reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
==============================
LLVM Language Reference Manual
==============================

.. contents::
   :local:
   :depth: 4

Abstract
========

This document is a reference manual for the LLVM assembly language. LLVM
is a Static Single Assignment (SSA) based representation that provides
type safety, low-level operations, flexibility, and the capability of
representing 'all' high-level languages cleanly. It is the common code
representation used throughout all phases of the LLVM compilation
strategy.

Introduction
============

The LLVM code representation is designed to be used in three different
forms: as an in-memory compiler IR, as an on-disk bitcode representation
(suitable for fast loading by a Just-In-Time compiler), and as a human
readable assembly language representation. This allows LLVM to provide a
powerful intermediate representation for efficient compiler
transformations and analysis, while providing a natural means to debug
and visualize the transformations. The three different forms of LLVM are
all equivalent. This document describes the human readable
representation and notation.

The LLVM representation aims to be light-weight and low-level while
being expressive, typed, and extensible at the same time. It aims to be
a "universal IR" of sorts, by being at a low enough level that
high-level ideas may be cleanly mapped to it (similar to how
microprocessors are "universal IR's", allowing many source languages to
be mapped to them). By providing type information, LLVM can be used as
the target of optimizations: for example, through pointer analysis, it
can be proven that a C automatic variable is never accessed outside of
the current function, allowing it to be promoted to a simple SSA value
instead of a memory location.

.. _wellformed:

Well-Formedness
---------------

It is important to note that this document describes 'well formed' LLVM
assembly language. There is a difference between what the parser accepts
and what is considered 'well formed'. For example, the following
instruction is syntactically okay, but not well formed:

.. code-block:: llvm

    %x = add i32 1, %x

because the definition of ``%x`` does not dominate all of its uses. The
LLVM infrastructure provides a verification pass that may be used to
verify that an LLVM module is well formed. This pass is automatically
run by the parser after parsing input assembly and by the optimizer
before it outputs bitcode. The violations pointed out by the verifier
pass indicate bugs in transformation passes or input to the parser.

.. _identifiers:

Identifiers
===========

LLVM identifiers come in two basic types: global and local. Global
identifiers (functions, global variables) begin with the ``'@'``
character. Local identifiers (register names, types) begin with the
``'%'`` character. Additionally, there are three different formats for
identifiers, for different purposes:

#. Named values are represented as a string of characters with their
   prefix. For example, ``%foo``, ``@DivisionByZero``,
   ``%a.really.long.identifier``. The actual regular expression used is
   '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
   characters in their names can be surrounded with quotes. Special
   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
   code for the character in hexadecimal. In this way, any character can
   be used in a name value, even quotes themselves. The ``"\01"`` prefix
   can be used on global values to suppress mangling.
#. Unnamed values are represented as an unsigned numeric value with
   their prefix. For example, ``%12``, ``@2``, ``%44``.
#. Constants, which are described in the section Constants_ below.

LLVM requires that values start with a prefix for two reasons: Compilers
don't need to worry about name clashes with reserved words, and the set
of reserved words may be expanded in the future without penalty.
Additionally, unnamed identifiers allow a compiler to quickly come up
with a temporary variable without having to avoid symbol table
conflicts.

Reserved words in LLVM are very similar to reserved words in other
languages. There are keywords for different opcodes ('``add``',
'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
'``i32``', etc...), and others. These reserved words cannot conflict
with variable names, because none of them start with a prefix character
(``'%'`` or ``'@'``).

Here is an example of LLVM code to multiply the integer variable
'``%X``' by 8:

The easy way:

.. code-block:: llvm

    %result = mul i32 %X, 8

After strength reduction:

.. code-block:: llvm

    %result = shl i32 %X, 3

And the hard way:

.. code-block:: llvm

    %0 = add i32 %X, %X           ; yields i32:%0
    %1 = add i32 %0, %0           ; yields i32:%1
    %result = add i32 %1, %1

This last way of multiplying ``%X`` by 8 illustrates several important
lexical features of LLVM:

#. Comments are delimited with a '``;``' and go until the end of line.
#. Unnamed temporaries are created when the result of a computation is
   not assigned to a named value.
#. Unnamed temporaries are numbered sequentially (using a per-function
   incrementing counter, starting with 0). Note that basic blocks and unnamed
   function parameters are included in this numbering. For example, if the
   entry basic block is not given a label name and all function parameters are
   named, then it will get number 0.

It also shows a convention that we follow in this document. When
demonstrating instructions, we will follow an instruction with a comment
that defines the type and name of value produced.

High Level Structure
====================

Module Structure
----------------

LLVM programs are composed of ``Module``'s, each of which is a
translation unit of the input programs. Each module consists of
functions, global variables, and symbol table entries. Modules may be
combined together with the LLVM linker, which merges function (and
global variable) definitions, resolves forward declarations, and merges
symbol table entries. Here is an example of the "hello world" module:

.. code-block:: llvm

    ; Declare the string constant as a global constant.
    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

    ; External declaration of the puts function
    declare i32 @puts(i8* nocapture) nounwind

    ; Definition of main function
    define i32 @main() {   ; i32()*
      ; Convert [13 x i8]* to i8*...
      %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0

      ; Call puts function to write out the string to stdout.
      call i32 @puts(i8* %cast210)
      ret i32 0
    }

    ; Named metadata
    !0 = !{i32 42, null, !"string"}
    !foo = !{!0}

This example is made up of a :ref:`global variable <globalvars>` named
"``.str``", an external declaration of the "``puts``" function, a
:ref:`function definition <functionstructure>` for "``main``" and
:ref:`named metadata <namedmetadatastructure>` "``foo``".

In general, a module is made up of a list of global values (where both
functions and global variables are global values). Global values are
represented by a pointer to a memory location (in this case, a pointer
to an array of char, and a pointer to a function), and have one of the
following :ref:`linkage types <linkage>`.

.. _linkage:

Linkage Types
-------------

All Global Variables and Functions have one of the following types of
linkage:

``private``
    Global values with "``private``" linkage are only directly
    accessible by objects in the current module. In particular, linking
    code into a module with a private global value may cause the
    private to be renamed as necessary to avoid collisions. Because the
    symbol is private to the module, all references can be updated. This
    doesn't show up in any symbol table in the object file.
``internal``
    Similar to private, but the value shows as a local symbol
    (``STB_LOCAL`` in the case of ELF) in the object file. This
    corresponds to the notion of the '``static``' keyword in C.
``available_externally``
    Globals with "``available_externally``" linkage are never emitted into
    the object file corresponding to the LLVM module. From the linker's
    perspective, an ``available_externally`` global is equivalent to
    an external declaration. They exist to allow inlining and other
    optimizations to take place given knowledge of the definition of the
    global, which is known to be somewhere outside the module. Globals
    with ``available_externally`` linkage are allowed to be discarded at
    will, and allow inlining and other optimizations. This linkage type is
    only allowed on definitions, not declarations.
``linkonce``
    Globals with "``linkonce``" linkage are merged with other globals of
    the same name when linkage occurs. This can be used to implement
    some forms of inline functions, templates, or other code which must
    be generated in each translation unit that uses it, but where the
    body may be overridden with a more definitive definition later.
    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
    that ``linkonce`` linkage does not actually allow the optimizer to
    inline the body of this function into callers because it doesn't
    know if this definition of the function is the definitive definition
    within the program or whether it will be overridden by a stronger
    definition. To enable inlining and other optimizations, use
    "``linkonce_odr``" linkage.
``weak``
    "``weak``" linkage has the same merging semantics as ``linkonce``
    linkage, except that unreferenced globals with ``weak`` linkage may
    not be discarded. This is used for globals that are declared "weak"
    in C source code.
``common``
    "``common``" linkage is most similar to "``weak``" linkage, but they
    are used for tentative definitions in C, such as "``int X;``" at
    global scope. Symbols with "``common``" linkage are merged in the
    same way as ``weak symbols``, and they may not be deleted if
    unreferenced. ``common`` symbols may not have an explicit section,
    must have a zero initializer, and may not be marked
    ':ref:`constant <globalvars>`'. Functions and aliases may not have
    common linkage.

.. _linkage_appending:

``appending``
    "``appending``" linkage may only be applied to global variables of
    pointer to array type. When two global variables with appending
    linkage are linked together, the two global arrays are appended
    together. This is the LLVM, typesafe, equivalent of having the
    system linker append together "sections" with identical names when
    .o files are linked.

    Unfortunately this doesn't correspond to any feature in .o files, so it
    can only be used for variables like ``llvm.global_ctors`` which llvm
    interprets specially.

``extern_weak``
    The semantics of this linkage follow the ELF object file model: the
    symbol is weak until linked, if not linked, the symbol becomes null
    instead of being an undefined reference.
``linkonce_odr``, ``weak_odr``
    Some languages allow differing globals to be merged, such as two
    functions with different semantics. Other languages, such as
    ``C++``, ensure that only equivalent globals are ever merged (the
    "one definition rule" --- "ODR"). Such languages can use the
    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
    global will only be merged with equivalent globals. These linkage
    types are otherwise the same as their non-``odr`` versions.
``external``
    If none of the above identifiers are used, the global is externally
    visible, meaning that it participates in linkage and can be used to
    resolve external symbol references.

It is illegal for a function *declaration* to have any linkage type
other than ``external`` or ``extern_weak``.

.. _callingconv:

Calling Conventions
-------------------

LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
:ref:`invokes <i_invoke>` can all have an optional calling convention
specified for the call. The calling convention of any pair of dynamic
caller/callee must match, or the behavior of the program is undefined.
The following calling conventions are supported by LLVM, and more may be
added in the future:

"``ccc``" - The C calling convention
    This calling convention (the default if no other calling convention
    is specified) matches the target C calling conventions. This calling
    convention supports varargs function calls and tolerates some
    mismatch in the declared prototype and implemented declaration of
    the function (as does normal C).
"``fastcc``" - The fast calling convention
    This calling convention attempts to make calls as fast as possible
    (e.g. by passing things in registers). This calling convention
    allows the target to use whatever tricks it wants to produce fast
    code for the target, without having to conform to an externally
    specified ABI (Application Binary Interface). `Tail calls can only
    be optimized when this, the tailcc, the GHC or the HiPE convention is
    used. <CodeGenerator.html#id80>`_ This calling convention does not
    support varargs and requires the prototype of all callees to exactly
    match the prototype of the function definition.
"``coldcc``" - The cold calling convention
    This calling convention attempts to make code in the caller as
    efficient as possible under the assumption that the call is not
    commonly executed. As such, these calls often preserve all registers
    so that the call does not break any live ranges in the caller side.
    This calling convention does not support varargs and requires the
    prototype of all callees to exactly match the prototype of the
    function definition. Furthermore the inliner doesn't consider such function
    calls for inlining.
"``cc 10``" - GHC convention
    This calling convention has been implemented specifically for use by
    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
    It passes everything in registers, going to extremes to achieve this
    by disabling callee save registers. This calling convention should
    not be used lightly but only for specific situations such as an
    alternative to the *register pinning* performance technique often
    used when implementing functional programming languages. At the
    moment only X86 supports this convention and it has the following
    limitations:

    -  On *X86-32* only supports up to 4 bit type parameters. No
       floating-point types are supported.
    -  On *X86-64* only supports up to 10 bit type parameters and 6
       floating-point parameters.

    This calling convention supports `tail call
    optimization <CodeGenerator.html#id80>`_ but requires both the
    caller and callee are using it.
"``cc 11``" - The HiPE calling convention
    This calling convention has been implemented specifically for use by
    the `High-Performance Erlang
    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
    native code compiler of the `Ericsson's Open Source Erlang/OTP
    system <http://www.erlang.org/download.shtml>`_. It uses more
    registers for argument passing than the ordinary C calling
    convention and defines no callee-saved registers. The calling
    convention properly supports `tail call
    optimization <CodeGenerator.html#id80>`_ but requires that both the
    caller and the callee use it. It uses a *register pinning*
    mechanism, similar to GHC's convention, for keeping frequently
    accessed runtime components pinned to specific hardware registers.
    At the moment only X86 supports this convention (both 32 and 64
    bit).
"``webkit_jscc``" - WebKit's JavaScript calling convention
    This calling convention has been implemented for `WebKit FTL JIT
    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
    stack right to left (as cdecl does), and returns a value in the
    platform's customary return register.
"``anyregcc``" - Dynamic calling convention for code patching
    This is a special convention that supports patching an arbitrary code
    sequence in place of a call site. This convention forces the call
    arguments into registers but allows them to be dynamically
    allocated. This can currently only be used with calls to
    llvm.experimental.patchpoint because only this intrinsic records
    the location of its arguments in a side table. See :doc:`StackMaps`.
"``preserve_mostcc``" - The `PreserveMost` calling convention
    This calling convention attempts to make the code in the caller as
    unintrusive as possible. This convention behaves identically to the `C`
    calling convention on how arguments and return values are passed, but it
    uses a different set of caller/callee-saved registers. This alleviates the
    burden of saving and recovering a large register set before and after the
    call in the caller. If the arguments are passed in callee-saved registers,
    then they will be preserved by the callee across the call. This doesn't
    apply for values returned in callee-saved registers.

    - On X86-64 the callee preserves all general purpose registers, except for
      R11. R11 can be used as a scratch register. Floating-point registers
      (XMMs/YMMs) are not preserved and need to be saved by the caller.

    The idea behind this convention is to support calls to runtime functions
    that have a hot path and a cold path. The hot path is usually a small piece
    of code that doesn't use many registers. The cold path might need to call out to
    another function and therefore only needs to preserve the caller-saved
    registers, which haven't already been saved by the caller. The
    `PreserveMost` calling convention is very similar to the `cold` calling
    convention in terms of caller/callee-saved registers, but they are used for
    different types of function calls. `coldcc` is for function calls that are
    rarely executed, whereas `preserve_mostcc` function calls are intended to be
    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
    doesn't prevent the inliner from inlining the function call.

    This calling convention will be used by a future version of the ObjectiveC
    runtime and should therefore still be considered experimental at this time.
    Although this convention was created to optimize certain runtime calls to
    the ObjectiveC runtime, it is not limited to this runtime and might be used
    by other runtimes in the future too. The current implementation only
    supports X86-64, but the intention is to support more architectures in the
    future.
"``preserve_allcc``" - The `PreserveAll` calling convention
    This calling convention attempts to make the code in the caller even less
    intrusive than the `PreserveMost` calling convention. This calling
    convention also behaves identical to the `C` calling convention on how
    arguments and return values are passed, but it uses a different set of
    caller/callee-saved registers. This removes the burden of saving and
    recovering a large register set before and after the call in the caller. If
    the arguments are passed in callee-saved registers, then they will be
    preserved by the callee across the call. This doesn't apply for values
    returned in callee-saved registers.

    - On X86-64 the callee preserves all general purpose registers, except for
      R11. R11 can be used as a scratch register. Furthermore it also preserves
      all floating-point registers (XMMs/YMMs).

    The idea behind this convention is to support calls to runtime functions
    that don't need to call out to any other functions.

    This calling convention, like the `PreserveMost` calling convention, will be
    used by a future version of the ObjectiveC runtime and should be considered
    experimental at this time.
"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
    Clang generates an access function to access C++-style TLS. The access
    function generally has an entry block, an exit block and an initialization
    block that is run at the first time. The entry and exit blocks can access
    a few TLS IR variables, each access will be lowered to a platform-specific
    sequence.

    This calling convention aims to minimize overhead in the caller by
    preserving as many registers as possible (all the registers that are
    preserved on the fast path, composed of the entry and exit blocks).

    This calling convention behaves identical to the `C` calling convention on
    how arguments and return values are passed, but it uses a different set of
    caller/callee-saved registers.

    Given that each platform has its own lowering sequence, hence its own set
    of preserved registers, we can't use the existing `PreserveMost`.

    - On X86-64 the callee preserves all general purpose registers, except for
      RDI and RAX.
"``swiftcc``" - This calling convention is used for Swift language.
    - On X86-64 RCX and R8 are available for additional integer returns, and
      XMM2 and XMM3 are available for additional FP/vector returns.
    - On iOS platforms, we use AAPCS-VFP calling convention.
"``tailcc``" - Tail callable calling convention
    This calling convention ensures that calls in tail position will always be
    tail call optimized. This calling convention is equivalent to fastcc,
    except for an additional guarantee that tail calls will be produced
    whenever possible. `Tail calls can only be optimized when this, the fastcc,
    the GHC or the HiPE convention is used. <CodeGenerator.html#id80>`_ This
    calling convention does not support varargs and requires the prototype of
    all callees to exactly match the prototype of the function definition.
"``cfguard_checkcc``" - Windows Control Flow Guard (Check mechanism)
    This calling convention is used for the Control Flow Guard check function,
    calls to which can be inserted before indirect calls to check that the call
    target is a valid function address. The check function has no return value,
    but it will trigger an OS-level error if the address is not a valid target.
    The set of registers preserved by the check function, and the register
    containing the target address are architecture-specific.

    - On X86 the target address is passed in ECX.
    - On ARM the target address is passed in R0.
    - On AArch64 the target address is passed in X15.
"``cc <n>``" - Numbered convention
    Any calling convention may be specified by number, allowing
    target-specific calling conventions to be used. Target specific
    calling conventions start at 64.

More calling conventions can be added/defined on an as-needed basis, to
support Pascal conventions or any other well-known target-independent
convention.

.. _visibilitystyles:

Visibility Styles
-----------------

All Global Variables and Functions have one of the following visibility
styles:

"``default``" - Default style
    On targets that use the ELF object file format, default visibility
    means that the declaration is visible to other modules and, in
    shared libraries, means that the declared entity may be overridden.
    On Darwin, default visibility means that the declaration is visible
    to other modules. Default visibility corresponds to "external
    linkage" in the language.
"``hidden``" - Hidden style
    Two declarations of an object with hidden visibility refer to the
    same object if they are in the same shared object. Usually, hidden
    visibility indicates that the symbol will not be placed into the
    dynamic symbol table, so no other module (executable or shared
    library) can reference it directly.
"``protected``" - Protected style
    On ELF, protected visibility indicates that the symbol will be
    placed in the dynamic symbol table, but that references within the
    defining module will bind to the local symbol. That is, the symbol
    cannot be overridden by another module.

A symbol with ``internal`` or ``private`` linkage must have ``default``
visibility.

