1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
| //===-- GenericOpcodes.td - Opcodes used with GlobalISel ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic opcodes used with GlobalISel.
// After instruction selection, these opcodes should not appear.
//
//===----------------------------------------------------------------------===//
//------------------------------------------------------------------------------
// Unary ops.
//------------------------------------------------------------------------------
class GenericInstruction : StandardPseudoInstruction {
let isPreISelOpcode = 1;
}
// Extend the underlying scalar type of an operation, leaving the high bits
// unspecified.
def G_ANYEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Sign extend the underlying scalar type of an operation, copying the sign bit
// into the newly-created space.
def G_SEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Sign extend the a value from an arbitrary bit position, copying the sign bit
// into all bits above it. This is equivalent to a shl + ashr pair with an
// appropriate shift amount. $sz is an immediate (MachineOperand::isImm()
// returns true) to allow targets to have some bitwidths legal and others
// lowered. This opcode is particularly useful if the target has sign-extension
// instructions that are cheaper than the constituent shifts as the optimizer is
// able to make decisions on whether it's better to hang on to the G_SEXT_INREG
// or to lower it and optimize the individual shifts.
def G_SEXT_INREG : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, untyped_imm_0:$sz);
let hasSideEffects = 0;
}
// Zero extend the underlying scalar type of an operation, putting zero bits
// into the newly-created space.
def G_ZEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Truncate the underlying scalar type of an operation. This is equivalent to
// G_EXTRACT for scalar types, but acts elementwise on vectors.
def G_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_IMPLICIT_DEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins);
let hasSideEffects = 0;
}
def G_PHI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins variable_ops);
let hasSideEffects = 0;
}
def G_FRAME_INDEX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$src2);
let hasSideEffects = 0;
}
def G_GLOBAL_VALUE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$src);
let hasSideEffects = 0;
}
def G_INTTOPTR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_PTRTOINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BITCAST : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Only supports scalar result types
def G_CONSTANT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$imm);
let hasSideEffects = 0;
}
// Only supports scalar result types
def G_FCONSTANT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$imm);
let hasSideEffects = 0;
}
def G_VASTART : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$list);
let hasSideEffects = 0;
let mayStore = 1;
}
def G_VAARG : GenericInstruction {
let OutOperandList = (outs type0:$val);
let InOperandList = (ins type1:$list, unknown:$align);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_CTLZ : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTLZ_ZERO_UNDEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTTZ : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTTZ_ZERO_UNDEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTPOP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BSWAP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_BITREVERSE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_ADDRSPACE_CAST : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BLOCK_ADDR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$ba);
let hasSideEffects = 0;
}
def G_JUMP_TABLE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$jti);
let hasSideEffects = 0;
}
def G_DYN_STACKALLOC : GenericInstruction {
let OutOperandList = (outs ptype0:$dst);
let InOperandList = (ins type1:$size, i32imm:$align);
let hasSideEffects = 1;
}
//------------------------------------------------------------------------------
// Binary ops.
//------------------------------------------------------------------------------
// Generic addition.
def G_ADD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic subtraction.
def G_SUB : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic multiplication.
def G_MUL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed division.
def G_SDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic unsigned division.
def G_UDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic signed remainder.
def G_SREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic unsigned remainder.
def G_UREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic bitwise and.
def G_AND : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic bitwise or.
def G_OR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic bitwise xor.
def G_XOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic left-shift.
def G_SHL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic logical right-shift.
def G_LSHR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic arithmetic right-shift.
def G_ASHR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic integer comparison.
def G_ICMP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$tst, type1:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic floating-point comparison.
def G_FCMP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$tst, type1:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic select
def G_SELECT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$tst, type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic pointer offset.
def G_GEP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
def G_PTR_MASK : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, unknown:$bits);
let hasSideEffects = 0;
}
// Generic signed integer minimum.
def G_SMIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed integer maximum.
def G_SMAX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned integer minimum.
def G_UMIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned integer maximum.
def G_UMAX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
//------------------------------------------------------------------------------
// Overflow ops
//------------------------------------------------------------------------------
// Generic unsigned addition producing a carry flag.
def G_UADDO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned addition consuming and producing a carry flag.
def G_UADDE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic signed addition producing a carry flag.
def G_SADDO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed addition consuming and producing a carry flag.
def G_SADDE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic unsigned subtraction producing a carry flag.
def G_USUBO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic unsigned subtraction consuming and producing a carry flag.
def G_USUBE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic signed subtraction producing a carry flag.
def G_SSUBO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic signed subtraction consuming and producing a carry flag.
def G_SSUBE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic unsigned multiplication producing a carry flag.
def G_UMULO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed multiplication producing a carry flag.
def G_SMULO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Multiply two numbers at twice the incoming bit width (unsigned) and return
// the high half of the result.
def G_UMULH : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Multiply two numbers at twice the incoming bit width (signed) and return
// the high half of the result.
def G_SMULH : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
//------------------------------------------------------------------------------
// Floating Point Unary Ops.
