative and don't widen into a sibling loop.  TODO: If the
    // sibling is colder, we should consider allowing this.
    if (DominatingGuardLoop &&
        !DominatingGuardLoop->contains(DominatedInstrLoop))
      return WS_IllegalOrNegative;

    HoistingOutOfLoop = true;
  }

  if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
    return WS_IllegalOrNegative;

  // If the guard was conditional executed, it may never be reached
  // dynamically.  There are two potential downsides to hoisting it out of the
  // conditionally executed region: 1) we may spuriously deopt without need and
  // 2) we have the extra cost of computing the guard condition in the common
  // case.  At the moment, we really only consider the second in our heuristic
  // here.  TODO: evaluate cost model for spurious deopt
  // NOTE: As written, this also lets us hoist right over another guard which
  // is essentially just another spelling for control flow.
  if (isWideningCondProfitable(getCondition(DominatedInstr),
                               getCondition(DominatingGuard), InvertCond))
    return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;

  if (HoistingOutOfLoop)
    return WS_Positive;

  // Returns true if we might be hoisting above explicit control flow.  Note
  // that this completely ignores implicit control flow (guards, calls which
  // throw, etc...).  That choice appears arbitrary.
  auto MaybeHoistingOutOfIf = [&]() {
    auto *DominatingBlock = DominatingGuard->getParent();
    auto *DominatedBlock = DominatedInstr->getParent();
    if (isGuardAsWidenableBranch(DominatingGuard))
      DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);

    // Same Block?
    if (DominatedBlock == DominatingBlock)
      return false;
    // Obvious successor (common loop header/preheader case)
    if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
      return false;
    // TODO: diamond, triangle cases
    if (!PDT) return true;
    return !PDT->dominates(DominatedBlock, DominatingBlock);
  };

  return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
}

bool GuardWideningImpl::isAvailableAt(
    const Value *V, const Instruction *Loc,
    SmallPtrSetImpl<const Instruction *> &Visited) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
    return true;

  if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
      Inst->mayReadFromMemory())
    return false;

  Visited.insert(Inst);

  // We only want to go _up_ the dominance chain when recursing.
  assert(!isa<PHINode>(Loc) &&
         "PHIs should return false for isSafeToSpeculativelyExecute");
  assert(DT.isReachableFromEntry(Inst->getParent()) &&
         "We did a DFS from the block entry!");
  return all_of(Inst->operands(),
                [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
}

void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc))
    return;

  assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
         !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");

  for (Value *Op : Inst->operands())
    makeAvailableAt(Op, Loc);

  Inst->moveBefore(Loc);
}

bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
                                        Instruction *InsertPt, Value *&Result,
                                        bool InvertCondition) {
  using namespace llvm::PatternMatch;

  {
    // L >u C0 && L >u C1  ->  L >u max(C0, C1)
    ConstantInt *RHS0, *RHS1;
    Value *LHS;
    ICmpInst::Predicate Pred0, Pred1;
    if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
        match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
      if (InvertCondition)
        Pred1 = ICmpInst::getInversePredicate(Pred1);

      ConstantRange CR0 =
          ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
      ConstantRange CR1 =
          ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());

      // SubsetIntersect is a subset of the actual mathematical intersection of
      // CR0 and CR1, while SupersetIntersect is a superset of the actual
      // mathematical intersection.  If these two ConstantRanges are equal, then
      // we know we were able to represent the actual mathematical intersection
      // of CR0 and CR1, and can use the same to generate an icmp instruction.
      //
      // Given what we're doing here and the semantics of guards, it would
      // actually be correct to just use SubsetIntersect, but that may be too
      // aggressive in cases we care about.
      auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
      auto SupersetIntersect = CR0.intersectWith(CR1);

      APInt NewRHSAP;
      CmpInst::Predicate Pred;
      if (SubsetIntersect == SupersetIntersect &&
          SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
        if (InsertPt) {
          ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
          Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
        }
        return true;
      }
    }
  }