.. _dllstorageclass:

DLL Storage Classes
-------------------

All Global Variables, Functions and Aliases can have one of the following
DLL storage class:

``dllimport``
    "``dllimport``" causes the compiler to reference a function or variable via
    a global pointer to a pointer that is set up by the DLL exporting the
    symbol. On Microsoft Windows targets, the pointer name is formed by
    combining ``__imp_`` and the function or variable name.
``dllexport``
    "``dllexport``" causes the compiler to provide a global pointer to a pointer
    in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
    Microsoft Windows targets, the pointer name is formed by combining
    ``__imp_`` and the function or variable name. Since this storage class
    exists for defining a dll interface, the compiler, assembler and linker know
    it is externally referenced and must refrain from deleting the symbol.

.. _tls_model:

Thread Local Storage Models
---------------------------

A variable may be defined as ``thread_local``, which means that it will
not be shared by threads (each thread will have a separated copy of the
variable). Not all targets support thread-local variables. Optionally, a
TLS model may be specified:

``localdynamic``
    For variables that are only used within the current shared library.
``initialexec``
    For variables in modules that will not be loaded dynamically.
``localexec``
    For variables defined in the executable and only used within it.

If no explicit model is given, the "general dynamic" model is used.

The models correspond to the ELF TLS models; see `ELF Handling For
Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
more information on under which circumstances the different models may
be used. The target may choose a different TLS model if the specified
model is not supported, or if a better choice of model can be made.

A model can also be specified in an alias, but then it only governs how
the alias is accessed. It will not have any effect in the aliasee.

For platforms without linker support of ELF TLS model, the -femulated-tls
flag can be used to generate GCC compatible emulated TLS code.

.. _runtime_preemption_model:

Runtime Preemption Specifiers
-----------------------------

Global variables, functions and aliases may have an optional runtime preemption
specifier. If a preemption specifier isn't given explicitly, then a
symbol is assumed to be ``dso_preemptable``.

``dso_preemptable``
    Indicates that the function or variable may be replaced by a symbol from
    outside the linkage unit at runtime.

``dso_local``
    The compiler may assume that a function or variable marked as ``dso_local``
    will resolve to a symbol within the same linkage unit. Direct access will
    be generated even if the definition is not within this compilation unit.

.. _namedtypes:

Structure Types
---------------

LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
types <t_struct>`. Literal types are uniqued structurally, but identified types
are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
to forward declare a type that is not yet available.

An example of an identified structure specification is:

.. code-block:: llvm

    %mytype = type { %mytype*, i32 }

Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
literal types are uniqued in recent versions of LLVM.

.. _nointptrtype:

Non-Integral Pointer Type
-------------------------

Note: non-integral pointer types are a work in progress, and they should be
considered experimental at this time.

LLVM IR optionally allows the frontend to denote pointers in certain address
spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
Non-integral pointer types represent pointers that have an *unspecified* bitwise
representation; that is, the integral representation may be target dependent or
unstable (not backed by a fixed integer).

``inttoptr`` instructions converting integers to non-integral pointer types are
ill-typed, and so are ``ptrtoint`` instructions converting values of
non-integral pointer types to integers.  Vector versions of said instructions
are ill-typed as well.

.. _globalvars:

Global Variables
----------------

Global variables define regions of memory allocated at compilation time
instead of run-time.

Global variable definitions must be initialized.

Global variables in other translation units can also be declared, in which
case they don't have an initializer.

Either global variable definitions or declarations may have an explicit section
to be placed in and may have an optional explicit alignment specified. If there
is a mismatch between the explicit or inferred section information for the
variable declaration and its definition the resulting behavior is undefined.

A variable may be defined as a global ``constant``, which indicates that
the contents of the variable will **never** be modified (enabling better
optimization, allowing the global data to be placed in the read-only
section of an executable, etc). Note that variables that need runtime
initialization cannot be marked ``constant`` as there is a store to the
variable.

LLVM explicitly allows *declarations* of global variables to be marked
constant, even if the final definition of the global is not. This
capability can be used to enable slightly better optimization of the
program, but requires the language definition to guarantee that
optimizations based on the 'constantness' are valid for the translation
units that do not include the definition.

As SSA values, global variables define pointer values that are in scope
(i.e. they dominate) all basic blocks in the program. Global variables
always define a pointer to their "content" type because they describe a
region of memory, and all memory objects in LLVM are accessed through
pointers.

Global variables can be marked with ``unnamed_addr`` which indicates
that the address is not significant, only the content. Constants marked
like this can be merged with other constants if they have the same
initializer. Note that a constant with significant address *can* be
merged with a ``unnamed_addr`` constant, the result being a constant
whose address is significant.

If the ``local_unnamed_addr`` attribute is given, the address is known to
not be significant within the module.

A global variable may be declared to reside in a target-specific
numbered address space. For targets that support them, address spaces
may affect how optimizations are performed and/or what target
instructions are used to access the variable. The default address space
is zero. The address space qualifier must precede any other attributes.

LLVM allows an explicit section to be specified for globals. If the
target supports it, it will emit globals to the section specified.
Additionally, the global can placed in a comdat if the target has the necessary
support.

External declarations may have an explicit section specified. Section
information is retained in LLVM IR for targets that make use of this
information. Attaching section information to an external declaration is an
assertion that its definition is located in the specified section. If the
definition is located in a different section, the behavior is undefined.

By default, global initializers are optimized by assuming that global
variables defined within the module are not modified from their
initial values before the start of the global initializer. This is
true even for variables potentially accessible from outside the
module, including those with external linkage or appearing in
``@llvm.used`` or dllexported variables. This assumption may be suppressed
by marking the variable with ``externally_initialized``.

An explicit alignment may be specified for a global, which must be a
power of 2. If not present, or if the alignment is set to zero, the
alignment of the global is set by the target to whatever it feels
convenient. If an explicit alignment is specified, the global is forced
to have exactly that alignment. Targets and optimizers are not allowed
to over-align the global if the global has an assigned section. In this
case, the extra alignment could be observable: for example, code could
assume that the globals are densely packed in their section and try to
iterate over them as an array, alignment padding would break this
iteration. The maximum alignment is ``1 << 29``.

Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
an optional :ref:`global attributes <glattrs>` and
an optional list of attached :ref:`metadata <metadata>`.

Variables and aliases can have a
:ref:`Thread Local Storage Model <tls_model>`.

:ref:`Scalable vectors <t_vector>` cannot be global variables or members of
structs or arrays because their size is unknown at compile time.

Syntax::

      @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
                         [DLLStorageClass] [ThreadLocal]
                         [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
                         [ExternallyInitialized]
                         <global | constant> <Type> [<InitializerConstant>]
                         [, section "name"] [, comdat [($name)]]
                         [, align <Alignment>] (, !name !N)*

For example, the following defines a global in a numbered address space
with an initializer, section, and alignment:

.. code-block:: llvm

    @G = addrspace(5) constant float 1.0, section "foo", align 4

The following example just declares a global variable

.. code-block:: llvm

   @G = external global i32

The following example defines a thread-local global with the
``initialexec`` TLS model:

.. code-block:: llvm

    @G = thread_local(initialexec) global i32 0, align 4

.. _functionstructure:

Functions
---------

LLVM function definitions consist of the "``define``" keyword, an
optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
specifier <runtime_preemption_model>`,  an optional :ref:`visibility
style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
an optional :ref:`calling convention <callingconv>`,
an optional ``unnamed_addr`` attribute, a return type, an optional
:ref:`parameter attribute <paramattrs>` for the return type, a function
name, a (possibly empty) argument list (each with optional :ref:`parameter
attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
an optional address space, an optional section, an optional alignment,
an optional :ref:`comdat <langref_comdats>`,
an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
an optional :ref:`prologue <prologuedata>`,
an optional :ref:`personality <personalityfn>`,
an optional list of attached :ref:`metadata <metadata>`,
an opening curly brace, a list of basic blocks, and a closing curly brace.

LLVM function declarations consist of the "``declare``" keyword, an
optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
or ``local_unnamed_addr`` attribute, an optional address space, a return type,
an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
empty list of arguments, an optional alignment, an optional :ref:`garbage
collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
:ref:`prologue <prologuedata>`.

A function definition contains a list of basic blocks, forming the CFG (Control
Flow Graph) for the function. Each basic block may optionally start with a label
(giving the basic block a symbol table entry), contains a list of instructions,
and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
function return). If an explicit label name is not provided, a block is assigned
an implicit numbered label, using the next value from the same counter as used
for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
function entry block does not have an explicit label, it will be assigned label
"%0", then the first unnamed temporary in that block will be "%1", etc. If a
numeric label is explicitly specified, it must match the numeric label that
would be used implicitly.

The first basic block in a function is special in two ways: it is
immediately executed on entrance to the function, and it is not allowed
to have predecessor basic blocks (i.e. there can not be any branches to
the entry block of a function). Because the block can have no
predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.

LLVM allows an explicit section to be specified for functions. If the
target supports it, it will emit functions to the section specified.
Additionally, the function can be placed in a COMDAT.

An explicit alignment may be specified for a function. If not present,
or if the alignment is set to zero, the alignment of the function is set
by the target to whatever it feels convenient. If an explicit alignment
is specified, the function is forced to have at least that much
alignment. All alignments must be a power of 2.

If the ``unnamed_addr`` attribute is given, the address is known to not
be significant and two identical functions can be merged.

If the ``local_unnamed_addr`` attribute is given, the address is known to
not be significant within the module.

If an explicit address space is not given, it will default to the program
address space from the :ref:`datalayout string<langref_datalayout>`.

Syntax::

    define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
           [cconv] [ret attrs]
           <ResultType> @<FunctionName> ([argument list])
           [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
           [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
           [prologue Constant] [personality Constant] (!name !N)* { ... }

The argument list is a comma separated sequence of arguments where each
argument is of the following form:

Syntax::

   <type> [parameter Attrs] [name]


.. _langref_aliases:

Aliases
-------

Aliases, unlike function or variables, don't create any new data. They
are just a new symbol and metadata for an existing position.

Aliases have a name and an aliasee that is either a global value or a
constant expression.

Aliases may have an optional :ref:`linkage type <linkage>`, an optional
:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.

Syntax::

    @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>

The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
might not correctly handle dropping a weak symbol that is aliased.

Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
to the same content.

If the ``local_unnamed_addr`` attribute is given, the address is known to
not be significant within the module.

Since aliases are only a second name, some restrictions apply, of which
some can only be checked when producing an object file:

* The expression defining the aliasee must be computable at assembly
  time. Since it is just a name, no relocations can be used.

* No alias in the expression can be weak as the possibility of the
  intermediate alias being overridden cannot be represented in an
  object file.

* No global value in the expression can be a declaration, since that
  would require a relocation, which is not possible.

.. _langref_ifunc:

IFuncs
-------

IFuncs, like as aliases, don't create any new data or func. They are just a new
symbol that dynamic linker resolves at runtime by calling a resolver function.

IFuncs have a name and a resolver that is a function called by dynamic linker
that returns address of another function associated with the name.

IFunc may have an optional :ref:`linkage type <linkage>` and an optional
:ref:`visibility style <visibility>`.

Syntax::

    @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>


.. _langref_comdats:

Comdats
-------

Comdat IR provides access to COFF and ELF object file COMDAT functionality.

Comdats have a name which represents the COMDAT key. All global objects that
specify this key will only end up in the final object file if the linker chooses
that key over some other key. Aliases are placed in the same COMDAT that their
aliasee computes to, if any.

Comdats have a selection kind to provide input on how the linker should
choose between keys in two different object files.

Syntax::

    $<Name> = comdat SelectionKind

The selection kind must be one of the following:

``any``
    The linker may choose any COMDAT key, the choice is arbitrary.
``exactmatch``
    The linker may choose any COMDAT key but the sections must contain the
    same data.
``largest``
    The linker will choose the section containing the largest COMDAT key.
``noduplicates``
    The linker requires that only section with this COMDAT key exist.
``samesize``
    The linker may choose any COMDAT key but the sections must contain the
    same amount of data.

Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
only support ``any`` as a selection kind.

Here is an example of a COMDAT group where a function will only be selected if
the COMDAT key's section is the largest:

.. code-block:: text

   $foo = comdat largest
   @foo = global i32 2, comdat($foo)

   define void @bar() comdat($foo) {
     ret void
   }

As a syntactic sugar the ``$name`` can be omitted if the name is the same as
the global name:

.. code-block:: text

  $foo = comdat any
  @foo = global i32 2, comdat


In a COFF object file, this will create a COMDAT section with selection kind
``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
and another COMDAT section with selection kind
``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
section and contains the contents of the ``@bar`` symbol.

There are some restrictions on the properties of the global object.
It, or an alias to it, must have the same name as the COMDAT group when
targeting COFF.
The contents and size of this object may be used during link-time to determine
which COMDAT groups get selected depending on the selection kind.
Because the name of the object must match the name of the COMDAT group, the
linkage of the global object must not be local; local symbols can get renamed
if a collision occurs in the symbol table.

The combined use of COMDATS and section attributes may yield surprising results.
For example:

.. code-block:: text

   $foo = comdat any
   $bar = comdat any
   @g1 = global i32 42, section "sec", comdat($foo)
   @g2 = global i32 42, section "sec", comdat($bar)

From the object file perspective, this requires the creation of two sections
with the same name. This is necessary because both globals belong to different
COMDAT groups and COMDATs, at the object file level, are represented by
sections.

Note that certain IR constructs like global variables and functions may
create COMDATs in the object file in addition to any which are specified using
COMDAT IR. This arises when the code generator is configured to emit globals
in individual sections (e.g. when `-data-sections` or `-function-sections`
is supplied to `llc`).

.. _namedmetadatastructure:

Named Metadata
--------------

Named metadata is a collection of metadata. :ref:`Metadata
nodes <metadata>` (but not metadata strings) are the only valid
operands for a named metadata.

#. Named metadata are represented as a string of characters with the
   metadata prefix. The rules for metadata names are the same as for
   identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
   are still valid, which allows any character to be part of a name.

Syntax::

    ; Some unnamed metadata nodes, which are referenced by the named metadata.
    !0 = !{!"zero"}
    !1 = !{!"one"}
    !2 = !{!"two"}
    ; A named metadata.
    !name = !{!0, !1, !2}

.. _paramattrs:

Parameter Attributes
--------------------

The return type and each parameter of a function type may have a set of
*parameter attributes* associated with them. Parameter attributes are
used to communicate additional information about the result or
parameters of a function. Parameter attributes are considered to be part
of the function, not of the function type, so functions with different
parameter attributes can have the same function type.

Parameter attributes are simple keywords that follow the type specified.
If multiple parameter attributes are needed, they are space separated.
For example:

.. code-block:: llvm

    declare i32 @printf(i8* noalias nocapture, ...)
    declare i32 @atoi(i8 zeroext)
    declare signext i8 @returns_signed_char()

Note that any attributes for the function result (``nounwind``,
``readonly``) come immediately after the argument list.

Currently, only the following parameter attributes are defined:

``zeroext``
    This indicates to the code generator that the parameter or return
    value should be zero-extended to the extent required by the target's
    ABI by the caller (for a parameter) or the callee (for a return value).
``signext``
    This indicates to the code generator that the parameter or return
    value should be sign-extended to the extent required by the target's
    ABI (which is usually 32-bits) by the caller (for a parameter) or
    the callee (for a return value).
``inreg``
    This indicates that this parameter or return value should be treated
    in a special target-dependent fashion while emitting code for
    a function call or return (usually, by putting it in a register as
    opposed to memory, though some targets use it to distinguish between
    two different kinds of registers). Use of this attribute is
    target-specific.
``byval`` or ``byval(<ty>)``
    This indicates that the pointer parameter should really be passed by
    value to the function. The attribute implies that a hidden copy of
    the pointee is made between the caller and the callee, so the callee
    is unable to modify the value in the caller. This attribute is only
    valid on LLVM pointer arguments. It is generally used to pass
    structs and arrays by value, but is also valid on pointers to
    scalars. The copy is considered to belong to the caller not the
    callee (for example, ``readonly`` functions should not write to
    ``byval`` parameters). This is not a valid attribute for return
    values.

    The byval attribute also supports an optional type argument, which must be
    the same as the pointee type of the argument.

    The byval attribute also supports specifying an alignment with the
    align attribute. It indicates the alignment of the stack slot to
    form and the known alignment of the pointer specified to the call
    site. If the alignment is not specified, then the code generator
    makes a target-specific assumption.

.. _attr_inalloca:

``inalloca``

    The ``inalloca`` argument attribute allows the caller to take the
    address of outgoing stack arguments. An ``inalloca`` argument must
    be a pointer to stack memory produced by an ``alloca`` instruction.
    The alloca, or argument allocation, must also be tagged with the
    inalloca keyword. Only the last argument may have the ``inalloca``
    attribute, and that argument is guaranteed to be passed in memory.

    An argument allocation may be used by a call at most once because
    the call may deallocate it. The ``inalloca`` attribute cannot be
    used in conjunction with other attributes that affect argument
    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
    ``inalloca`` attribute also disables LLVM's implicit lowering of
    large aggregate return values, which means that frontend authors
    must lower them with ``sret`` pointers.

    When the call site is reached, the argument allocation must have
    been the most recent stack allocation that is still live, or the
    behavior is undefined. It is possible to allocate additional stack
    space after an argument allocation and before its call site, but it
    must be cleared off with :ref:`llvm.stackrestore
    <int_stackrestore>`.

    See :doc:`InAlloca` for more information on how to use this
    attribute.

``sret``
    This indicates that the pointer parameter specifies the address of a
    structure that is the return value of the function in the source
    program. This pointer must be guaranteed by the caller to be valid:
    loads and stores to the structure may be assumed by the callee not
    to trap and to be properly aligned. This is not a valid attribute
    for return values.

.. _attr_align:

``align <n>``
    This indicates that the pointer value may be assumed by the optimizer to
    have the specified alignment.  If the pointer value does not have the
    specified alignment, behavior is undefined.

    Note that this attribute has additional semantics when combined with the
    ``byval`` attribute, which are documented there.