//------------------------------------------------------------------------------
def G_FNEG : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_FPEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTOSI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTOUI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_SITOFP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_UITOFP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FABS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_FCOPYSIGN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type1:$src1);
let hasSideEffects = 0;
}
def G_FCANONICALIZE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
// values.
//
// In the case where a single input is a NaN (either signaling or quiet),
// the non-NaN input is returned.
//
// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
def G_FMINNUM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
def G_FMAXNUM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
// two values, following the IEEE-754 2008 definition. This differs from
// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
// signaling NaN, returns a quiet NaN.
def G_FMINNUM_IEEE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
def G_FMAXNUM_IEEE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
def G_FMINIMUM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
def G_FMAXIMUM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
//------------------------------------------------------------------------------
// Floating Point Binary ops.
//------------------------------------------------------------------------------
// Generic FP addition.
def G_FADD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic FP subtraction.
def G_FSUB : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic FP multiplication.
def G_FMUL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic fused multiply-add instruction.
// Behaves like llvm fma intrinsic ie src1 * src2 + src3
def G_FMA : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2, type0:$src3);
let hasSideEffects = 0;
let isCommutable = 0;
}
/// Generic FP multiply and add. Perform a * b + c, while getting the
/// same result as the separately rounded operations, unlike G_FMA.
def G_FMAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2, type0:$src3);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic FP division.
def G_FDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic FP remainder.
def G_FREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Floating point exponentiation.
def G_FPOW : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Floating point base-e exponential of a value.
def G_FEXP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 exponential of a value.
def G_FEXP2 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 logarithm of a value.
def G_FLOG : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 logarithm of a value.
def G_FLOG2 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-10 logarithm of a value.
def G_FLOG10 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point ceiling of a value.
def G_FCEIL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point cosine of a value.
def G_FCOS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point sine of a value.
def G_FSIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point square root of a value.
// This returns NaN for negative nonzero values.
// NOTE: Unlike libm sqrt(), this never sets errno. In all other respects it's
// libm-conformant.
def G_FSQRT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point floor of a value.
def G_FFLOOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point round to next integer.
def G_FRINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point round to the nearest integer.
def G_FNEARBYINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Opcodes for LLVM Intrinsics
//------------------------------------------------------------------------------
def G_INTRINSIC_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
def G_INTRINSIC_ROUND : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Memory ops
//------------------------------------------------------------------------------
// Generic load. Expects a MachineMemOperand in addition to explicit
// operands. If the result size is larger than the memory size, the
// high bits are undefined. If the result is a vector type and larger
// than the memory size, the high elements are undefined (i.e. this is
// not a per-element, vector anyextload)
def G_LOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic sign-extended load. Expects a MachineMemOperand in addition to explicit operands.
def G_SEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic zero-extended load. Expects a MachineMemOperand in addition to explicit operands.
def G_ZEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic indexed load. Combines a GEP with a load. $newaddr is set to $base + $offset.
// If $am is 0 (post-indexed), then the value is loaded from $base; if $am is 1 (pre-indexed)
// then the value is loaded from $newaddr.
def G_INDEXED_LOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst, ptype1:$newaddr);
let InOperandList = (ins ptype1:$base, type2:$offset, unknown:$am);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Same as G_INDEXED_LOAD except that the load performed is sign-extending, as with G_SEXTLOAD.
def G_INDEXED_SEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst, ptype1:$newaddr);
let InOperandList = (ins ptype1:$base, type2:$offset, unknown:$am);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Same as G_INDEXED_LOAD except that the load performed is zero-extending, as with G_ZEXTLOAD.
def G_INDEXED_ZEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst, ptype1:$newaddr);
let InOperandList = (ins ptype1:$base, type2:$offset, unknown:$am);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic store. Expects a MachineMemOperand in addition to explicit operands.
def G_STORE : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$src, ptype1:$addr);
let hasSideEffects = 0;
let mayStore = 1;
}
// Combines a store with a GEP. See description of G_INDEXED_LOAD for indexing behaviour.
def G_INDEXED_STORE : GenericInstruction {
let OutOperandList = (outs ptype0:$newaddr);
let InOperandList = (ins type1:$src, ptype0:$base, ptype2:$offset,
unknown:$am);
let hasSideEffects = 0;
let mayStore = 1;
}
// Generic atomic cmpxchg with internal success check. Expects a
// MachineMemOperand in addition to explicit operands.
