1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
| //===- TargetGlobalISel.td - Common code for GlobalISel ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces used to support
// SelectionDAG instruction selection patterns (specified in
// TargetSelectionDAG.td) when generating GlobalISel instruction selectors.
//
// This is intended as a compatibility layer, to enable reuse of target
// descriptions written for SelectionDAG without requiring explicit GlobalISel
// support. It will eventually supersede SelectionDAG patterns.
//
//===----------------------------------------------------------------------===//
// Declare that a generic Instruction is 'equivalent' to an SDNode, that is,
// SelectionDAG patterns involving the SDNode can be transformed to match the
// Instruction instead.
class GINodeEquiv<Instruction i, SDNode node> {
Instruction I = i;
SDNode Node = node;
// SelectionDAG has separate nodes for atomic and non-atomic memory operations
// (ISD::LOAD, ISD::ATOMIC_LOAD, ISD::STORE, ISD::ATOMIC_STORE) but GlobalISel
// stores this information in the MachineMemoryOperand.
bit CheckMMOIsNonAtomic = 0;
bit CheckMMOIsAtomic = 0;
// SelectionDAG has one node for all loads and uses predicates to
// differentiate them. GlobalISel on the other hand uses separate opcodes.
// When this is true, the resulting opcode is G_LOAD/G_SEXTLOAD/G_ZEXTLOAD
// depending on the predicates on the node.
Instruction IfSignExtend = ?;
Instruction IfZeroExtend = ?;
// SelectionDAG has one setcc for all compares. This differentiates
// for G_ICMP and G_FCMP.
Instruction IfFloatingPoint = ?;
}
// These are defined in the same order as the G_* instructions.
def : GINodeEquiv<G_ANYEXT, anyext>;
def : GINodeEquiv<G_SEXT, sext>;
def : GINodeEquiv<G_ZEXT, zext>;
def : GINodeEquiv<G_TRUNC, trunc>;
def : GINodeEquiv<G_BITCAST, bitconvert>;
// G_INTTOPTR - SelectionDAG has no equivalent.
// G_PTRTOINT - SelectionDAG has no equivalent.
def : GINodeEquiv<G_CONSTANT, imm>;
def : GINodeEquiv<G_FCONSTANT, fpimm>;
def : GINodeEquiv<G_IMPLICIT_DEF, undef>;
def : GINodeEquiv<G_ADD, add>;
def : GINodeEquiv<G_SUB, sub>;
def : GINodeEquiv<G_MUL, mul>;
def : GINodeEquiv<G_UMULH, mulhu>;
def : GINodeEquiv<G_SMULH, mulhs>;
def : GINodeEquiv<G_SDIV, sdiv>;
def : GINodeEquiv<G_UDIV, udiv>;
def : GINodeEquiv<G_SREM, srem>;
def : GINodeEquiv<G_UREM, urem>;
def : GINodeEquiv<G_AND, and>;
def : GINodeEquiv<G_OR, or>;
def : GINodeEquiv<G_XOR, xor>;
def : GINodeEquiv<G_SHL, shl>;
def : GINodeEquiv<G_LSHR, srl>;
def : GINodeEquiv<G_ASHR, sra>;
def : GINodeEquiv<G_SELECT, select>;
def : GINodeEquiv<G_FNEG, fneg>;
def : GINodeEquiv<G_FPEXT, fpextend>;
def : GINodeEquiv<G_FPTRUNC, fpround>;
def : GINodeEquiv<G_FPTOSI, fp_to_sint>;
def : GINodeEquiv<G_FPTOUI, fp_to_uint>;
def : GINodeEquiv<G_SITOFP, sint_to_fp>;
def : GINodeEquiv<G_UITOFP, uint_to_fp>;
def : GINodeEquiv<G_FADD, fadd>;
def : GINodeEquiv<G_FSUB, fsub>;
def : GINodeEquiv<G_FMA, fma>;
def : GINodeEquiv<G_FMAD, fmad>;
def : GINodeEquiv<G_FMUL, fmul>;
def : GINodeEquiv<G_FDIV, fdiv>;
def : GINodeEquiv<G_FREM, frem>;
def : GINodeEquiv<G_FPOW, fpow>;
def : GINodeEquiv<G_FEXP2, fexp2>;
def : GINodeEquiv<G_FLOG2, flog2>;
def : GINodeEquiv<G_FCANONICALIZE, fcanonicalize>;
def : GINodeEquiv<G_INTRINSIC, intrinsic_wo_chain>;
// ISD::INTRINSIC_VOID can also be handled with G_INTRINSIC_W_SIDE_EFFECTS.