.. _noalias:

``noalias``
    This indicates that objects accessed via pointer values
    :ref:`based <pointeraliasing>` on the argument or return value are not also
    accessed, during the execution of the function, via pointer values not
    *based* on the argument or return value. The attribute on a return value
    also has additional semantics described below. The caller shares the
    responsibility with the callee for ensuring that these requirements are met.
    For further details, please see the discussion of the NoAlias response in
    :ref:`alias analysis <Must, May, or No>`.

    Note that this definition of ``noalias`` is intentionally similar
    to the definition of ``restrict`` in C99 for function arguments.

    For function return values, C99's ``restrict`` is not meaningful,
    while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
    attribute on return values are stronger than the semantics of the attribute
    when used on function arguments. On function return values, the ``noalias``
    attribute indicates that the function acts like a system memory allocation
    function, returning a pointer to allocated storage disjoint from the
    storage for any other object accessible to the caller.

``nocapture``
    This indicates that the callee does not make any copies of the
    pointer that outlive the callee itself. This is not a valid
    attribute for return values.  Addresses used in volatile operations
    are considered to be captured.

.. _nest:

``nest``
    This indicates that the pointer parameter can be excised using the
    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
    attribute for return values and can only be applied to one parameter.

``returned``
    This indicates that the function always returns the argument as its return
    value. This is a hint to the optimizer and code generator used when
    generating the caller, allowing value propagation, tail call optimization,
    and omission of register saves and restores in some cases; it is not
    checked or enforced when generating the callee. The parameter and the
    function return type must be valid operands for the
    :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
    return values and can only be applied to one parameter.

``nonnull``
    This indicates that the parameter or return pointer is not null. This
    attribute may only be applied to pointer typed parameters. This is not
    checked or enforced by LLVM; if the parameter or return pointer is null,
    the behavior is undefined.

``dereferenceable(<n>)``
    This indicates that the parameter or return pointer is dereferenceable. This
    attribute may only be applied to pointer typed parameters. A pointer that
    is dereferenceable can be loaded from speculatively without a risk of
    trapping. The number of bytes known to be dereferenceable must be provided
    in parentheses. It is legal for the number of bytes to be less than the
    size of the pointee type. The ``nonnull`` attribute does not imply
    dereferenceability (consider a pointer to one element past the end of an
    array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
    ``addrspace(0)`` (which is the default address space).

``dereferenceable_or_null(<n>)``
    This indicates that the parameter or return value isn't both
    non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
    time. All non-null pointers tagged with
    ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
    For address space 0 ``dereferenceable_or_null(<n>)`` implies that
    a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
    and in other address spaces ``dereferenceable_or_null(<n>)``
    implies that a pointer is at least one of ``dereferenceable(<n>)``
    or ``null`` (i.e. it may be both ``null`` and
    ``dereferenceable(<n>)``). This attribute may only be applied to
    pointer typed parameters.

``swiftself``
    This indicates that the parameter is the self/context parameter. This is not
    a valid attribute for return values and can only be applied to one
    parameter.

``swifterror``
    This attribute is motivated to model and optimize Swift error handling. It
    can be applied to a parameter with pointer to pointer type or a
    pointer-sized alloca. At the call site, the actual argument that corresponds
    to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
    the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
    the parameter or the alloca) can only be loaded and stored from, or used as
    a ``swifterror`` argument. This is not a valid attribute for return values
    and can only be applied to one parameter.

    These constraints allow the calling convention to optimize access to
    ``swifterror`` variables by associating them with a specific register at
    call boundaries rather than placing them in memory. Since this does change
    the calling convention, a function which uses the ``swifterror`` attribute
    on a parameter is not ABI-compatible with one which does not.

    These constraints also allow LLVM to assume that a ``swifterror`` argument
    does not alias any other memory visible within a function and that a
    ``swifterror`` alloca passed as an argument does not escape.

``immarg``
    This indicates the parameter is required to be an immediate
    value. This must be a trivial immediate integer or floating-point
    constant. Undef or constant expressions are not valid. This is
    only valid on intrinsic declarations and cannot be applied to a
    call site or arbitrary function.

.. _gc:

Garbage Collector Strategy Names
--------------------------------

Each function may specify a garbage collector strategy name, which is simply a
string:

.. code-block:: llvm

    define void @f() gc "name" { ... }

The supported values of *name* includes those :ref:`built in to LLVM
<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
strategy will cause the compiler to alter its output in order to support the
named garbage collection algorithm. Note that LLVM itself does not contain a
garbage collector, this functionality is restricted to generating machine code
which can interoperate with a collector provided externally.

.. _prefixdata:

Prefix Data
-----------

Prefix data is data associated with a function which the code
generator will emit immediately before the function's entrypoint.
The purpose of this feature is to allow frontends to associate
language-specific runtime metadata with specific functions and make it
available through the function pointer while still allowing the
function pointer to be called.

To access the data for a given function, a program may bitcast the
function pointer to a pointer to the constant's type and dereference
index -1. This implies that the IR symbol points just past the end of
the prefix data. For instance, take the example of a function annotated
with a single ``i32``,

.. code-block:: llvm

    define void @f() prefix i32 123 { ... }

The prefix data can be referenced as,

.. code-block:: llvm

    %0 = bitcast void* () @f to i32*
    %a = getelementptr inbounds i32, i32* %0, i32 -1
    %b = load i32, i32* %a

Prefix data is laid out as if it were an initializer for a global variable
of the prefix data's type. The function will be placed such that the
beginning of the prefix data is aligned. This means that if the size
of the prefix data is not a multiple of the alignment size, the
function's entrypoint will not be aligned. If alignment of the
function's entrypoint is desired, padding must be added to the prefix
data.

A function may have prefix data but no body. This has similar semantics
to the ``available_externally`` linkage in that the data may be used by the
optimizers but will not be emitted in the object file.

.. _prologuedata:

Prologue Data
-------------

The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
be inserted prior to the function body. This can be used for enabling
function hot-patching and instrumentation.

To maintain the semantics of ordinary function calls, the prologue data must
have a particular format. Specifically, it must begin with a sequence of
bytes which decode to a sequence of machine instructions, valid for the
module's target, which transfer control to the point immediately succeeding
the prologue data, without performing any other visible action. This allows
the inliner and other passes to reason about the semantics of the function
definition without needing to reason about the prologue data. Obviously this
makes the format of the prologue data highly target dependent.

A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
which encodes the ``nop`` instruction:

.. code-block:: text

    define void @f() prologue i8 144 { ... }

Generally prologue data can be formed by encoding a relative branch instruction
which skips the metadata, as in this example of valid prologue data for the
x86_64 architecture, where the first two bytes encode ``jmp .+10``:

.. code-block:: text

    %0 = type <{ i8, i8, i8* }>

    define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }

A function may have prologue data but no body. This has similar semantics
to the ``available_externally`` linkage in that the data may be used by the
optimizers but will not be emitted in the object file.

.. _personalityfn:

Personality Function
--------------------

The ``personality`` attribute permits functions to specify what function
to use for exception handling.

.. _attrgrp:

Attribute Groups
----------------

Attribute groups are groups of attributes that are referenced by objects within
the IR. They are important for keeping ``.ll`` files readable, because a lot of
functions will use the same set of attributes. In the degenerative case of a
``.ll`` file that corresponds to a single ``.c`` file, the single attribute
group will capture the important command line flags used to build that file.

An attribute group is a module-level object. To use an attribute group, an
object references the attribute group's ID (e.g. ``#37``). An object may refer
to more than one attribute group. In that situation, the attributes from the
different groups are merged.

Here is an example of attribute groups for a function that should always be
inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:

.. code-block:: llvm

   ; Target-independent attributes:
   attributes #0 = { alwaysinline alignstack=4 }

   ; Target-dependent attributes:
   attributes #1 = { "no-sse" }

   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
   define void @f() #0 #1 { ... }

.. _fnattrs:

Function Attributes
-------------------

Function attributes are set to communicate additional information about
a function. Function attributes are considered to be part of the
function, not of the function type, so functions with different function
attributes can have the same function type.

Function attributes are simple keywords that follow the type specified.
If multiple attributes are needed, they are space separated. For
example:

.. code-block:: llvm

    define void @f() noinline { ... }
    define void @f() alwaysinline { ... }
    define void @f() alwaysinline optsize { ... }
    define void @f() optsize { ... }

``alignstack(<n>)``
    This attribute indicates that, when emitting the prologue and
    epilogue, the backend should forcibly align the stack pointer.
    Specify the desired alignment, which must be a power of two, in
    parentheses.
``allocsize(<EltSizeParam>[, <NumEltsParam>])``
    This attribute indicates that the annotated function will always return at
    least a given number of bytes (or null). Its arguments are zero-indexed
    parameter numbers; if one argument is provided, then it's assumed that at
    least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
    returned pointer. If two are provided, then it's assumed that
    ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
    available. The referenced parameters must be integer types. No assumptions
    are made about the contents of the returned block of memory.
``alwaysinline``
    This attribute indicates that the inliner should attempt to inline
    this function into callers whenever possible, ignoring any active
    inlining size threshold for this caller.
``builtin``
    This indicates that the callee function at a call site should be
    recognized as a built-in function, even though the function's declaration
    uses the ``nobuiltin`` attribute. This is only valid at call sites for
    direct calls to functions that are declared with the ``nobuiltin``
    attribute.
``cold``
    This attribute indicates that this function is rarely called. When
    computing edge weights, basic blocks post-dominated by a cold
    function call are also considered to be cold; and, thus, given low
    weight.
``convergent``
    In some parallel execution models, there exist operations that cannot be
    made control-dependent on any additional values.  We call such operations
    ``convergent``, and mark them with this attribute.

    The ``convergent`` attribute may appear on functions or call/invoke
    instructions.  When it appears on a function, it indicates that calls to
    this function should not be made control-dependent on additional values.
    For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
    calls to this intrinsic cannot be made control-dependent on additional
    values.

    When it appears on a call/invoke, the ``convergent`` attribute indicates
    that we should treat the call as though we're calling a convergent
    function.  This is particularly useful on indirect calls; without this we
    may treat such calls as though the target is non-convergent.

    The optimizer may remove the ``convergent`` attribute on functions when it
    can prove that the function does not execute any convergent operations.
    Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
    can prove that the call/invoke cannot call a convergent function.
``inaccessiblememonly``
    This attribute indicates that the function may only access memory that
    is not accessible by the module being compiled. This is a weaker form
    of ``readnone``. If the function reads or writes other memory, the
    behavior is undefined.
``inaccessiblemem_or_argmemonly``
    This attribute indicates that the function may only access memory that is
    either not accessible by the module being compiled, or is pointed to
    by its pointer arguments. This is a weaker form of  ``argmemonly``. If the
    function reads or writes other memory, the behavior is undefined.
``inlinehint``
    This attribute indicates that the source code contained a hint that
    inlining this function is desirable (such as the "inline" keyword in
    C/C++). It is just a hint; it imposes no requirements on the
    inliner.
``jumptable``
    This attribute indicates that the function should be added to a
    jump-instruction table at code-generation time, and that all address-taken
    references to this function should be replaced with a reference to the
    appropriate jump-instruction-table function pointer. Note that this creates
    a new pointer for the original function, which means that code that depends
    on function-pointer identity can break. So, any function annotated with
    ``jumptable`` must also be ``unnamed_addr``.
``minsize``
    This attribute suggests that optimization passes and code generator
    passes make choices that keep the code size of this function as small
    as possible and perform optimizations that may sacrifice runtime
    performance in order to minimize the size of the generated code.
``naked``
    This attribute disables prologue / epilogue emission for the
    function. This can have very system-specific consequences.
``no-jump-tables``
    When this attribute is set to true, the jump tables and lookup tables that
    can be generated from a switch case lowering are disabled.
``nobuiltin``
    This indicates that the callee function at a call site is not recognized as
    a built-in function. LLVM will retain the original call and not replace it
    with equivalent code based on the semantics of the built-in function, unless
    the call site uses the ``builtin`` attribute. This is valid at call sites
    and on function declarations and definitions.
``noduplicate``
    This attribute indicates that calls to the function cannot be
    duplicated. A call to a ``noduplicate`` function may be moved
    within its parent function, but may not be duplicated within
    its parent function.

    A function containing a ``noduplicate`` call may still
    be an inlining candidate, provided that the call is not
    duplicated by inlining. That implies that the function has
    internal linkage and only has one call site, so the original
    call is dead after inlining.
``nofree``
    This function attribute indicates that the function does not, directly or
    indirectly, call a memory-deallocation function (free, for example). As a
    result, uncaptured pointers that are known to be dereferenceable prior to a
    call to a function with the ``nofree`` attribute are still known to be
    dereferenceable after the call (the capturing condition is necessary in
    environments where the function might communicate the pointer to another thread
    which then deallocates the memory).
``noimplicitfloat``
    This attributes disables implicit floating-point instructions.
``noinline``
    This attribute indicates that the inliner should never inline this
    function in any situation. This attribute may not be used together
    with the ``alwaysinline`` attribute.
``nonlazybind``
    This attribute suppresses lazy symbol binding for the function. This
    may make calls to the function faster, at the cost of extra program
    startup time if the function is not called during program startup.
``noredzone``
    This attribute indicates that the code generator should not use a
    red zone, even if the target-specific ABI normally permits it.
``indirect-tls-seg-refs``
    This attribute indicates that the code generator should not use
    direct TLS access through segment registers, even if the
    target-specific ABI normally permits it.
``noreturn``
    This function attribute indicates that the function never returns
    normally, hence through a return instruction. This produces undefined
    behavior at runtime if the function ever does dynamically return. Annotated
    functions may still raise an exception, i.a., ``nounwind`` is not implied.
``norecurse``
    This function attribute indicates that the function does not call itself
    either directly or indirectly down any possible call path. This produces
    undefined behavior at runtime if the function ever does recurse.
``willreturn``
    This function attribute indicates that a call of this function will
    either exhibit undefined behavior or comes back and continues execution
    at a point in the existing call stack that includes the current invocation.
    Annotated functions may still raise an exception, i.a., ``nounwind`` is not implied.
    If an invocation of an annotated function does not return control back
    to a point in the call stack, the behavior is undefined.
``nosync``
    This function attribute indicates that the function does not communicate
    (synchronize) with another thread through memory or other well-defined means.
    Synchronization is considered possible in the presence of `atomic` accesses
    that enforce an order, thus not "unordered" and "monotonic", `volatile` accesses,
    as well as `convergent` function calls. Note that through `convergent` function calls
    non-memory communication, e.g., cross-lane operations, are possible and are also
    considered synchronization. However `convergent` does not contradict `nosync`.
    If an annotated function does ever synchronize with another thread,
    the behavior is undefined.
``nounwind``
    This function attribute indicates that the function never raises an
    exception. If the function does raise an exception, its runtime
    behavior is undefined. However, functions marked nounwind may still
    trap or generate asynchronous exceptions. Exception handling schemes
    that are recognized by LLVM to handle asynchronous exceptions, such
    as SEH, will still provide their implementation defined semantics.
``"null-pointer-is-valid"``
   If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
   in address-space 0 is considered to be a valid address for memory loads and
   stores. Any analysis or optimization should not treat dereferencing a
   pointer to ``null`` as undefined behavior in this function.
   Note: Comparing address of a global variable to ``null`` may still
   evaluate to false because of a limitation in querying this attribute inside
   constant expressions.
``optforfuzzing``
    This attribute indicates that this function should be optimized
    for maximum fuzzing signal.
``optnone``
    This function attribute indicates that most optimization passes will skip
    this function, with the exception of interprocedural optimization passes.
    Code generation defaults to the "fast" instruction selector.
    This attribute cannot be used together with the ``alwaysinline``
    attribute; this attribute is also incompatible
    with the ``minsize`` attribute and the ``optsize`` attribute.

    This attribute requires the ``noinline`` attribute to be specified on
    the function as well, so the function is never inlined into any caller.
    Only functions with the ``alwaysinline`` attribute are valid
    candidates for inlining into the body of this function.
``optsize``
    This attribute suggests that optimization passes and code generator
    passes make choices that keep the code size of this function low,
    and otherwise do optimizations specifically to reduce code size as
    long as they do not significantly impact runtime performance.
``"patchable-function"``
    This attribute tells the code generator that the code
    generated for this function needs to follow certain conventions that
    make it possible for a runtime function to patch over it later.
    The exact effect of this attribute depends on its string value,
    for which there currently is one legal possibility:

     * ``"prologue-short-redirect"`` - This style of patchable
       function is intended to support patching a function prologue to
       redirect control away from the function in a thread safe
       manner.  It guarantees that the first instruction of the
       function will be large enough to accommodate a short jump
       instruction, and will be sufficiently aligned to allow being
       fully changed via an atomic compare-and-swap instruction.
       While the first requirement can be satisfied by inserting large
       enough NOP, LLVM can and will try to re-purpose an existing
       instruction (i.e. one that would have to be emitted anyway) as
       the patchable instruction larger than a short jump.

       ``"prologue-short-redirect"`` is currently only supported on
       x86-64.

    This attribute by itself does not imply restrictions on
    inter-procedural optimizations.  All of the semantic effects the
    patching may have to be separately conveyed via the linkage type.
``"probe-stack"``
    This attribute indicates that the function will trigger a guard region
    in the end of the stack. It ensures that accesses to the stack must be
    no further apart than the size of the guard region to a previous
    access of the stack. It takes one required string value, the name of
    the stack probing function that will be called.

    If a function that has a ``"probe-stack"`` attribute is inlined into
    a function with another ``"probe-stack"`` attribute, the resulting
    function has the ``"probe-stack"`` attribute of the caller. If a
    function that has a ``"probe-stack"`` attribute is inlined into a
    function that has no ``"probe-stack"`` attribute at all, the resulting
    function has the ``"probe-stack"`` attribute of the callee.
``readnone``
    On a function, this attribute indicates that the function computes its
    result (or decides to unwind an exception) based strictly on its arguments,
    without dereferencing any pointer arguments or otherwise accessing
    any mutable state (e.g. memory, control registers, etc) visible to
    caller functions. It does not write through any pointer arguments
    (including ``byval`` arguments) and never changes any state visible
    to callers. This means while it cannot unwind exceptions by calling
    the ``C++`` exception throwing methods (since they write to memory), there may
    be non-``C++`` mechanisms that throw exceptions without writing to LLVM
    visible memory.

    On an argument, this attribute indicates that the function does not
    dereference that pointer argument, even though it may read or write the
    memory that the pointer points to if accessed through other pointers.