def G_ATOMIC_CMPXCHG_WITH_SUCCESS : GenericInstruction {
let OutOperandList = (outs type0:$oldval, type1:$success);
let InOperandList = (ins type2:$addr, type0:$cmpval, type0:$newval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// Generic atomic cmpxchg. Expects a MachineMemOperand in addition to explicit
// operands.
def G_ATOMIC_CMPXCHG : GenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$cmpval, type0:$newval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// Generic atomicrmw. Expects a MachineMemOperand in addition to explicit
// operands.
class G_ATOMICRMW_OP : GenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$val);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_ATOMICRMW_XCHG : G_ATOMICRMW_OP;
def G_ATOMICRMW_ADD : G_ATOMICRMW_OP;
def G_ATOMICRMW_SUB : G_ATOMICRMW_OP;
def G_ATOMICRMW_AND : G_ATOMICRMW_OP;
def G_ATOMICRMW_NAND : G_ATOMICRMW_OP;
def G_ATOMICRMW_OR : G_ATOMICRMW_OP;
def G_ATOMICRMW_XOR : G_ATOMICRMW_OP;
def G_ATOMICRMW_MAX : G_ATOMICRMW_OP;
def G_ATOMICRMW_MIN : G_ATOMICRMW_OP;
def G_ATOMICRMW_UMAX : G_ATOMICRMW_OP;
def G_ATOMICRMW_UMIN : G_ATOMICRMW_OP;
def G_ATOMICRMW_FADD : G_ATOMICRMW_OP;
def G_ATOMICRMW_FSUB : G_ATOMICRMW_OP;
def G_FENCE : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$ordering, i32imm:$scope);
let hasSideEffects = 1;
}
//------------------------------------------------------------------------------
// Variadic ops
//------------------------------------------------------------------------------
// Extract a register of the specified size, starting from the block given by
// index. This will almost certainly be mapped to sub-register COPYs after
// register banks have been selected.
def G_EXTRACT : GenericInstruction {
let OutOperandList = (outs type0:$res);
let InOperandList = (ins type1:$src, unknown:$offset);
let hasSideEffects = 0;
}
// Extract multiple registers specified size, starting from blocks given by
// indexes. This will almost certainly be mapped to sub-register COPYs after
// register banks have been selected.
// The output operands are always ordered from lowest bits to highest:
// %bits_0_7:(s8), %bits_8_15:(s8),
// %bits_16_23:(s8), %bits_24_31:(s8) = G_UNMERGE_VALUES %0:(s32)
def G_UNMERGE_VALUES : GenericInstruction {
let OutOperandList = (outs type0:$dst0, variable_ops);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Insert a smaller register into a larger one at the specified bit-index.
def G_INSERT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, type1:$op, unknown:$offset);
let hasSideEffects = 0;
}
// Concatenate multiple registers of the same size into a wider register.
// The input operands are always ordered from lowest bits to highest:
// %0:(s32) = G_MERGE_VALUES %bits_0_7:(s8), %bits_8_15:(s8),
// %bits_16_23:(s8), %bits_24_31:(s8)
def G_MERGE_VALUES : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Create a vector from multiple scalar registers. No implicit
/// conversion is performed (i.e. the result element type must be the
/// same as all source operands)
def G_BUILD_VECTOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Like G_BUILD_VECTOR, but truncates the larger operand types to fit the
/// destination vector elt type.
def G_BUILD_VECTOR_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Create a vector by concatenating vectors together.
def G_CONCAT_VECTORS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
// Intrinsic without side effects.
def G_INTRINSIC : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
}
// Intrinsic with side effects.
def G_INTRINSIC_W_SIDE_EFFECTS : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 1;
let mayLoad = 1;
let mayStore = 1;
}
//------------------------------------------------------------------------------
// Branches.
//------------------------------------------------------------------------------
// Generic unconditional branch.
def G_BR : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$src1);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
}
// Generic conditional branch.
def G_BRCOND : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$tst, unknown:$truebb);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
// Generic indirect branch.
def G_BRINDIRECT : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
// Generic branch to jump table entry
def G_BRJT : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins ptype0:$tbl, unknown:$jti, type1:$idx);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
//------------------------------------------------------------------------------
// Vector ops
//------------------------------------------------------------------------------
// Generic insertelement.
def G_INSERT_VECTOR_ELT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, type1:$elt, type2:$idx);
let hasSideEffects = 0;
}
// Generic extractelement.
def G_EXTRACT_VECTOR_ELT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src, type2:$idx);
let hasSideEffects = 0;
}
// Generic shufflevector.
//
// The mask operand should be an IR Constant which exactly matches the
// corresponding mask for the IR shufflevector instruction.
def G_SHUFFLE_VECTOR: GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$v1, type1:$v2, unknown:$mask);
let hasSideEffects = 0;
}
// TODO: Add the other generic opcodes.
|