def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_void>;
def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_w_chain>;
def : GINodeEquiv<G_BR, br>;
def : GINodeEquiv<G_BSWAP, bswap>;
def : GINodeEquiv<G_BITREVERSE, bitreverse>;
def : GINodeEquiv<G_CTLZ, ctlz>;
def : GINodeEquiv<G_CTTZ, cttz>;
def : GINodeEquiv<G_CTLZ_ZERO_UNDEF, ctlz_zero_undef>;
def : GINodeEquiv<G_CTTZ_ZERO_UNDEF, cttz_zero_undef>;
def : GINodeEquiv<G_CTPOP, ctpop>;
def : GINodeEquiv<G_EXTRACT_VECTOR_ELT, vector_extract>;
def : GINodeEquiv<G_CONCAT_VECTORS, concat_vectors>;
def : GINodeEquiv<G_FCEIL, fceil>;
def : GINodeEquiv<G_FCOS, fcos>;
def : GINodeEquiv<G_FSIN, fsin>;
def : GINodeEquiv<G_FABS, fabs>;
def : GINodeEquiv<G_FSQRT, fsqrt>;
def : GINodeEquiv<G_FFLOOR, ffloor>;
def : GINodeEquiv<G_FRINT, frint>;
def : GINodeEquiv<G_FNEARBYINT, fnearbyint>;
def : GINodeEquiv<G_FCOPYSIGN, fcopysign>;
def : GINodeEquiv<G_SMIN, smin>;
def : GINodeEquiv<G_SMAX, smax>;
def : GINodeEquiv<G_UMIN, umin>;
def : GINodeEquiv<G_UMAX, umax>;
def : GINodeEquiv<G_FMINNUM, fminnum>;
def : GINodeEquiv<G_FMAXNUM, fmaxnum>;
def : GINodeEquiv<G_FMINNUM_IEEE, fminnum_ieee>;
def : GINodeEquiv<G_FMAXNUM_IEEE, fmaxnum_ieee>;
// Broadly speaking G_LOAD is equivalent to ISD::LOAD but there are some
// complications that tablegen must take care of. For example, Predicates such
// as isSignExtLoad require that this is not a perfect 1:1 mapping since a
// sign-extending load is (G_SEXTLOAD x) in GlobalISel. Additionally,
// G_LOAD handles both atomic and non-atomic loads where as SelectionDAG had
// separate nodes for them. This GINodeEquiv maps the non-atomic loads to
// G_LOAD with a non-atomic MachineMemOperand.
def : GINodeEquiv<G_LOAD, ld> {
let CheckMMOIsNonAtomic = 1;
let IfSignExtend = G_SEXTLOAD;
let IfZeroExtend = G_ZEXTLOAD;
}
def : GINodeEquiv<G_ICMP, setcc> {
let IfFloatingPoint = G_FCMP;
}
// Broadly speaking G_STORE is equivalent to ISD::STORE but there are some
// complications that tablegen must take care of. For example, predicates such
// as isTruncStore require that this is not a perfect 1:1 mapping since a
// truncating store is (G_STORE (G_TRUNCATE x)) in GlobalISel. Additionally,
// G_STORE handles both atomic and non-atomic stores where as SelectionDAG had
// separate nodes for them. This GINodeEquiv maps the non-atomic stores to
// G_STORE with a non-atomic MachineMemOperand.
def : GINodeEquiv<G_STORE, st> { let CheckMMOIsNonAtomic = 1; }
def : GINodeEquiv<G_LOAD, atomic_load> {
let CheckMMOIsNonAtomic = 0;
let CheckMMOIsAtomic = 1;
}
def : GINodeEquiv<G_ATOMIC_CMPXCHG, atomic_cmp_swap>;
def : GINodeEquiv<G_ATOMICRMW_XCHG, atomic_swap>;
def : GINodeEquiv<G_ATOMICRMW_ADD, atomic_load_add>;
def : GINodeEquiv<G_ATOMICRMW_SUB, atomic_load_sub>;
def : GINodeEquiv<G_ATOMICRMW_AND, atomic_load_and>;
def : GINodeEquiv<G_ATOMICRMW_NAND, atomic_load_nand>;
def : GINodeEquiv<G_ATOMICRMW_OR, atomic_load_or>;
def : GINodeEquiv<G_ATOMICRMW_XOR, atomic_load_xor>;
def : GINodeEquiv<G_ATOMICRMW_MIN, atomic_load_min>;
def : GINodeEquiv<G_ATOMICRMW_MAX, atomic_load_max>;
def : GINodeEquiv<G_ATOMICRMW_UMIN, atomic_load_umin>;
def : GINodeEquiv<G_ATOMICRMW_UMAX, atomic_load_umax>;
def : GINodeEquiv<G_ATOMICRMW_FADD, atomic_load_fadd>;
def : GINodeEquiv<G_ATOMICRMW_FSUB, atomic_load_fsub>;
def : GINodeEquiv<G_FENCE, atomic_fence>;
// Specifies the GlobalISel equivalents for SelectionDAG's ComplexPattern.
// Should be used on defs that subclass GIComplexOperandMatcher<>.
class GIComplexPatternEquiv<ComplexPattern seldag> {
ComplexPattern SelDAGEquivalent = seldag;
}
// Specifies the GlobalISel equivalents for SelectionDAG's SDNodeXForm.
// Should be used on defs that subclass GICustomOperandRenderer<>.
class GISDNodeXFormEquiv<SDNodeXForm seldag> {
SDNodeXForm SelDAGEquivalent = seldag;
}
|