    If a readnone function reads or writes memory visible to the program, or
    has other side-effects, the behavior is undefined. If a function reads from
    or writes to a readnone pointer argument, the behavior is undefined.
``readonly``
    On a function, this attribute indicates that the function does not write
    through any pointer arguments (including ``byval`` arguments) or otherwise
    modify any state (e.g. memory, control registers, etc) visible to
    caller functions. It may dereference pointer arguments and read
    state that may be set in the caller. A readonly function always
    returns the same value (or unwinds an exception identically) when
    called with the same set of arguments and global state.  This means while it
    cannot unwind exceptions by calling the ``C++`` exception throwing methods
    (since they write to memory), there may be non-``C++`` mechanisms that throw
    exceptions without writing to LLVM visible memory.

    On an argument, this attribute indicates that the function does not write
    through this pointer argument, even though it may write to the memory that
    the pointer points to.

    If a readonly function writes memory visible to the program, or
    has other side-effects, the behavior is undefined. If a function writes to
    a readonly pointer argument, the behavior is undefined.
``"stack-probe-size"``
    This attribute controls the behavior of stack probes: either
    the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
    It defines the size of the guard region. It ensures that if the function
    may use more stack space than the size of the guard region, stack probing
    sequence will be emitted. It takes one required integer value, which
    is 4096 by default.

    If a function that has a ``"stack-probe-size"`` attribute is inlined into
    a function with another ``"stack-probe-size"`` attribute, the resulting
    function has the ``"stack-probe-size"`` attribute that has the lower
    numeric value. If a function that has a ``"stack-probe-size"`` attribute is
    inlined into a function that has no ``"stack-probe-size"`` attribute
    at all, the resulting function has the ``"stack-probe-size"`` attribute
    of the callee.
``"no-stack-arg-probe"``
    This attribute disables ABI-required stack probes, if any.
``writeonly``
    On a function, this attribute indicates that the function may write to but
    does not read from memory.

    On an argument, this attribute indicates that the function may write to but
    does not read through this pointer argument (even though it may read from
    the memory that the pointer points to).

    If a writeonly function reads memory visible to the program, or
    has other side-effects, the behavior is undefined. If a function reads
    from a writeonly pointer argument, the behavior is undefined.
``argmemonly``
    This attribute indicates that the only memory accesses inside function are
    loads and stores from objects pointed to by its pointer-typed arguments,
    with arbitrary offsets. Or in other words, all memory operations in the
    function can refer to memory only using pointers based on its function
    arguments.

    Note that ``argmemonly`` can be used together with ``readonly`` attribute
    in order to specify that function reads only from its arguments.

    If an argmemonly function reads or writes memory other than the pointer
    arguments, or has other side-effects, the behavior is undefined.
``returns_twice``
    This attribute indicates that this function can return twice. The C
    ``setjmp`` is an example of such a function. The compiler disables
    some optimizations (like tail calls) in the caller of these
    functions.
``safestack``
    This attribute indicates that
    `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
    protection is enabled for this function.

    If a function that has a ``safestack`` attribute is inlined into a
    function that doesn't have a ``safestack`` attribute or which has an
    ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
    function will have a ``safestack`` attribute.
``sanitize_address``
    This attribute indicates that AddressSanitizer checks
    (dynamic address safety analysis) are enabled for this function.
``sanitize_memory``
    This attribute indicates that MemorySanitizer checks (dynamic detection
    of accesses to uninitialized memory) are enabled for this function.
``sanitize_thread``
    This attribute indicates that ThreadSanitizer checks
    (dynamic thread safety analysis) are enabled for this function.
``sanitize_hwaddress``
    This attribute indicates that HWAddressSanitizer checks
    (dynamic address safety analysis based on tagged pointers) are enabled for
    this function.
``sanitize_memtag``
    This attribute indicates that MemTagSanitizer checks
    (dynamic address safety analysis based on Armv8 MTE) are enabled for
    this function.
``speculative_load_hardening``
    This attribute indicates that
    `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
    should be enabled for the function body.

    Speculative Load Hardening is a best-effort mitigation against
    information leak attacks that make use of control flow
    miss-speculation - specifically miss-speculation of whether a branch
    is taken or not. Typically vulnerabilities enabling such attacks are
    classified as "Spectre variant #1". Notably, this does not attempt to
    mitigate against miss-speculation of branch target, classified as
    "Spectre variant #2" vulnerabilities.

    When inlining, the attribute is sticky. Inlining a function that carries
    this attribute will cause the caller to gain the attribute. This is intended
    to provide a maximally conservative model where the code in a function
    annotated with this attribute will always (even after inlining) end up
    hardened.
``speculatable``
    This function attribute indicates that the function does not have any
    effects besides calculating its result and does not have undefined behavior.
    Note that ``speculatable`` is not enough to conclude that along any
    particular execution path the number of calls to this function will not be
    externally observable. This attribute is only valid on functions
    and declarations, not on individual call sites. If a function is
    incorrectly marked as speculatable and really does exhibit
    undefined behavior, the undefined behavior may be observed even
    if the call site is dead code.

``ssp``
    This attribute indicates that the function should emit a stack
    smashing protector. It is in the form of a "canary" --- a random value
    placed on the stack before the local variables that's checked upon
    return from the function to see if it has been overwritten. A
    heuristic is used to determine if a function needs stack protectors
    or not. The heuristic used will enable protectors for functions with:

    - Character arrays larger than ``ssp-buffer-size`` (default 8).
    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
    - Calls to alloca() with variable sizes or constant sizes greater than
      ``ssp-buffer-size``.

    Variables that are identified as requiring a protector will be arranged
    on the stack such that they are adjacent to the stack protector guard.

    If a function that has an ``ssp`` attribute is inlined into a
    function that doesn't have an ``ssp`` attribute, then the resulting
    function will have an ``ssp`` attribute.
``sspreq``
    This attribute indicates that the function should *always* emit a
    stack smashing protector. This overrides the ``ssp`` function
    attribute.

    Variables that are identified as requiring a protector will be arranged
    on the stack such that they are adjacent to the stack protector guard.
    The specific layout rules are:

    #. Large arrays and structures containing large arrays
       (``>= ssp-buffer-size``) are closest to the stack protector.
    #. Small arrays and structures containing small arrays
       (``< ssp-buffer-size``) are 2nd closest to the protector.
    #. Variables that have had their address taken are 3rd closest to the
       protector.

    If a function that has an ``sspreq`` attribute is inlined into a
    function that doesn't have an ``sspreq`` attribute or which has an
    ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
    an ``sspreq`` attribute.
``sspstrong``
    This attribute indicates that the function should emit a stack smashing
    protector. This attribute causes a strong heuristic to be used when
    determining if a function needs stack protectors. The strong heuristic
    will enable protectors for functions with:

    - Arrays of any size and type
    - Aggregates containing an array of any size and type.
    - Calls to alloca().
    - Local variables that have had their address taken.

    Variables that are identified as requiring a protector will be arranged
    on the stack such that they are adjacent to the stack protector guard.
    The specific layout rules are:

    #. Large arrays and structures containing large arrays
       (``>= ssp-buffer-size``) are closest to the stack protector.
    #. Small arrays and structures containing small arrays
       (``< ssp-buffer-size``) are 2nd closest to the protector.
    #. Variables that have had their address taken are 3rd closest to the
       protector.

    This overrides the ``ssp`` function attribute.

    If a function that has an ``sspstrong`` attribute is inlined into a
    function that doesn't have an ``sspstrong`` attribute, then the
    resulting function will have an ``sspstrong`` attribute.
``strictfp``
    This attribute indicates that the function was called from a scope that
    requires strict floating-point semantics.  LLVM will not attempt any
    optimizations that require assumptions about the floating-point rounding
    mode or that might alter the state of floating-point status flags that
    might otherwise be set or cleared by calling this function. LLVM will
    not introduce any new floating-point instructions that may trap.
``"thunk"``
    This attribute indicates that the function will delegate to some other
    function with a tail call. The prototype of a thunk should not be used for
    optimization purposes. The caller is expected to cast the thunk prototype to
    match the thunk target prototype.
``uwtable``
    This attribute indicates that the ABI being targeted requires that
    an unwind table entry be produced for this function even if we can
    show that no exceptions passes by it. This is normally the case for
    the ELF x86-64 abi, but it can be disabled for some compilation
    units.
``nocf_check``
    This attribute indicates that no control-flow check will be performed on
    the attributed entity. It disables -fcf-protection=<> for a specific
    entity to fine grain the HW control flow protection mechanism. The flag
    is target independent and currently appertains to a function or function
    pointer.
``shadowcallstack``
    This attribute indicates that the ShadowCallStack checks are enabled for
    the function. The instrumentation checks that the return address for the
    function has not changed between the function prolog and eiplog. It is
    currently x86_64-specific.

.. _glattrs:

Global Attributes
-----------------

Attributes may be set to communicate additional information about a global variable.
Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
are grouped into a single :ref:`attribute group <attrgrp>`.

.. _opbundles:

Operand Bundles
---------------

Operand bundles are tagged sets of SSA values that can be associated
with certain LLVM instructions (currently only ``call`` s and
``invoke`` s).  In a way they are like metadata, but dropping them is
incorrect and will change program semantics.

Syntax::

    operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
    operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
    bundle operand ::= SSA value
    tag ::= string constant

Operand bundles are **not** part of a function's signature, and a
given function may be called from multiple places with different kinds
of operand bundles.  This reflects the fact that the operand bundles
are conceptually a part of the ``call`` (or ``invoke``), not the
callee being dispatched to.

Operand bundles are a generic mechanism intended to support
runtime-introspection-like functionality for managed languages.  While
the exact semantics of an operand bundle depend on the bundle tag,
there are certain limitations to how much the presence of an operand
bundle can influence the semantics of a program.  These restrictions
are described as the semantics of an "unknown" operand bundle.  As
long as the behavior of an operand bundle is describable within these
restrictions, LLVM does not need to have special knowledge of the
operand bundle to not miscompile programs containing it.

- The bundle operands for an unknown operand bundle escape in unknown
  ways before control is transferred to the callee or invokee.
- Calls and invokes with operand bundles have unknown read / write
  effect on the heap on entry and exit (even if the call target is
  ``readnone`` or ``readonly``), unless they're overridden with
  callsite specific attributes.
- An operand bundle at a call site cannot change the implementation
  of the called function.  Inter-procedural optimizations work as
  usual as long as they take into account the first two properties.

More specific types of operand bundles are described below.

.. _deopt_opbundles:

Deoptimization Operand Bundles
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Deoptimization operand bundles are characterized by the ``"deopt"``
operand bundle tag.  These operand bundles represent an alternate
"safe" continuation for the call site they're attached to, and can be
used by a suitable runtime to deoptimize the compiled frame at the
specified call site.  There can be at most one ``"deopt"`` operand
bundle attached to a call site.  Exact details of deoptimization is
out of scope for the language reference, but it usually involves
rewriting a compiled frame into a set of interpreted frames.

From the compiler's perspective, deoptimization operand bundles make
the call sites they're attached to at least ``readonly``.  They read
through all of their pointer typed operands (even if they're not
otherwise escaped) and the entire visible heap.  Deoptimization
operand bundles do not capture their operands except during
deoptimization, in which case control will not be returned to the
compiled frame.

The inliner knows how to inline through calls that have deoptimization
operand bundles.  Just like inlining through a normal call site
involves composing the normal and exceptional continuations, inlining
through a call site with a deoptimization operand bundle needs to
appropriately compose the "safe" deoptimization continuation.  The
inliner does this by prepending the parent's deoptimization
continuation to every deoptimization continuation in the inlined body.
E.g. inlining ``@f`` into ``@g`` in the following example

.. code-block:: llvm

    define void @f() {
      call void @x()  ;; no deopt state
      call void @y() [ "deopt"(i32 10) ]
      call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
      ret void
    }

    define void @g() {
      call void @f() [ "deopt"(i32 20) ]
      ret void
    }

will result in

.. code-block:: llvm

    define void @g() {
      call void @x()  ;; still no deopt state
      call void @y() [ "deopt"(i32 20, i32 10) ]
      call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
      ret void
    }

It is the frontend's responsibility to structure or encode the
deoptimization state in a way that syntactically prepending the
caller's deoptimization state to the callee's deoptimization state is
semantically equivalent to composing the caller's deoptimization
continuation after the callee's deoptimization continuation.

.. _ob_funclet:

Funclet Operand Bundles
^^^^^^^^^^^^^^^^^^^^^^^

Funclet operand bundles are characterized by the ``"funclet"``
operand bundle tag.  These operand bundles indicate that a call site
is within a particular funclet.  There can be at most one
``"funclet"`` operand bundle attached to a call site and it must have
exactly one bundle operand.

If any funclet EH pads have been "entered" but not "exited" (per the
`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
it is undefined behavior to execute a ``call`` or ``invoke`` which:

* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
  intrinsic, or
* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
  not-yet-exited funclet EH pad.

Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.

GC Transition Operand Bundles
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

GC transition operand bundles are characterized by the
``"gc-transition"`` operand bundle tag. These operand bundles mark a
call as a transition between a function with one GC strategy to a
function with a different GC strategy. If coordinating the transition
between GC strategies requires additional code generation at the call
site, these bundles may contain any values that are needed by the
generated code.  For more details, see :ref:`GC Transitions
<gc_transition_args>`.

.. _moduleasm:

Module-Level Inline Assembly
----------------------------

Modules may contain "module-level inline asm" blocks, which corresponds
to the GCC "file scope inline asm" blocks. These blocks are internally
concatenated by LLVM and treated as a single unit, but may be separated
in the ``.ll`` file if desired. The syntax is very simple:

.. code-block:: llvm

    module asm "inline asm code goes here"
    module asm "more can go here"

The strings can contain any character by escaping non-printable
characters. The escape sequence used is simply "\\xx" where "xx" is the
two digit hex code for the number.

Note that the assembly string *must* be parseable by LLVM's integrated assembler
(unless it is disabled), even when emitting a ``.s`` file.

.. _langref_datalayout:

Data Layout
-----------

A module may specify a target specific data layout string that specifies
how data is to be laid out in memory. The syntax for the data layout is
simply:

.. code-block:: llvm

    target datalayout = "layout specification"

The *layout specification* consists of a list of specifications
separated by the minus sign character ('-'). Each specification starts
with a letter and may include other information after the letter to
define some aspect of the data layout. The specifications accepted are
as follows:

``E``
    Specifies that the target lays out data in big-endian form. That is,
    the bits with the most significance have the lowest address
    location.
``e``
    Specifies that the target lays out data in little-endian form. That
    is, the bits with the least significance have the lowest address
    location.
``S<size>``
    Specifies the natural alignment of the stack in bits. Alignment
    promotion of stack variables is limited to the natural stack
    alignment to avoid dynamic stack realignment. The stack alignment
    must be a multiple of 8-bits. If omitted, the natural stack
    alignment defaults to "unspecified", which does not prevent any
    alignment promotions.
``P<address space>``
    Specifies the address space that corresponds to program memory.
    Harvard architectures can use this to specify what space LLVM
    should place things such as functions into. If omitted, the
    program memory space defaults to the default address space of 0,
    which corresponds to a Von Neumann architecture that has code
    and data in the same space.
``A<address space>``
    Specifies the address space of objects created by '``alloca``'.
    Defaults to the default address space of 0.
``p[n]:<size>:<abi>:<pref>:<idx>``
    This specifies the *size* of a pointer and its ``<abi>`` and
    ``<pref>``\erred alignments for address space ``n``. The fourth parameter
    ``<idx>`` is a size of index that used for address calculation. If not
    specified, the default index size is equal to the pointer size. All sizes
    are in bits. The address space, ``n``, is optional, and if not specified,
    denotes the default address space 0. The value of ``n`` must be
    in the range [1,2^23).
``i<size>:<abi>:<pref>``
    This specifies the alignment for an integer type of a given bit
    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
``v<size>:<abi>:<pref>``
    This specifies the alignment for a vector type of a given bit
    ``<size>``.
``f<size>:<abi>:<pref>``
    This specifies the alignment for a floating-point type of a given bit
    ``<size>``. Only values of ``<size>`` that are supported by the target
    will work. 32 (float) and 64 (double) are supported on all targets; 80
    or 128 (different flavors of long double) are also supported on some
    targets.
``a:<abi>:<pref>``
    This specifies the alignment for an object of aggregate type.
``F<type><abi>``
    This specifies the alignment for function pointers.
    The options for ``<type>`` are:

    * ``i``: The alignment of function pointers is independent of the alignment
      of functions, and is a multiple of ``<abi>``.
    * ``n``: The alignment of function pointers is a multiple of the explicit
      alignment specified on the function, and is a multiple of ``<abi>``.
``m:<mangling>``
    If present, specifies that llvm names are mangled in the output. Symbols
    prefixed with the mangling escape character ``\01`` are passed through
    directly to the assembler without the escape character. The mangling style
    options are

    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
      symbols get a ``_`` prefix.
    * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
      Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
      ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
      ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
      starting with ``?`` are not mangled in any way.
    * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
      symbols do not receive a ``_`` prefix.
``n<size1>:<size2>:<size3>...``
    This specifies a set of native integer widths for the target CPU in
    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
    this set are considered to support most general arithmetic operations
    efficiently.
``ni:<address space0>:<address space1>:<address space2>...``
    This specifies pointer types with the specified address spaces
    as :ref:`Non-Integral Pointer Type <nointptrtype>` s.  The ``0``
    address space cannot be specified as non-integral.

On every specification that takes a ``<abi>:<pref>``, specifying the
``<pref>`` alignment is optional. If omitted, the preceding ``:``
should be omitted too and ``<pref>`` will be equal to ``<abi>``.