  {
    SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
    // TODO: Support InvertCondition case?
    if (!InvertCondition &&
        parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
        combineRangeChecks(Checks, CombinedChecks)) {
      if (InsertPt) {
        Result = nullptr;
        for (auto &RC : CombinedChecks) {
          makeAvailableAt(RC.getCheckInst(), InsertPt);
          if (Result)
            Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
                                               InsertPt);
          else
            Result = RC.getCheckInst();
        }
        assert(Result && "Failed to find result value");
        Result->setName("wide.chk");
      }
      return true;
    }
  }

  // Base case -- just logical-and the two conditions together.

  if (InsertPt) {
    makeAvailableAt(Cond0, InsertPt);
    makeAvailableAt(Cond1, InsertPt);
    if (InvertCondition)
      Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
    Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
  }

  // We were not able to compute Cond0 AND Cond1 for the price of one.
  return false;
}

bool GuardWideningImpl::parseRangeChecks(
    Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallPtrSetImpl<const Value *> &Visited) {
  if (!Visited.insert(CheckCond).second)
    return true;

  using namespace llvm::PatternMatch;

  {
    Value *AndLHS, *AndRHS;
    if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
      return parseRangeChecks(AndLHS, Checks) &&
             parseRangeChecks(AndRHS, Checks);
  }

  auto *IC = dyn_cast<ICmpInst>(CheckCond);
  if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
      (IC->getPredicate() != ICmpInst::ICMP_ULT &&
       IC->getPredicate() != ICmpInst::ICMP_UGT))
    return false;

  const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
  if (IC->getPredicate() == ICmpInst::ICMP_UGT)
    std::swap(CmpLHS, CmpRHS);

  auto &DL = IC->getModule()->getDataLayout();

  GuardWideningImpl::RangeCheck Check(
      CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
      CmpRHS, IC);

  if (!isKnownNonNegative(Check.getLength(), DL))
    return false;

  // What we have in \c Check now is a correct interpretation of \p CheckCond.
  // Try to see if we can move some constant offsets into the \c Offset field.

  bool Changed;
  auto &Ctx = CheckCond->getContext();

  do {
    Value *OpLHS;
    ConstantInt *OpRHS;
    Changed = false;

#ifndef NDEBUG
    auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
    assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
           "Unreachable instruction?");
#endif

    if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      Check.setBase(OpLHS);
      APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
      Check.setOffset(ConstantInt::get(Ctx, NewOffset));
      Changed = true;
    } else if (match(Check.getBase(),
                     m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      KnownBits Known = computeKnownBits(OpLHS, DL);
      if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
        Check.setBase(OpLHS);
        APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
        Check.setOffset(ConstantInt::get(Ctx, NewOffset));
        Changed = true;
      }
    }
  } while (Changed);

  Checks.push_back(Check);
  return true;
}

bool GuardWideningImpl::combineRangeChecks(
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
  unsigned OldCount = Checks.size();
  while (!Checks.empty()) {
    // Pick all of the range checks with a specific base and length, and try to
    // merge them.
    const Value *CurrentBase = Checks.front().getBase();
    const Value *CurrentLength = Checks.front().getLength();

    SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;

    auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
      return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
    };

    copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
    Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end());

    assert(CurrentChecks.size() != 0 && "We know we have at least one!");

    if (CurrentChecks.size() < 3) {
      RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(),
                            CurrentChecks.end());
      continue;
    }

    // CurrentChecks.size() will typically be 3 here, but so far there has been
    // no need to hard-code that fact.

    llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
                                  const GuardWideningImpl::RangeCheck &RHS) {
      return LHS.getOffsetValue().slt(RHS.getOffsetValue());
    });

    // Note: std::sort should not invalidate the ChecksStart iterator.

    const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
    const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();

    unsigned BitWidth = MaxOffset->getValue().getBitWidth();
    if ((MaxOffset->getValue() - MinOffset->getValue())
            .ugt(APInt::getSignedMinValue(BitWidth)))
      return false;

    APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
    const APInt &HighOffset = MaxOffset->getValue();
    auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
      return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
    };

    if (MaxDiff.isMinValue() ||
        !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(),
                     OffsetOK))
      return false;