When constructing the data layout for a given target, LLVM starts with a
default set of specifications which are then (possibly) overridden by
the specifications in the ``datalayout`` keyword. The default
specifications are given in this list:

-  ``E`` - big endian
-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
   same as the default address space.
-  ``S0`` - natural stack alignment is unspecified
-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
-  ``i8:8:8`` - i8 is 8-bit (byte) aligned
-  ``i16:16:16`` - i16 is 16-bit aligned
-  ``i32:32:32`` - i32 is 32-bit aligned
-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
   alignment of 64-bits
-  ``f16:16:16`` - half is 16-bit aligned
-  ``f32:32:32`` - float is 32-bit aligned
-  ``f64:64:64`` - double is 64-bit aligned
-  ``f128:128:128`` - quad is 128-bit aligned
-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
-  ``a:0:64`` - aggregates are 64-bit aligned

When LLVM is determining the alignment for a given type, it uses the
following rules:

#. If the type sought is an exact match for one of the specifications,
   that specification is used.
#. If no match is found, and the type sought is an integer type, then
   the smallest integer type that is larger than the bitwidth of the
   sought type is used. If none of the specifications are larger than
   the bitwidth then the largest integer type is used. For example,
   given the default specifications above, the i7 type will use the
   alignment of i8 (next largest) while both i65 and i256 will use the
   alignment of i64 (largest specified).
#. If no match is found, and the type sought is a vector type, then the
   largest vector type that is smaller than the sought vector type will
   be used as a fall back. This happens because <128 x double> can be
   implemented in terms of 64 <2 x double>, for example.

The function of the data layout string may not be what you expect.
Notably, this is not a specification from the frontend of what alignment
the code generator should use.

Instead, if specified, the target data layout is required to match what
the ultimate *code generator* expects. This string is used by the
mid-level optimizers to improve code, and this only works if it matches
what the ultimate code generator uses. There is no way to generate IR
that does not embed this target-specific detail into the IR. If you
don't specify the string, the default specifications will be used to
generate a Data Layout and the optimization phases will operate
accordingly and introduce target specificity into the IR with respect to
these default specifications.

.. _langref_triple:

Target Triple
-------------

A module may specify a target triple string that describes the target
host. The syntax for the target triple is simply:

.. code-block:: llvm

    target triple = "x86_64-apple-macosx10.7.0"

The *target triple* string consists of a series of identifiers delimited
by the minus sign character ('-'). The canonical forms are:

::

    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT

This information is passed along to the backend so that it generates
code for the proper architecture. It's possible to override this on the
command line with the ``-mtriple`` command line option.

.. _pointeraliasing:

Pointer Aliasing Rules
----------------------

Any memory access must be done through a pointer value associated with
an address range of the memory access, otherwise the behavior is
undefined. Pointer values are associated with address ranges according
to the following rules:

-  A pointer value is associated with the addresses associated with any
   value it is *based* on.
-  An address of a global variable is associated with the address range
   of the variable's storage.
-  The result value of an allocation instruction is associated with the
   address range of the allocated storage.
-  A null pointer in the default address-space is associated with no
   address.
-  An :ref:`undef value <undefvalues>` in *any* address-space is
   associated with no address.
-  An integer constant other than zero or a pointer value returned from
   a function not defined within LLVM may be associated with address
   ranges allocated through mechanisms other than those provided by
   LLVM. Such ranges shall not overlap with any ranges of addresses
   allocated by mechanisms provided by LLVM.

A pointer value is *based* on another pointer value according to the
following rules:

-  A pointer value formed from a scalar ``getelementptr`` operation is *based* on
   the pointer-typed operand of the ``getelementptr``.
-  The pointer in lane *l* of the result of a vector ``getelementptr`` operation
   is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
   of the ``getelementptr``.
-  The result value of a ``bitcast`` is *based* on the operand of the
   ``bitcast``.
-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
   values that contribute (directly or indirectly) to the computation of
   the pointer's value.
-  The "*based* on" relationship is transitive.

Note that this definition of *"based"* is intentionally similar to the
definition of *"based"* in C99, though it is slightly weaker.

LLVM IR does not associate types with memory. The result type of a
``load`` merely indicates the size and alignment of the memory from
which to load, as well as the interpretation of the value. The first
operand type of a ``store`` similarly only indicates the size and
alignment of the store.

Consequently, type-based alias analysis, aka TBAA, aka
``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
:ref:`Metadata <metadata>` may be used to encode additional information
which specialized optimization passes may use to implement type-based
alias analysis.

.. _volatile:

Volatile Memory Accesses
------------------------

Certain memory accesses, such as :ref:`load <i_load>`'s,
:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
marked ``volatile``. The optimizers must not change the number of
volatile operations or change their order of execution relative to other
volatile operations. The optimizers *may* change the order of volatile
operations relative to non-volatile operations. This is not Java's
"volatile" and has no cross-thread synchronization behavior.

A volatile load or store may have additional target-specific semantics.
Any volatile operation can have side effects, and any volatile operation
can read and/or modify state which is not accessible via a regular load
or store in this module. Volatile operations may use addresses which do
not point to memory (like MMIO registers). This means the compiler may
not use a volatile operation to prove a non-volatile access to that
address has defined behavior.

The allowed side-effects for volatile accesses are limited.  If a
non-volatile store to a given address would be legal, a volatile
operation may modify the memory at that address. A volatile operation
may not modify any other memory accessible by the module being compiled.
A volatile operation may not call any code in the current module.

The compiler may assume execution will continue after a volatile operation,
so operations which modify memory or may have undefined behavior can be
hoisted past a volatile operation.

IR-level volatile loads and stores cannot safely be optimized into
llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
flagged volatile. Likewise, the backend should never split or merge
target-legal volatile load/store instructions.

.. admonition:: Rationale

 Platforms may rely on volatile loads and stores of natively supported
 data width to be executed as single instruction. For example, in C
 this holds for an l-value of volatile primitive type with native
 hardware support, but not necessarily for aggregate types. The
 frontend upholds these expectations, which are intentionally
 unspecified in the IR. The rules above ensure that IR transformations
 do not violate the frontend's contract with the language.

.. _memmodel:

Memory Model for Concurrent Operations
--------------------------------------

The LLVM IR does not define any way to start parallel threads of
execution or to register signal handlers. Nonetheless, there are
platform-specific ways to create them, and we define LLVM IR's behavior
in their presence. This model is inspired by the C++0x memory model.

For a more informal introduction to this model, see the :doc:`Atomics`.

We define a *happens-before* partial order as the least partial order
that

-  Is a superset of single-thread program order, and
-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
   techniques, like pthread locks, thread creation, thread joining,
   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
   Constraints <ordering>`).

Note that program order does not introduce *happens-before* edges
between a thread and signals executing inside that thread.

Every (defined) read operation (load instructions, memcpy, atomic
loads/read-modify-writes, etc.) R reads a series of bytes written by
(defined) write operations (store instructions, atomic
stores/read-modify-writes, memcpy, etc.). For the purposes of this
section, initialized globals are considered to have a write of the
initializer which is atomic and happens before any other read or write
of the memory in question. For each byte of a read R, R\ :sub:`byte`
may see any write to the same byte, except:

-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
   write\ :sub:`2` happens before R\ :sub:`byte`, then
   R\ :sub:`byte` does not see write\ :sub:`1`.
-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
   R\ :sub:`byte` does not see write\ :sub:`3`.

Given that definition, R\ :sub:`byte` is defined as follows:

-  If R is volatile, the result is target-dependent. (Volatile is
   supposed to give guarantees which can support ``sig_atomic_t`` in
   C/C++, and may be used for accesses to addresses that do not behave
   like normal memory. It does not generally provide cross-thread
   synchronization.)
-  Otherwise, if there is no write to the same byte that happens before
   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
-  Otherwise, if R\ :sub:`byte` may see exactly one write,
   R\ :sub:`byte` returns the value written by that write.
-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
   see are atomic, it chooses one of the values written. See the :ref:`Atomic
   Memory Ordering Constraints <ordering>` section for additional
   constraints on how the choice is made.
-  Otherwise R\ :sub:`byte` returns ``undef``.

R returns the value composed of the series of bytes it read. This
implies that some bytes within the value may be ``undef`` **without**
the entire value being ``undef``. Note that this only defines the
semantics of the operation; it doesn't mean that targets will emit more
than one instruction to read the series of bytes.

Note that in cases where none of the atomic intrinsics are used, this
model places only one restriction on IR transformations on top of what
is required for single-threaded execution: introducing a store to a byte
which might not otherwise be stored is not allowed in general.
(Specifically, in the case where another thread might write to and read
from an address, introducing a store can change a load that may see
exactly one write into a load that may see multiple writes.)

.. _ordering:

Atomic Memory Ordering Constraints
----------------------------------

Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
ordering parameters that determine which other atomic instructions on
the same address they *synchronize with*. These semantics are borrowed
from Java and C++0x, but are somewhat more colloquial. If these
descriptions aren't precise enough, check those specs (see spec
references in the :doc:`atomics guide <Atomics>`).
:ref:`fence <i_fence>` instructions treat these orderings somewhat
differently since they don't take an address. See that instruction's
documentation for details.

For a simpler introduction to the ordering constraints, see the
:doc:`Atomics`.

``unordered``
    The set of values that can be read is governed by the happens-before
    partial order. A value cannot be read unless some operation wrote
    it. This is intended to provide a guarantee strong enough to model
    Java's non-volatile shared variables. This ordering cannot be
    specified for read-modify-write operations; it is not strong enough
    to make them atomic in any interesting way.
``monotonic``
    In addition to the guarantees of ``unordered``, there is a single
    total order for modifications by ``monotonic`` operations on each
    address. All modification orders must be compatible with the
    happens-before order. There is no guarantee that the modification
    orders can be combined to a global total order for the whole program
    (and this often will not be possible). The read in an atomic
    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
    order immediately before the value it writes. If one atomic read
    happens before another atomic read of the same address, the later
    read must see the same value or a later value in the address's
    modification order. This disallows reordering of ``monotonic`` (or
    stronger) operations on the same address. If an address is written
    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
    read that address repeatedly, the other threads must eventually see
    the write. This corresponds to the C++0x/C1x
    ``memory_order_relaxed``.
``acquire``
    In addition to the guarantees of ``monotonic``, a
    *synchronizes-with* edge may be formed with a ``release`` operation.
    This is intended to model C++'s ``memory_order_acquire``.
``release``
    In addition to the guarantees of ``monotonic``, if this operation
    writes a value which is subsequently read by an ``acquire``
    operation, it *synchronizes-with* that operation. (This isn't a
    complete description; see the C++0x definition of a release
    sequence.) This corresponds to the C++0x/C1x
    ``memory_order_release``.
``acq_rel`` (acquire+release)
    Acts as both an ``acquire`` and ``release`` operation on its
    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
``seq_cst`` (sequentially consistent)
    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
    operation that only reads, ``release`` for an operation that only
    writes), there is a global total order on all
    sequentially-consistent operations on all addresses, which is
    consistent with the *happens-before* partial order and with the
    modification orders of all the affected addresses. Each
    sequentially-consistent read sees the last preceding write to the
    same address in this global order. This corresponds to the C++0x/C1x
    ``memory_order_seq_cst`` and Java volatile.

.. _syncscope:

If an atomic operation is marked ``syncscope("singlethread")``, it only
*synchronizes with* and only participates in the seq\_cst total orderings of
other operations running in the same thread (for example, in signal handlers).

If an atomic operation is marked ``syncscope("<target-scope>")``, where
``<target-scope>`` is a target specific synchronization scope, then it is target
dependent if it *synchronizes with* and participates in the seq\_cst total
orderings of other operations.

Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
seq\_cst total orderings of other operations that are not marked
``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.

.. _floatenv:

Floating-Point Environment
--------------------------

The default LLVM floating-point environment assumes that floating-point
instructions do not have side effects. Results assume the round-to-nearest
rounding mode. No floating-point exception state is maintained in this
environment. Therefore, there is no attempt to create or preserve invalid
operation (SNaN) or division-by-zero exceptions.

The benefit of this exception-free assumption is that floating-point
operations may be speculated freely without any other fast-math relaxations
to the floating-point model.

Code that requires different behavior than this should use the
:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.

.. _fastmath:

Fast-Math Flags
---------------

LLVM IR floating-point operations (:ref:`fneg <i_fneg>`, :ref:`fadd <i_fadd>`,
:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`), :ref:`phi <i_phi>`,
:ref:`select <i_select>` and :ref:`call <i_call>`
may use the following flags to enable otherwise unsafe
floating-point transformations.

``nnan``
   No NaNs - Allow optimizations to assume the arguments and result are not
   NaN. If an argument is a nan, or the result would be a nan, it produces
   a :ref:`poison value <poisonvalues>` instead.

``ninf``
   No Infs - Allow optimizations to assume the arguments and result are not
   +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
   produces a :ref:`poison value <poisonvalues>` instead.

``nsz``
   No Signed Zeros - Allow optimizations to treat the sign of a zero
   argument or result as insignificant.

``arcp``
   Allow Reciprocal - Allow optimizations to use the reciprocal of an
   argument rather than perform division.

``contract``
   Allow floating-point contraction (e.g. fusing a multiply followed by an
   addition into a fused multiply-and-add).

``afn``
   Approximate functions - Allow substitution of approximate calculations for
   functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
   for places where this can apply to LLVM's intrinsic math functions.

``reassoc``
   Allow reassociation transformations for floating-point instructions.
   This may dramatically change results in floating-point.

``fast``
   This flag implies all of the others.

.. _uselistorder:

Use-list Order Directives
-------------------------

Use-list directives encode the in-memory order of each use-list, allowing the
order to be recreated. ``<order-indexes>`` is a comma-separated list of
indexes that are assigned to the referenced value's uses. The referenced
value's use-list is immediately sorted by these indexes.

Use-list directives may appear at function scope or global scope. They are not
instructions, and have no effect on the semantics of the IR. When they're at
function scope, they must appear after the terminator of the final basic block.

If basic blocks have their address taken via ``blockaddress()`` expressions,
``uselistorder_bb`` can be used to reorder their use-lists from outside their
function's scope.

:Syntax:

::

    uselistorder <ty> <value>, { <order-indexes> }
    uselistorder_bb @function, %block { <order-indexes> }

:Examples:

::

    define void @foo(i32 %arg1, i32 %arg2) {
    entry:
      ; ... instructions ...
    bb:
      ; ... instructions ...

      ; At function scope.
      uselistorder i32 %arg1, { 1, 0, 2 }
      uselistorder label %bb, { 1, 0 }
    }

    ; At global scope.
    uselistorder i32* @global, { 1, 2, 0 }
    uselistorder i32 7, { 1, 0 }
    uselistorder i32 (i32) @bar, { 1, 0 }
    uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }

.. _source_filename:

Source Filename
---------------

The *source filename* string is set to the original module identifier,
which will be the name of the compiled source file when compiling from
source through the clang front end, for example. It is then preserved through
the IR and bitcode.

This is currently necessary to generate a consistent unique global
identifier for local functions used in profile data, which prepends the
source file name to the local function name.

The syntax for the source file name is simply:

.. code-block:: text

    source_filename = "/path/to/source.c"

.. _typesystem:

Type System
===========

The LLVM type system is one of the most important features of the
intermediate representation. Being typed enables a number of
optimizations to be performed on the intermediate representation
directly, without having to do extra analyses on the side before the
transformation. A strong type system makes it easier to read the
generated code and enables novel analyses and transformations that are
not feasible to perform on normal three address code representations.

.. _t_void:

Void Type
---------

:Overview:


The void type does not represent any value and has no size.

:Syntax:


::

      void


.. _t_function:

Function Type
-------------

:Overview:


The function type can be thought of as a function signature. It consists of a
return type and a list of formal parameter types. The return type of a function
type is a void type or first class type --- except for :ref:`label <t_label>`
and :ref:`metadata <t_metadata>` types.

:Syntax:

::

      <returntype> (<parameter list>)

...where '``<parameter list>``' is a comma-separated list of type
specifiers. Optionally, the parameter list may include a type ``...``, which
indicates that the function takes a variable number of arguments. Variable
argument functions can access their arguments with the :ref:`variable argument
handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.

:Examples:

+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+

.. _t_firstclass:

First Class Types
-----------------

The :ref:`first class <t_firstclass>` types are perhaps the most important.
Values of these types are the only ones which can be produced by
instructions.

.. _t_single_value:

Single Value Types
^^^^^^^^^^^^^^^^^^

These are the types that are valid in registers from CodeGen's perspective.

.. _t_integer:

Integer Type
""""""""""""

:Overview:

The integer type is a very simple type that simply specifies an
arbitrary bit width for the integer type desired. Any bit width from 1
bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.

:Syntax:

::

      iN

The number of bits the integer will occupy is specified by the ``N``
value.

Examples:
*********

+----------------+------------------------------------------------+
| ``i1``         | a single-bit integer.                          |
+----------------+------------------------------------------------+
| ``i32``        | a 32-bit integer.                              |
+----------------+------------------------------------------------+
| ``i1942652``   | a really big integer of over 1 million bits.   |
+----------------+------------------------------------------------+

.. _t_floating:

Floating-Point Types
""""""""""""""""""""

.. list-table::
   :header-rows: 1

   * - Type
     - Description

   * - ``half``
     - 16-bit floating-point value

   * - ``float``
     - 32-bit floating-point value

   * - ``double``
     - 64-bit floating-point value

   * - ``fp128``
     - 128-bit floating-point value (112-bit mantissa)

   * - ``x86_fp80``
     -  80-bit floating-point value (X87)

   * - ``ppc_fp128``
     - 128-bit floating-point value (two 64-bits)

The binary format of half, float, double, and fp128 correspond to the
IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
respectively.

X86_mmx Type
""""""""""""

:Overview:

The x86_mmx type represents a value held in an MMX register on an x86
machine. The operations allowed on it are quite limited: parameters and
return values, load and store, and bitcast. User-specified MMX
instructions are represented as intrinsic or asm calls with arguments
and/or results of this type. There are no arrays, vectors or constants
of this type.

:Syntax:

::

      x86_mmx


.. _t_pointer:

Pointer Type
""""""""""""

:Overview:

The pointer type is used to specify memory locations. Pointers are
commonly used to reference objects in memory.

Pointer types may have an optional address space attribute defining the
numbered address space where the pointed-to object resides. The default
address space is number zero. The semantics of non-zero address spaces
are target-specific.

Note that LLVM does not permit pointers to void (``void*``) nor does it
permit pointers to labels (``label*``). Use ``i8*`` instead.

:Syntax:

::

      <type> *

:Examples:

+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
+-------------------------+--------------------------------------------------------------------------------------------------------------+
| ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
+-------------------------+--------------------------------------------------------------------------------------------------------------+

.. _t_vector:

Vector Type
"""""""""""

:Overview:

A vector type is a simple derived type that represents a vector of
elements. Vector types are used when multiple primitive data are
operated in parallel using a single instruction (SIMD). A vector type
requires a size (number of elements), an underlying primitive data type,
and a scalable property to represent vectors where the exact hardware
vector length is unknown at compile time. Vector types are considered
:ref:`first class <t_firstclass>`.

:Syntax:

::

      < <# elements> x <elementtype> >          ; Fixed-length vector
      < vscale x <# elements> x <elementtype> > ; Scalable vector

The number of elements is a constant integer value larger than 0;
elementtype may be any integer, floating-point or pointer type. Vectors
of size zero are not allowed. For scalable vectors, the total number of
elements is a constant multiple (called vscale) of the specified number
of elements; vscale is a positive integer that is unknown at compile time
and the same hardware-dependent constant for all scalable vectors at run
time. The size of a specific scalable vector type is thus constant within
IR, even if the exact size in bytes cannot be determined until run time.

:Examples:

+------------------------+----------------------------------------------------+
| ``<4 x i32>``          | Vector of 4 32-bit integer values.                 |
+------------------------+----------------------------------------------------+
| ``<8 x float>``        | Vector of 8 32-bit floating-point values.          |
+------------------------+----------------------------------------------------+
| ``<2 x i64>``          | Vector of 2 64-bit integer values.                 |
+------------------------+----------------------------------------------------+
| ``<4 x i64*>``         | Vector of 4 pointers to 64-bit integer values.     |
+------------------------+----------------------------------------------------+
| ``<vscale x 4 x i32>`` | Vector with a multiple of 4 32-bit integer values. |
+------------------------+----------------------------------------------------+

.. _t_label:

Label Type
^^^^^^^^^^

:Overview:

The label type represents code labels.

:Syntax:

::

      label

.. _t_token:

Token Type
^^^^^^^^^^

:Overview:

The token type is used when a value is associated with an instruction
but all uses of the value must not attempt to introspect or obscure it.
As such, it is not appropriate to have a :ref:`phi <i_phi>` or
:ref:`select <i_select>` of type token.

:Syntax:

::

      token



.. _t_metadata:

Metadata Type
^^^^^^^^^^^^^

:Overview:

The metadata type represents embedded metadata. No derived types may be
created from metadata except for :ref:`function <t_function>` arguments.

:Syntax:

::

      metadata

.. _t_aggregate:

Aggregate Types
^^^^^^^^^^^^^^^

Aggregate Types are a subset of derived types that can contain multiple
member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
aggregate types. :ref:`Vectors <t_vector>` are not considered to be
aggregate types.

.. _t_array:

Array Type
""""""""""

:Overview:

The array type is a very simple derived type that arranges elements
sequentially in memory. The array type requires a size (number of
elements) and an underlying data type.

:Syntax:

::

      [<# elements> x <elementtype>]

The number of elements is a constant integer value; ``elementtype`` may
be any type with a size.

:Examples:

+------------------+--------------------------------------+
| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
+------------------+--------------------------------------+
| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
+------------------+--------------------------------------+
| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
+------------------+--------------------------------------+

Here are some examples of multidimensional arrays:

+-----------------------------+----------------------------------------------------------+
| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
+-----------------------------+----------------------------------------------------------+
| ``[12 x [10 x float]]``     | 12x10 array of single precision floating-point values.   |
+-----------------------------+----------------------------------------------------------+
| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
+-----------------------------+----------------------------------------------------------+

There is no restriction on indexing beyond the end of the array implied
by a static type (though there are restrictions on indexing beyond the
bounds of an allocated object in some cases). This means that
single-dimension 'variable sized array' addressing can be implemented in
LLVM with a zero length array type. An implementation of 'pascal style
arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
example.

.. _t_struct:

Structure Type
""""""""""""""

:Overview:

The structure type is used to represent a collection of data members
together in memory. The elements of a structure may be any type that has
a size.

Structures in memory are accessed using '``load``' and '``store``' by
getting a pointer to a field with the '``getelementptr``' instruction.
Structures in registers are accessed using the '``extractvalue``' and
'``insertvalue``' instructions.

Structures may optionally be "packed" structures, which indicate that
the alignment of the struct is one byte, and that there is no padding
between the elements. In non-packed structs, padding between field types
is inserted as defined by the DataLayout string in the module, which is
required to match what the underlying code generator expects.

Structures can either be "literal" or "identified". A literal structure
is defined inline with other types (e.g. ``{i32, i32}*``) whereas
identified types are always defined at the top level with a name.
Literal types are uniqued by their contents and can never be recursive
or opaque since there is no way to write one. Identified types can be
recursive, can be opaqued, and are never uniqued.

:Syntax:

::

      %T1 = type { <type list> }     ; Identified normal struct type
      %T2 = type <{ <type list> }>   ; Identified packed struct type

:Examples:

+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

.. _t_opaque:

Opaque Structure Types
""""""""""""""""""""""

:Overview:

Opaque structure types are used to represent named structure types that
do not have a body specified. This corresponds (for example) to the C
notion of a forward declared structure.

:Syntax:

::

      %X = type opaque
      %52 = type opaque

:Examples:

+--------------+-------------------+
| ``opaque``   | An opaque type.   |
+--------------+-------------------+

.. _constants:

Constants
=========

LLVM has several different basic types of constants. This section
describes them all and their syntax.

Simple Constants
----------------

**Boolean constants**
    The two strings '``true``' and '``false``' are both valid constants
    of the ``i1`` type.
**Integer constants**
    Standard integers (such as '4') are constants of the
    :ref:`integer <t_integer>` type. Negative numbers may be used with
    integer types.
**Floating-point constants**
    Floating-point constants use standard decimal notation (e.g.
    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
    hexadecimal notation (see below). The assembler requires the exact
    decimal value of a floating-point constant. For example, the
    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
    decimal in binary. Floating-point constants must have a
    :ref:`floating-point <t_floating>` type.
**Null pointer constants**
    The identifier '``null``' is recognized as a null pointer constant
    and must be of :ref:`pointer type <t_pointer>`.
**Token constants**
    The identifier '``none``' is recognized as an empty token constant
    and must be of :ref:`token type <t_token>`.

The one non-intuitive notation for constants is the hexadecimal form of
floating-point constants. For example, the form
'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
than) '``double 4.5e+15``'. The only time hexadecimal floating-point
constants are required (and the only time that they are generated by the
disassembler) is when a floating-point constant must be emitted but it
cannot be represented as a decimal floating-point number in a reasonable
number of digits. For example, NaN's, infinities, and other special
values are represented in their IEEE hexadecimal format so that assembly
and disassembly do not cause any bits to change in the constants.

When using the hexadecimal form, constants of types half, float, and
double are represented using the 16-digit form shown above (which
matches the IEEE754 representation for double); half and float values
must, however, be exactly representable as IEEE 754 half and single
precision, respectively. Hexadecimal format is always used for long
double, and there are three forms of long double. The 80-bit format used
by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
128-bit format used by PowerPC (two adjacent doubles) is represented by
``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
will only work if they match the long double format on your target.
The IEEE 16-bit format (half precision) is represented by ``0xH``
followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
(sign bit at the left).

There are no constants of type x86_mmx.

.. _complexconstants:

Complex Constants
-----------------

Complex constants are a (potentially recursive) combination of simple
constants and smaller complex constants.

**Structure constants**
    Structure constants are represented with notation similar to
    structure type definitions (a comma separated list of elements,
    surrounded by braces (``{}``)). For example:
    "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
    "``@G = external global i32``". Structure constants must have
    :ref:`structure type <t_struct>`, and the number and types of elements
    must match those specified by the type.
**Array constants**
    Array constants are represented with notation similar to array type
    definitions (a comma separated list of elements, surrounded by
    square brackets (``[]``)). For example:
    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
    :ref:`array type <t_array>`, and the number and types of elements must
    match those specified by the type. As a special case, character array
    constants may also be represented as a double-quoted string using the ``c``
    prefix. For example: "``c"Hello World\0A\00"``".
**Vector constants**
    Vector constants are represented with notation similar to vector
    type definitions (a comma separated list of elements, surrounded by
    less-than/greater-than's (``<>``)). For example:
    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
    must have :ref:`vector type <t_vector>`, and the number and types of
    elements must match those specified by the type.
**Zero initialization**
    The string '``zeroinitializer``' can be used to zero initialize a
    value to zero of *any* type, including scalar and
    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
    having to print large zero initializers (e.g. for large arrays) and
    is always exactly equivalent to using explicit zero initializers.
**Metadata node**
    A metadata node is a constant tuple without types. For example:
    "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
    for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
    Unlike other typed constants that are meant to be interpreted as part of
    the instruction stream, metadata is a place to attach additional
    information such as debug info.

Global Variable and Function Addresses
--------------------------------------

The addresses of :ref:`global variables <globalvars>` and
:ref:`functions <functionstructure>` are always implicitly valid
(link-time) constants. These constants are explicitly referenced when
the :ref:`identifier for the global <identifiers>` is used and always have
:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
file:

.. code-block:: llvm

    @X = global i32 17
    @Y = global i32 42
    @Z = global [2 x i32*] [ i32* @X, i32* @Y ]

.. _undefvalues:

Undefined Values
----------------

The string '``undef``' can be used anywhere a constant is expected, and
indicates that the user of the value may receive an unspecified
bit-pattern. Undefined values may be of any type (other than '``label``'
or '``void``') and be used anywhere a constant is permitted.

Undefined values are useful because they indicate to the compiler that
the program is well defined no matter what value is used. This gives the
compiler more freedom to optimize. Here are some examples of
(potentially surprising) transformations that are valid (in pseudo IR):

.. code-block:: llvm

      %A = add %X, undef
      %B = sub %X, undef
      %C = xor %X, undef
    Safe:
      %A = undef
      %B = undef
      %C = undef

This is safe because all of the output bits are affected by the undef
bits. Any output bit can have a zero or one depending on the input bits.

.. code-block:: llvm

      %A = or %X, undef
      %B = and %X, undef
    Safe:
      %A = -1
      %B = 0
    Safe:
      %A = %X  ;; By choosing undef as 0
      %B = %X  ;; By choosing undef as -1
    Unsafe:
      %A = undef
      %B = undef

These logical operations have bits that are not always affected by the
input. For example, if ``%X`` has a zero bit, then the output of the
'``and``' operation will always be a zero for that bit, no matter what
the corresponding bit from the '``undef``' is. As such, it is unsafe to
optimize or assume that the result of the '``and``' is '``undef``'.
However, it is safe to assume that all bits of the '``undef``' could be
0, and optimize the '``and``' to 0. Likewise, it is safe to assume that
all the bits of the '``undef``' operand to the '``or``' could be set,
allowing the '``or``' to be folded to -1.

.. code-block:: llvm

      %A = select undef, %X, %Y
      %B = select undef, 42, %Y
      %C = select %X, %Y, undef
    Safe:
      %A = %X     (or %Y)
      %B = 42     (or %Y)
      %C = %Y
    Unsafe:
      %A = undef
      %B = undef
      %C = undef

This set of examples shows that undefined '``select``' (and conditional
branch) conditions can go *either way*, but they have to come from one
of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
both known to have a clear low bit, then ``%A`` would have to have a
cleared low bit. However, in the ``%C`` example, the optimizer is
allowed to assume that the '``undef``' operand could be the same as
``%Y``, allowing the whole '``select``' to be eliminated.

.. code-block:: text

      %A = xor undef, undef

      %B = undef
      %C = xor %B, %B

      %D = undef
      %E = icmp slt %D, 4
      %F = icmp gte %D, 4

    Safe:
      %A = undef
      %B = undef
      %C = undef
      %D = undef
      %E = undef
      %F = undef

This example points out that two '``undef``' operands are not
necessarily the same. This can be surprising to people (and also matches
C semantics) where they assume that "``X^X``" is always zero, even if
``X`` is undefined. This isn't true for a number of reasons, but the
short answer is that an '``undef``' "variable" can arbitrarily change
its value over its "live range". This is true because the variable
doesn't actually *have a live range*. Instead, the value is logically
read from arbitrary registers that happen to be around when needed, so
the value is not necessarily consistent over time. In fact, ``%A`` and
``%C`` need to have the same semantics or the core LLVM "replace all
uses with" concept would not hold.

.. code-block:: llvm

      %A = sdiv undef, %X
      %B = sdiv %X, undef
    Safe:
      %A = 0
    b: unreachable

These examples show the crucial difference between an *undefined value*
and *undefined behavior*. An undefined value (like '``undef``') is
allowed to have an arbitrary bit-pattern. This means that the ``%A``
operation can be constant folded to '``0``', because the '``undef``'
could be zero, and zero divided by any value is zero.
However, in the second example, we can make a more aggressive
assumption: because the ``undef`` is allowed to be an arbitrary value,
we are allowed to assume that it could be zero. Since a divide by zero
has *undefined behavior*, we are allowed to assume that the operation
does not execute at all. This allows us to delete the divide and all
code after it. Because the undefined operation "can't happen", the
optimizer can assume that it occurs in dead code.

.. code-block:: text

    a:  store undef -> %X
    b:  store %X -> undef
    Safe:
    a: <deleted>
    b: unreachable

A store *of* an undefined value can be assumed to not have any effect;
we can assume that the value is overwritten with bits that happen to
match what was already there. However, a store *to* an undefined
location could clobber arbitrary memory, therefore, it has undefined
behavior.

**MemorySanitizer**, a detector of uses of uninitialized memory,
defines a branch with condition that depends on an undef value (or
certain other values, like e.g. a result of a load from heap-allocated
memory that has never been stored to) to have an externally visible
side effect. For this reason functions with *sanitize_memory*
attribute are not allowed to produce such branches "out of thin
air". More strictly, an optimization that inserts a conditional branch
is only valid if in all executions where the branch condition has at
least one undefined bit, the same branch condition is evaluated in the
input IR as well.

.. _poisonvalues:

Poison Values
-------------

In order to facilitate speculative execution, many instructions do not
invoke immediate undefined behavior when provided with illegal operands,
and return a poison value instead.

There is currently no way of representing a poison value in the IR; they
only exist when produced by operations such as :ref:`add <i_add>` with
the ``nsw`` flag.

Poison value behavior is defined in terms of value *dependence*:

-  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
-  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
   their dynamic predecessor basic block.
-  Function arguments depend on the corresponding actual argument values
   in the dynamic callers of their functions.
-  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
   instructions that dynamically transfer control back to them.
-  :ref:`Invoke <i_invoke>` instructions depend on the
   :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
   call instructions that dynamically transfer control back to them.
-  Non-volatile loads and stores depend on the most recent stores to all
   of the referenced memory addresses, following the order in the IR
   (including loads and stores implied by intrinsics such as
   :ref:`@llvm.memcpy <int_memcpy>`.)
-  An instruction with externally visible side effects depends on the
   most recent preceding instruction with externally visible side
   effects, following the order in the IR. (This includes :ref:`volatile
   operations <volatile>`.)
-  An instruction *control-depends* on a :ref:`terminator
   instruction <terminators>` if the terminator instruction has
   multiple successors and the instruction is always executed when
   control transfers to one of the successors, and may not be executed
   when control is transferred to another.
-  Additionally, an instruction also *control-depends* on a terminator
   instruction if the set of instructions it otherwise depends on would
   be different if the terminator had transferred control to a different
   successor.
-  Dependence is transitive.

An instruction that *depends* on a poison value, produces a poison value
itself. A poison value may be relaxed into an
:ref:`undef value <undefvalues>`, which takes an arbitrary bit-pattern.

This means that immediate undefined behavior occurs if a poison value is
used as an instruction operand that has any values that trigger undefined
behavior. Notably this includes (but is not limited to):

-  The pointer operand of a :ref:`load <i_load>`, :ref:`store <i_store>` or
   any other pointer dereferencing instruction (independent of address
   space).
-  The divisor operand of a ``udiv``, ``sdiv``, ``urem`` or ``srem``
   instruction.

Additionally, undefined behavior occurs if a side effect *depends* on poison.
This includes side effects that are control dependent on a poisoned branch.

Here are some examples:

.. code-block:: llvm

    entry:
      %poison = sub nuw i32 0, 1           ; Results in a poison value.
      %still_poison = and i32 %poison, 0   ; 0, but also poison.
      %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
      store i32 0, i32* %poison_yet_again  ; Undefined behavior due to
                                           ; store to poison.

      store i32 %poison, i32* @g           ; Poison value stored to memory.
      %poison2 = load i32, i32* @g         ; Poison value loaded back from memory.

      %narrowaddr = bitcast i32* @g to i16*
      %wideaddr = bitcast i32* @g to i64*
      %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
      %poison4 = load i64, i64* %wideaddr  ; Returns a poison value.

      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
      br i1 %cmp, label %true, label %end  ; Branch to either destination.

    true:
      store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
                                           ; it has undefined behavior.
      br label %end

    end:
      %p = phi i32 [ 0, %entry ], [ 1, %true ]
                                           ; Both edges into this PHI are
                                           ; control-dependent on %cmp, so this
                                           ; always results in a poison value.

      store volatile i32 0, i32* @g        ; This would depend on the store in %true
                                           ; if %cmp is true, or the store in %entry
                                           ; otherwise, so this is undefined behavior.

      br i1 %cmp, label %second_true, label %second_end
                                           ; The same branch again, but this time the
                                           ; true block doesn't have side effects.

    second_true:
      ; No side effects!
      ret void

    second_end:
      store volatile i32 0, i32* @g        ; This time, the instruction always depends
                                           ; on the store in %end. Also, it is
                                           ; control-equivalent to %end, so this is
                                           ; well-defined (ignoring earlier undefined
                                           ; behavior in this example).

.. _blockaddress:

Addresses of Basic Blocks
-------------------------

``blockaddress(@function, %block)``

The '``blockaddress``' constant computes the address of the specified
basic block in the specified function, and always has an ``i8*`` type.
Taking the address of the entry block is illegal.

This value only has defined behavior when used as an operand to the
':ref:`indirectbr <i_indirectbr>`' or ':ref:`callbr <i_callbr>`'instruction, or
for comparisons against null. Pointer equality tests between labels addresses
results in undefined behavior --- though, again, comparison against null is ok,
and no label is equal to the null pointer. This may be passed around as an
opaque pointer sized value as long as the bits are not inspected. This
allows ``ptrtoint`` and arithmetic to be performed on these values so
long as the original value is reconstituted before the ``indirectbr`` or
``callbr`` instruction.