    // We have a series of f+1 checks as:
    //
    //   I+k_0 u< L   ... Chk_0
    //   I+k_1 u< L   ... Chk_1
    //   ...
    //   I+k_f u< L   ... Chk_f
    //
    //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
    //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
    //          k_f != k_0                             ... Precond_2
    //
    // Claim:
    //   Chk_0 AND Chk_f  implies all the other checks
    //
    // Informal proof sketch:
    //
    // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
    // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
    // thus I+k_f is the greatest unsigned value in that range.
    //
    // This combined with Ckh_(f+1) shows that everything in that range is u< L.
    // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
    // lie in [I+k_0,I+k_f], this proving our claim.
    //
    // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
    // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
    // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
    // range by definition, and the latter case is impossible:
    //
    //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
    //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    //
    // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
    // with 'x' above) to be at least >u INT_MIN.

    RangeChecksOut.emplace_back(CurrentChecks.front());
    RangeChecksOut.emplace_back(CurrentChecks.back());
  }

  assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
  return RangeChecksOut.size() != OldCount;
}

#ifndef NDEBUG
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
  switch (WS) {
  case WS_IllegalOrNegative:
    return "IllegalOrNegative";
  case WS_Neutral:
    return "Neutral";
  case WS_Positive:
    return "Positive";
  case WS_VeryPositive:
    return "VeryPositive";
  }

  llvm_unreachable("Fully covered switch above!");
}
#endif

PreservedAnalyses GuardWideningPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  BranchProbabilityInfo *BPI = nullptr;
  if (WidenFrequentBranches)
    BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
  if (!GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
                         [](BasicBlock*) { return true; } ).run())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
                                         LoopStandardAnalysisResults &AR,
                                         LPMUpdater &U) {

  const auto &FAM =
    AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
  Function &F = *L.getHeader()->getParent();
  BranchProbabilityInfo *BPI = nullptr;
  if (WidenFrequentBranches)
    BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(F);

  BasicBlock *RootBB = L.getLoopPredecessor();
  if (!RootBB)
    RootBB = L.getHeader();
  auto BlockFilter = [&](BasicBlock *BB) {
    return BB == RootBB || L.contains(BB);
  };
  if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, BPI,
                         AR.DT.getNode(RootBB),
                         BlockFilter).run())
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}

namespace {
struct GuardWideningLegacyPass : public FunctionPass {
  static char ID;

  GuardWideningLegacyPass() : FunctionPass(ID) {
    initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    BranchProbabilityInfo *BPI = nullptr;
    if (WidenFrequentBranches)
      BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    return GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
                         [](BasicBlock*) { return true; } ).run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    if (WidenFrequentBranches)
      AU.addRequired<BranchProbabilityInfoWrapperPass>();
  }
};

/// Same as above, but restricted to a single loop at a time.  Can be
/// scheduled with other loop passes w/o breaking out of LPM
struct LoopGuardWideningLegacyPass : public LoopPass {
  static char ID;

  LoopGuardWideningLegacyPass() : LoopPass(ID) {
    initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
    BasicBlock *RootBB = L->getLoopPredecessor();
    if (!RootBB)
      RootBB = L->getHeader();
    auto BlockFilter = [&](BasicBlock *BB) {
      return BB == RootBB || L->contains(BB);
    };
    BranchProbabilityInfo *BPI = nullptr;
    if (WidenFrequentBranches)
      BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    return GuardWideningImpl(DT, PDT, LI, BPI,
                             DT.getNode(RootBB), BlockFilter).run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    if (WidenFrequentBranches)
      AU.addRequired<BranchProbabilityInfoWrapperPass>();
    AU.setPreservesCFG();
    getLoopAnalysisUsage(AU);
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }
};
}

char GuardWideningLegacyPass::ID = 0;
char LoopGuardWideningLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
if (WidenFrequentBranches)
  INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                    false, false)

INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
                      "Widen guards (within a single loop, as a loop pass)",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
if (WidenFrequentBranches)
  INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
                    "Widen guards (within a single loop, as a loop pass)",
                    false, false)

FunctionPass *llvm::createGuardWideningPass() {
  return new GuardWideningLegacyPass();
}

Pass *llvm::createLoopGuardWideningPass() {
  return new LoopGuardWideningLegacyPass();
}