Finally, some targets may provide defined semantics when using the value
as the operand to an inline assembly, but that is target specific.

.. _constantexprs:

Constant Expressions
--------------------

Constant expressions are used to allow expressions involving other
constants to be used as constants. Constant expressions may be of any
:ref:`first class <t_firstclass>` type and may involve any LLVM operation
that does not have side effects (e.g. load and call are not supported).
The following is the syntax for constant expressions:

``trunc (CST to TYPE)``
    Perform the :ref:`trunc operation <i_trunc>` on constants.
``zext (CST to TYPE)``
    Perform the :ref:`zext operation <i_zext>` on constants.
``sext (CST to TYPE)``
    Perform the :ref:`sext operation <i_sext>` on constants.
``fptrunc (CST to TYPE)``
    Truncate a floating-point constant to another floating-point type.
    The size of CST must be larger than the size of TYPE. Both types
    must be floating-point.
``fpext (CST to TYPE)``
    Floating-point extend a constant to another type. The size of CST
    must be smaller or equal to the size of TYPE. Both types must be
    floating-point.
``fptoui (CST to TYPE)``
    Convert a floating-point constant to the corresponding unsigned
    integer constant. TYPE must be a scalar or vector integer type. CST
    must be of scalar or vector floating-point type. Both CST and TYPE
    must be scalars, or vectors of the same number of elements. If the
    value won't fit in the integer type, the result is a
    :ref:`poison value <poisonvalues>`.
``fptosi (CST to TYPE)``
    Convert a floating-point constant to the corresponding signed
    integer constant. TYPE must be a scalar or vector integer type. CST
    must be of scalar or vector floating-point type. Both CST and TYPE
    must be scalars, or vectors of the same number of elements. If the
    value won't fit in the integer type, the result is a
    :ref:`poison value <poisonvalues>`.
``uitofp (CST to TYPE)``
    Convert an unsigned integer constant to the corresponding
    floating-point constant. TYPE must be a scalar or vector floating-point
    type.  CST must be of scalar or vector integer type. Both CST and TYPE must
    be scalars, or vectors of the same number of elements.
``sitofp (CST to TYPE)``
    Convert a signed integer constant to the corresponding floating-point
    constant. TYPE must be a scalar or vector floating-point type.
    CST must be of scalar or vector integer type. Both CST and TYPE must
    be scalars, or vectors of the same number of elements.
``ptrtoint (CST to TYPE)``
    Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
``inttoptr (CST to TYPE)``
    Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
    This one is *really* dangerous!
``bitcast (CST to TYPE)``
    Convert a constant, CST, to another TYPE.
    The constraints of the operands are the same as those for the
    :ref:`bitcast instruction <i_bitcast>`.
``addrspacecast (CST to TYPE)``
    Convert a constant pointer or constant vector of pointer, CST, to another
    TYPE in a different address space. The constraints of the operands are the
    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
    Perform the :ref:`getelementptr operation <i_getelementptr>` on
    constants. As with the :ref:`getelementptr <i_getelementptr>`
    instruction, the index list may have one or more indexes, which are
    required to make sense for the type of "pointer to TY".
``select (COND, VAL1, VAL2)``
    Perform the :ref:`select operation <i_select>` on constants.
``icmp COND (VAL1, VAL2)``
    Perform the :ref:`icmp operation <i_icmp>` on constants.
``fcmp COND (VAL1, VAL2)``
    Perform the :ref:`fcmp operation <i_fcmp>` on constants.
``extractelement (VAL, IDX)``
    Perform the :ref:`extractelement operation <i_extractelement>` on
    constants.
``insertelement (VAL, ELT, IDX)``
    Perform the :ref:`insertelement operation <i_insertelement>` on
    constants.
``shufflevector (VEC1, VEC2, IDXMASK)``
    Perform the :ref:`shufflevector operation <i_shufflevector>` on
    constants.
``extractvalue (VAL, IDX0, IDX1, ...)``
    Perform the :ref:`extractvalue operation <i_extractvalue>` on
    constants. The index list is interpreted in a similar manner as
    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
    least one index value must be specified.
``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
    The index list is interpreted in a similar manner as indices in a
    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
    value must be specified.
``OPCODE (LHS, RHS)``
    Perform the specified operation of the LHS and RHS constants. OPCODE
    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
    binary <bitwiseops>` operations. The constraints on operands are
    the same as those for the corresponding instruction (e.g. no bitwise
    operations on floating-point values are allowed).

Other Values
============

.. _inlineasmexprs:

Inline Assembler Expressions
----------------------------

LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
Inline Assembly <moduleasm>`) through the use of a special value. This value
represents the inline assembler as a template string (containing the
instructions to emit), a list of operand constraints (stored as a string), a
flag that indicates whether or not the inline asm expression has side effects,
and a flag indicating whether the function containing the asm needs to align its
stack conservatively.

The template string supports argument substitution of the operands using "``$``"
followed by a number, to indicate substitution of the given register/memory
location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
be used, where ``MODIFIER`` is a target-specific annotation for how to print the
operand (See :ref:`inline-asm-modifiers`).

A literal "``$``" may be included by using "``$$``" in the template. To include
other special characters into the output, the usual "``\XX``" escapes may be
used, just as in other strings. Note that after template substitution, the
resulting assembly string is parsed by LLVM's integrated assembler unless it is
disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
syntax known to LLVM.

LLVM also supports a few more substitutions useful for writing inline assembly:

- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
  This substitution is useful when declaring a local label. Many standard
  compiler optimizations, such as inlining, may duplicate an inline asm blob.
  Adding a blob-unique identifier ensures that the two labels will not conflict
  during assembly. This is used to implement `GCC's %= special format
  string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
- ``${:comment}``: Expands to the comment character of the current target's
  assembly dialect. This is usually ``#``, but many targets use other strings,
  such as ``;``, ``//``, or ``!``.
- ``${:private}``: Expands to the assembler private label prefix. Labels with
  this prefix will not appear in the symbol table of the assembled object.
  Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
  relatively popular.

LLVM's support for inline asm is modeled closely on the requirements of Clang's
GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
modifier codes listed here are similar or identical to those in GCC's inline asm
support. However, to be clear, the syntax of the template and constraint strings
described here is *not* the same as the syntax accepted by GCC and Clang, and,
while most constraint letters are passed through as-is by Clang, some get
translated to other codes when converting from the C source to the LLVM
assembly.

An example inline assembler expression is:

.. code-block:: llvm

    i32 (i32) asm "bswap $0", "=r,r"

Inline assembler expressions may **only** be used as the callee operand
of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
Thus, typically we have:

.. code-block:: llvm

    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)

Inline asms with side effects not visible in the constraint list must be
marked as having side effects. This is done through the use of the
'``sideeffect``' keyword, like so:

.. code-block:: llvm

    call void asm sideeffect "eieio", ""()

In some cases inline asms will contain code that will not work unless
the stack is aligned in some way, such as calls or SSE instructions on
x86, yet will not contain code that does that alignment within the asm.
The compiler should make conservative assumptions about what the asm
might contain and should generate its usual stack alignment code in the
prologue if the '``alignstack``' keyword is present:

.. code-block:: llvm

    call void asm alignstack "eieio", ""()

Inline asms also support using non-standard assembly dialects. The
assumed dialect is ATT. When the '``inteldialect``' keyword is present,
the inline asm is using the Intel dialect. Currently, ATT and Intel are
the only supported dialects. An example is:

.. code-block:: llvm

    call void asm inteldialect "eieio", ""()

If multiple keywords appear the '``sideeffect``' keyword must come
first, the '``alignstack``' keyword second and the '``inteldialect``'
keyword last.

Inline Asm Constraint String
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The constraint list is a comma-separated string, each element containing one or
more constraint codes.

For each element in the constraint list an appropriate register or memory
operand will be chosen, and it will be made available to assembly template
string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
second, etc.

There are three different types of constraints, which are distinguished by a
prefix symbol in front of the constraint code: Output, Input, and Clobber. The
constraints must always be given in that order: outputs first, then inputs, then
clobbers. They cannot be intermingled.

There are also three different categories of constraint codes:

- Register constraint. This is either a register class, or a fixed physical
  register. This kind of constraint will allocate a register, and if necessary,
  bitcast the argument or result to the appropriate type.
- Memory constraint. This kind of constraint is for use with an instruction
  taking a memory operand. Different constraints allow for different addressing
  modes used by the target.
- Immediate value constraint. This kind of constraint is for an integer or other
  immediate value which can be rendered directly into an instruction. The
  various target-specific constraints allow the selection of a value in the
  proper range for the instruction you wish to use it with.

Output constraints
""""""""""""""""""

Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
indicates that the assembly will write to this operand, and the operand will
then be made available as a return value of the ``asm`` expression. Output
constraints do not consume an argument from the call instruction. (Except, see
below about indirect outputs).

Normally, it is expected that no output locations are written to by the assembly
expression until *all* of the inputs have been read. As such, LLVM may assign
the same register to an output and an input. If this is not safe (e.g. if the
assembly contains two instructions, where the first writes to one output, and
the second reads an input and writes to a second output), then the "``&``"
modifier must be used (e.g. "``=&r``") to specify that the output is an
"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
will not use the same register for any inputs (other than an input tied to this
output).

Input constraints
"""""""""""""""""

Input constraints do not have a prefix -- just the constraint codes. Each input
constraint will consume one argument from the call instruction. It is not
permitted for the asm to write to any input register or memory location (unless
that input is tied to an output). Note also that multiple inputs may all be
assigned to the same register, if LLVM can determine that they necessarily all
contain the same value.

Instead of providing a Constraint Code, input constraints may also "tie"
themselves to an output constraint, by providing an integer as the constraint
string. Tied inputs still consume an argument from the call instruction, and
take up a position in the asm template numbering as is usual -- they will simply
be constrained to always use the same register as the output they've been tied
to. For example, a constraint string of "``=r,0``" says to assign a register for
output, and use that register as an input as well (it being the 0'th
constraint).

It is permitted to tie an input to an "early-clobber" output. In that case, no
*other* input may share the same register as the input tied to the early-clobber
(even when the other input has the same value).

You may only tie an input to an output which has a register constraint, not a
memory constraint. Only a single input may be tied to an output.

There is also an "interesting" feature which deserves a bit of explanation: if a
register class constraint allocates a register which is too small for the value
type operand provided as input, the input value will be split into multiple
registers, and all of them passed to the inline asm.

However, this feature is often not as useful as you might think.

Firstly, the registers are *not* guaranteed to be consecutive. So, on those
architectures that have instructions which operate on multiple consecutive
instructions, this is not an appropriate way to support them. (e.g. the 32-bit
SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
hardware then loads into both the named register, and the next register. This
feature of inline asm would not be useful to support that.)

A few of the targets provide a template string modifier allowing explicit access
to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
``D``). On such an architecture, you can actually access the second allocated
register (yet, still, not any subsequent ones). But, in that case, you're still
probably better off simply splitting the value into two separate operands, for
clarity. (e.g. see the description of the ``A`` constraint on X86, which,
despite existing only for use with this feature, is not really a good idea to
use)

Indirect inputs and outputs
"""""""""""""""""""""""""""

Indirect output or input constraints can be specified by the "``*``" modifier
(which goes after the "``=``" in case of an output). This indicates that the asm
will write to or read from the contents of an *address* provided as an input
argument. (Note that in this way, indirect outputs act more like an *input* than
an output: just like an input, they consume an argument of the call expression,
rather than producing a return value. An indirect output constraint is an
"output" only in that the asm is expected to write to the contents of the input
memory location, instead of just read from it).

This is most typically used for memory constraint, e.g. "``=*m``", to pass the
address of a variable as a value.

It is also possible to use an indirect *register* constraint, but only on output
(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
value normally, and then, separately emit a store to the address provided as
input, after the provided inline asm. (It's not clear what value this
functionality provides, compared to writing the store explicitly after the asm
statement, and it can only produce worse code, since it bypasses many
optimization passes. I would recommend not using it.)


Clobber constraints
"""""""""""""""""""

A clobber constraint is indicated by a "``~``" prefix. A clobber does not
consume an input operand, nor generate an output. Clobbers cannot use any of the
general constraint code letters -- they may use only explicit register
constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
memory locations -- not only the memory pointed to by a declared indirect
output.

Note that clobbering named registers that are also present in output
constraints is not legal.


Constraint Codes
""""""""""""""""
After a potential prefix comes constraint code, or codes.

A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
(e.g. "``{eax}``").

The one and two letter constraint codes are typically chosen to be the same as
GCC's constraint codes.

A single constraint may include one or more than constraint code in it, leaving
it up to LLVM to choose which one to use. This is included mainly for
compatibility with the translation of GCC inline asm coming from clang.

There are two ways to specify alternatives, and either or both may be used in an
inline asm constraint list:

1) Append the codes to each other, making a constraint code set. E.g. "``im``"
   or "``{eax}m``". This means "choose any of the options in the set". The
   choice of constraint is made independently for each constraint in the
   constraint list.

2) Use "``|``" between constraint code sets, creating alternatives. Every
   constraint in the constraint list must have the same number of alternative
   sets. With this syntax, the same alternative in *all* of the items in the
   constraint list will be chosen together.

Putting those together, you might have a two operand constraint string like
``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.

However, the use of either of the alternatives features is *NOT* recommended, as
LLVM is not able to make an intelligent choice about which one to use. (At the
point it currently needs to choose, not enough information is available to do so
in a smart way.) Thus, it simply tries to make a choice that's most likely to
compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
always choose to use memory, not registers). And, if given multiple registers,
or multiple register classes, it will simply choose the first one. (In fact, it
doesn't currently even ensure explicitly specified physical registers are
unique, so specifying multiple physical registers as alternatives, like
``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
intended.)

Supported Constraint Code List
""""""""""""""""""""""""""""""

The constraint codes are, in general, expected to behave the same way they do in
GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.

Some constraint codes are typically supported by all targets:

- ``r``: A register in the target's general purpose register class.
- ``m``: A memory address operand. It is target-specific what addressing modes
  are supported, typical examples are register, or register + register offset,
  or register + immediate offset (of some target-specific size).
- ``i``: An integer constant (of target-specific width). Allows either a simple
  immediate, or a relocatable value.
- ``n``: An integer constant -- *not* including relocatable values.
- ``s``: An integer constant, but allowing *only* relocatable values.
- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
  useful to pass a label for an asm branch or call.

  .. FIXME: but that surely isn't actually okay to jump out of an asm
     block without telling llvm about the control transfer???)

- ``{register-name}``: Requires exactly the named physical register.

Other constraints are target-specific:

AArch64:

- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
  i.e. 0 to 4095 with optional shift by 12.
- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
  ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
  32-bit register. This is a superset of ``K``: in addition to the bitmask
  immediate, also allows immediate integers which can be loaded with a single
  ``MOVZ`` or ``MOVL`` instruction.
- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
  64-bit register. This is a superset of ``L``.
- ``Q``: Memory address operand must be in a single register (no
  offsets). (However, LLVM currently does this for the ``m`` constraint as
  well.)
- ``r``: A 32 or 64-bit integer register (W* or X*).
- ``w``: A 32, 64, or 128-bit floating-point, SIMD or SVE vector register.
- ``x``: Like w, but restricted to registers 0 to 15 inclusive.
- ``y``: Like w, but restricted to SVE vector registers Z0 to Z7 inclusive.
- ``Upl``: One of the low eight SVE predicate registers (P0 to P7)
- ``Upa``: Any of the SVE predicate registers (P0 to P15)

AMDGPU:

- ``r``: A 32 or 64-bit integer register.
- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
- ``[0-9]s``: The 32-bit SGPR register, number 0-9.


All ARM modes:

- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
  operand. Treated the same as operand ``m``, at the moment.
- ``Te``: An even general-purpose 32-bit integer register: ``r0,r2,...,r12,r14``
- ``To``: An odd general-purpose 32-bit integer register: ``r1,r3,...,r11``

ARM and ARM's Thumb2 mode:

- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
- ``I``: An immediate integer valid for a data-processing instruction.
- ``J``: An immediate integer between -4095 and 4095.
- ``K``: An immediate integer whose bitwise inverse is valid for a
  data-processing instruction. (Can be used with template modifier "``B``" to
  print the inverted value).
- ``L``: An immediate integer whose negation is valid for a data-processing
  instruction. (Can be used with template modifier "``n``" to print the negated
  value).
- ``M``: A power of two or a integer between 0 and 32.
- ``N``: Invalid immediate constraint.
- ``O``: Invalid immediate constraint.
- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
  as ``r``.
- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
  invalid.
- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.

ARM's Thumb1 mode:

- ``I``: An immediate integer between 0 and 255.
- ``J``: An immediate integer between -255 and -1.
- ``K``: An immediate integer between 0 and 255, with optional left-shift by
  some amount.
- ``L``: An immediate integer between -7 and 7.
- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
- ``N``: An immediate integer between 0 and 31.
- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
- ``r``: A low 32-bit GPR register (``r0-r7``).
- ``l``: A low 32-bit GPR register (``r0-r7``).
- ``h``: A high GPR register (``r0-r7``).
- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.


Hexagon:

- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
  at the moment.
- ``r``: A 32 or 64-bit register.

MSP430:

- ``r``: An 8 or 16-bit register.

MIPS:

- ``I``: An immediate signed 16-bit integer.
- ``J``: An immediate integer zero.
- ``K``: An immediate unsigned 16-bit integer.
- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
- ``N``: An immediate integer between -65535 and -1.
- ``O``: An immediate signed 15-bit integer.
- ``P``: An immediate integer between 1 and 65535.
- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
  register plus 16-bit immediate offset. In MIPS mode, just a base register.
- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
  register plus a 9-bit signed offset. In MIPS mode, the same as constraint
  ``m``.
- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
  ``sc`` instruction on the given subtarget (details vary).
- ``r``, ``d``,  ``y``: A 32 or 64-bit GPR register.
- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
  (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
  argument modifier for compatibility with GCC.
- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
  ``25``).
- ``l``: The ``lo`` register, 32 or 64-bit.
- ``x``: Invalid.

NVPTX:

- ``b``: A 1-bit integer register.
- ``c`` or ``h``: A 16-bit integer register.
- ``r``: A 32-bit integer register.
- ``l`` or ``N``: A 64-bit integer register.
- ``f``: A 32-bit float register.
- ``d``: A 64-bit float register.


PowerPC:

- ``I``: An immediate signed 16-bit integer.
- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
- ``K``: An immediate unsigned 16-bit integer.
- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
- ``M``: An immediate integer greater than 31.
- ``N``: An immediate integer that is an exact power of 2.
- ``O``: The immediate integer constant 0.
- ``P``: An immediate integer constant whose negation is a signed 16-bit
  constant.
- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
  treated the same as ``m``.
- ``r``: A 32 or 64-bit integer register.
- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
  ``R1-R31``).
- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
  128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
  128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
  altivec vector register (``V0-V31``).

  .. FIXME: is this a bug that v accepts QPX registers? I think this
     is supposed to only use the altivec vector registers?

- ``y``: Condition register (``CR0-CR7``).
- ``wc``: An individual CR bit in a CR register.
- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
  register set (overlapping both the floating-point and vector register files).
- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
  set.

RISC-V:

- ``A``: An address operand (using a general-purpose register, without an
  offset).
- ``I``: A 12-bit signed integer immediate operand.
- ``J``: A zero integer immediate operand.
- ``K``: A 5-bit unsigned integer immediate operand.
- ``f``: A 32- or 64-bit floating-point register (requires F or D extension).
- ``r``: A 32- or 64-bit general-purpose register (depending on the platform
  ``XLEN``).

Sparc:

- ``I``: An immediate 13-bit signed integer.
- ``r``: A 32-bit integer register.
- ``f``: Any floating-point register on SparcV8, or a floating-point
  register in the "low" half of the registers on SparcV9.
- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)

SystemZ:

- ``I``: An immediate unsigned 8-bit integer.
- ``J``: An immediate unsigned 12-bit integer.
- ``K``: An immediate signed 16-bit integer.
- ``L``: An immediate signed 20-bit integer.
- ``M``: An immediate integer 0x7fffffff.
- ``Q``: A memory address operand with a base address and a 12-bit immediate
  unsigned displacement.
- ``R``: A memory address operand with a base address, a 12-bit immediate
  unsigned displacement, and an index register.
- ``S``: A memory address operand with a base address and a 20-bit immediate
  signed displacement.
- ``T``: A memory address operand with a base address, a 20-bit immediate
  signed displacement, and an index register.
- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
  address context evaluates as zero).
- ``h``: A 32-bit value in the high part of a 64bit data register
  (LLVM-specific)
- ``f``: A 32, 64, or 128-bit floating-point register.

X86:

- ``I``: An immediate integer between 0 and 31.
- ``J``: An immediate integer between 0 and 64.
- ``K``: An immediate signed 8-bit integer.
- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
  0xffffffff.
- ``M``: An immediate integer between 0 and 3.
- ``N``: An immediate unsigned 8-bit integer.
- ``O``: An immediate integer between 0 and 127.
- ``e``: An immediate 32-bit signed integer.
- ``Z``: An immediate 32-bit unsigned integer.
- ``o``, ``v``: Treated the same as ``m``, at the moment.
- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
  ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
  registers, and on X86-64, it is all of the integer registers.
- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
  ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
  existed since i386, and can be accessed without the REX prefix.
- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
- ``y``: A 64-bit MMX register, if MMX is enabled.
- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
  operand in a SSE register. If AVX is also enabled, can also be a 256-bit
  vector operand in an AVX register. If AVX-512 is also enabled, can also be a
  512-bit vector operand in an AVX512 register, Otherwise, an error.
- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
  32-bit mode, a 64-bit integer operand will get split into two registers). It
  is not recommended to use this constraint, as in 64-bit mode, the 64-bit
  operand will get allocated only to RAX -- if two 32-bit operands are needed,
  you're better off splitting it yourself, before passing it to the asm
  statement.

XCore:

- ``r``: A 32-bit integer register.


.. _inline-asm-modifiers:

Asm template argument modifiers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In the asm template string, modifiers can be used on the operand reference, like
"``${0:n}``".

The modifiers are, in general, expected to behave the same way they do in
GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.

Target-independent:

- ``c``: Print an immediate integer constant unadorned, without
  the target-specific immediate punctuation (e.g. no ``$`` prefix).
- ``n``: Negate and print immediate integer constant unadorned, without the
  target-specific immediate punctuation (e.g. no ``$`` prefix).
- ``l``: Print as an unadorned label, without the target-specific label
  punctuation (e.g. no ``$`` prefix).

AArch64:

- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
  instead of ``x30``, print ``w30``.
- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
  ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
  ``v*``.

AMDGPU:

- ``r``: No effect.

ARM:

- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
  register).
- ``P``: No effect.
- ``q``: No effect.
- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
  as ``d4[1]`` instead of ``s9``)
- ``B``: Bitwise invert and print an immediate integer constant without ``#``
  prefix.
- ``L``: Print the low 16-bits of an immediate integer constant.
- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
  register operands subsequent to the specified one (!), so use carefully.
- ``Q``: Print the low-order register of a register-pair, or the low-order
  register of a two-register operand.
- ``R``: Print the high-order register of a register-pair, or the high-order
  register of a two-register operand.
- ``H``: Print the second register of a register-pair. (On a big-endian system,
  ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
  to ``R``.)

  .. FIXME: H doesn't currently support printing the second register
     of a two-register operand.

- ``e``: Print the low doubleword register of a NEON quad register.
- ``f``: Print the high doubleword register of a NEON quad register.
- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
  adornment.

Hexagon:

- ``L``: Print the second register of a two-register operand. Requires that it
  has been allocated consecutively to the first.

  .. FIXME: why is it restricted to consecutive ones? And there's
     nothing that ensures that happens, is there?

- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
  nothing. Used to print 'addi' vs 'add' instructions.

MSP430:

No additional modifiers.

MIPS:

- ``X``: Print an immediate integer as hexadecimal
- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
- ``d``: Print an immediate integer as decimal.
- ``m``: Subtract one and print an immediate integer as decimal.
- ``z``: Print $0 if an immediate zero, otherwise print normally.
- ``L``: Print the low-order register of a two-register operand, or prints the
  address of the low-order word of a double-word memory operand.

  .. FIXME: L seems to be missing memory operand support.

- ``M``: Print the high-order register of a two-register operand, or prints the
  address of the high-order word of a double-word memory operand.

  .. FIXME: M seems to be missing memory operand support.

- ``D``: Print the second register of a two-register operand, or prints the
  second word of a double-word memory operand. (On a big-endian system, ``D`` is
  equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
  ``M``.)
- ``w``: No effect. Provided for compatibility with GCC which requires this
  modifier in order to print MSA registers (``W0-W31``) with the ``f``
  constraint.

NVPTX:

- ``r``: No effect.

PowerPC:

- ``L``: Print the second register of a two-register operand. Requires that it
  has been allocated consecutively to the first.

  .. FIXME: why is it restricted to consecutive ones? And there's
     nothing that ensures that happens, is there?

- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
  nothing. Used to print 'addi' vs 'add' instructions.
- ``y``: For a memory operand, prints formatter for a two-register X-form
  instruction. (Currently always prints ``r0,OPERAND``).
- ``U``: Prints 'u' if the memory operand is an update form, and nothing
  otherwise. (NOTE: LLVM does not support update form, so this will currently
  always print nothing)
- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
  not support indexed form, so this will currently always print nothing)

Sparc:

- ``r``: No effect.

SystemZ:

SystemZ implements only ``n``, and does *not* support any of the other
target-independent modifiers.

X86:

- ``c``: Print an unadorned integer or symbol name. (The latter is
  target-specific behavior for this typically target-independent modifier).
- ``A``: Print a register name with a '``*``' before it.
- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
  operand.
- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
  memory operand.
- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
  operand.
- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
  operand.
- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
  available, otherwise the 32-bit register name; do nothing on a memory operand.
- ``n``: Negate and print an unadorned integer, or, for operands other than an
  immediate integer (e.g. a relocatable symbol expression), print a '-' before
  the operand. (The behavior for relocatable symbol expressions is a
  target-specific behavior for this typically target-independent modifier)
- ``H``: Print a memory reference with additional offset +8.
- ``P``: Print a memory reference or operand for use as the argument of a call
  instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)

XCore:

No additional modifiers.


Inline Asm Metadata
^^^^^^^^^^^^^^^^^^^

The call instructions that wrap inline asm nodes may have a
"``!srcloc``" MDNode attached to it that contains a list of constant
integers. If present, the code generator will use the integer as the
location cookie value when report errors through the ``LLVMContext``
error reporting mechanisms. This allows a front-end to correlate backend
errors that occur with inline asm back to the source code that produced
it. For example:

.. code-block:: llvm

    call void asm sideeffect "something bad", ""(), !srcloc !42
    ...
    !42 = !{ i32 1234567 }

It is up to the front-end to make sense of the magic numbers it places
in the IR. If the MDNode contains multiple constants, the code generator
will use the one that corresponds to the line of the asm that the error
occurs on.

.. _metadata:

Metadata
========

LLVM IR allows metadata to be attached to instructions in the program
that can convey extra information about the code to the optimizers and
code generator. One example application of metadata is source-level
debug information. There are two metadata primitives: strings and nodes.

Metadata does not have a type, and is not a value. If referenced from a
``call`` instruction, it uses the ``metadata`` type.

All metadata are identified in syntax by a exclamation point ('``!``').

.. _metadata-string:

Metadata Nodes and Metadata Strings
-----------------------------------

A metadata string is a string surrounded by double quotes. It can
contain any character by escaping non-printable characters with
"``\xx``" where "``xx``" is the two digit hex code. For example:
"``!"test\00"``".

Metadata nodes are represented with notation similar to structure
constants (a comma separated list of elements, surrounded by braces and
preceded by an exclamation point). Metadata nodes can have any values as
their operand. For example:

.. code-block:: llvm

    !{ !"test\00", i32 10}

Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:

.. code-block:: text

    !0 = distinct !{!"test\00", i32 10}

``distinct`` nodes are useful when nodes shouldn't be merged based on their
content. They can also occur when transformations cause uniquing collisions
when metadata operands change.

A :ref:`named metadata <namedmetadatastructure>` is a collection of
metadata nodes, which can be looked up in the module symbol table. For
example:

.. code-block:: llvm

    !foo = !{!4, !3}

Metadata can be used as function arguments. Here the ``llvm.dbg.value``
intrinsic is using three metadata arguments:

.. code-block:: llvm

    call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)

Metadata can be attached to an instruction. Here metadata ``!21`` is attached
to the ``add`` instruction using the ``!dbg`` identifier:

.. code-block:: llvm

    %indvar.next = add i64 %indvar, 1, !dbg !21

Metadata can also be attached to a function or a global variable. Here metadata
``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
and ``g2`` using the ``!dbg`` identifier:

.. code-block:: llvm

    declare !dbg !22 void @f1()
    define void @f2() !dbg !22 {
      ret void
    }

    @g1 = global i32 0, !dbg !22
    @g2 = external global i32, !dbg !22

A transformation is required to drop any metadata attachment that it does not
know or know it can't preserve. Currently there is an exception for metadata
attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
unconditionally dropped unless the global is itself deleted.

Metadata attached to a module using named metadata may not be dropped, with
the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).

More information about specific metadata nodes recognized by the
optimizers and code generator is found below.

.. _specialized-metadata:

Specialized Metadata Nodes
^^^^^^^^^^^^^^^^^^^^^^^^^^

Specialized metadata nodes are custom data structures in metadata (as opposed
to generic tuples). Their fields are labelled, and can be specified in any
order.

These aren't inherently debug info centric, but currently all the specialized
metadata nodes are related to debug info.

.. _DICompileUnit:

DICompileUnit
"""""""""""""

``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
containing the debug info to be emitted along with the compile unit, regardless
of code optimizations (some nodes are only emitted if there are references to
them from instructions). The ``debugInfoForProfiling:`` field is a boolean
indicating whether or not line-table discriminators are updated to provide
more-accurate debug info for profiling results.

.. code-block:: text

    !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
                        isOptimized: true, flags: "-O2", runtimeVersion: 2,
                        splitDebugFilename: "abc.debug", emissionKind: FullDebug,
                        enums: !2, retainedTypes: !3, globals: !4, imports: !5,
                        macros: !6, dwoId: 0x0abcd)

Compile unit descriptors provide the root scope for objects declared in a
specific compilation unit. File descriptors are defined using this scope.  These
descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
track of global variables, type information, and imported entities (declarations
and namespaces).

.. _DIFile:

DIFile
""""""

``DIFile`` nodes represent files. The ``filename:`` can include slashes.

.. code-block:: none

    !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
                 checksumkind: CSK_MD5,
                 checksum: "000102030405060708090a0b0c0d0e0f")

Files are sometimes used in ``scope:`` fields, and are the only valid target
for ``file:`` fields.
Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}

.. _DIBasicType:

DIBasicType
"""""""""""

``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
``float``. ``tag:`` defaults to ``DW_TAG_base_type``.

.. code-block:: text

    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
                      encoding: DW_ATE_unsigned_char)
    !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")

The ``encoding:`` describes the details of the type. Usually it's one of the
following:

.. code-block:: text

  DW_ATE_address       = 1
  DW_ATE_boolean       = 2
  DW_ATE_float         = 4
  DW_ATE_signed        = 5
  DW_ATE_signed_char   = 6
  DW_ATE_unsigned      = 7
  DW_ATE_unsigned_char = 8

.. _DISubroutineType:

DISubroutineType
""""""""""""""""

``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
refers to a tuple; the first operand is the return type, while the rest are the
types of the formal arguments in order. If the first operand is ``null``, that
represents a function with no return value (such as ``void foo() {}`` in C++).

.. code-block:: text

    !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
    !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
    !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)

.. _DIDerivedType:

DIDerivedType
"""""""""""""

``DIDerivedType`` nodes represent types derived from other types, such as
qualified types.

.. code-block:: text

    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
                      encoding: DW_ATE_unsigned_char)
    !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
                        align: 32)

The following ``tag:`` values are valid:

.. code-block:: text

  DW_TAG_member             = 13
  DW_TAG_pointer_type       = 15
  DW_TAG_reference_type     = 16
  DW_TAG_typedef            = 22
  DW_TAG_inheritance        = 28
  DW_TAG_ptr_to_member_type = 31
  DW_TAG_const_type         = 38
  DW_TAG_friend             = 42
  DW_TAG_volatile_type      = 53
  DW_TAG_restrict_type      = 55
  DW_TAG_atomic_type        = 71

.. _DIDerivedTypeMember:

``DW_TAG_member`` is used to define a member of a :ref:`composite type
<DICompositeType>`. The type of the member is the ``baseType:``. The
``offset:`` is the member's bit offset.  If the composite type has an ODR
``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
uniqued based only on its ``name:`` and ``scope:``.

``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
field of :ref:`composite types <DICompositeType>` to describe parents and
friends.

``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.

``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
are used to qualify the ``baseType:``.

Note that the ``void *`` type is expressed as a type derived from NULL.

.. _DICompositeType:

DICompositeType
"""""""""""""""

``DICompositeType`` nodes represent types composed of other types, like
structures and unions. ``elements:`` points to a tuple of the composed types.

If the source language supports ODR, the ``identifier:`` field gives the unique
identifier used for type merging between modules.  When specified,
:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
derived types <DIDerivedTypeMember>` that reference the ODR-type in their
``scope:`` change uniquing rules.

For a given ``identifier:``, there should only be a single composite type that
does not have  ``flags: DIFlagFwdDecl`` set.  LLVM tools that link modules
together will unique such definitions at parse time via the ``identifier:``
field, even if the nodes are ``distinct``.

.. code-block:: text

    !0 = !DIEnumerator(name: "SixKind", value: 7)
    !1 = !DIEnumerator(name: "SevenKind", value: 7)
    !2 = !DIEnumerator(name: "NegEightKind", value: -8)
    !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
                          line: 2, size: 32, align: 32, identifier: "_M4Enum",
                          elements: !{!0, !1, !2})

The following ``tag:`` values are valid:

.. code-block:: text

  DW_TAG_array_type       = 1
  DW_TAG_class_type       = 2
  DW_TAG_enumeration_type = 4
  DW_TAG_structure_type   = 19
  DW_TAG_union_type       = 23

For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
descriptors <DISubrange>`, each representing the range of subscripts at that
level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
array type is a native packed vector.

For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
descriptors <DIEnumerator>`, each representing the definition of an enumeration
value for the set. All enumeration type descriptors are collected in the
``enums:`` field of the :ref:`compile unit <DICompileUnit>`.

For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
``isDefinition: false``.

.. _DISubrange:

DISubrange
""""""""""

``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
:ref:`DICompositeType`.

- ``count: -1`` indicates an empty array.
- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.

.. code-block:: text

    !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
    !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
    !2 = !DISubrange(count: -1) ; empty array.

    ; Scopes used in rest of example
    !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
    !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
    !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)

    ; Use of local variable as count value
    !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
    !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
    !11 = !DISubrange(count: !10, lowerBound: 0)

    ; Use of global variable as count value
    !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
    !13 = !DISubrange(count: !12, lowerBound: 0)

.. _DIEnumerator:

DIEnumerator
""""""""""""

``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
variants of :ref:`DICompositeType`.

.. code-block:: text

    !0 = !DIEnumerator(name: "SixKind", value: 7)
    !1 = !DIEnumerator(name: "SevenKind", value: 7)
    !2 = !DIEnumerator(name: "NegEightKind", value: -8)

DITemplateTypeParameter
"""""""""""""""""""""""

``DITemplateTypeParameter`` nodes represent type parameters to generic source
language constructs. They are used (optionally) in :ref:`DICompositeType` and
:ref:`DISubprogram` ``templateParams:`` fields.

.. code-block:: text

    !0 = !DITemplateTypeParameter(name: "Ty", type: !1)

DITemplateValueParameter
""""""""""""""""""""""""

``DITemplateValueParameter`` nodes represent value parameters to generic source
language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.

.. code-block:: text

    !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)

DINamespace
"""""""""""

``DINamespace`` nodes represent namespaces in the source language.

.. code-block:: text

    !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)

.. _DIGlobalVariable:

DIGlobalVariable
""""""""""""""""

``DIGlobalVariable`` nodes represent global variables in the source language.

.. code-block:: text

    @foo = global i32, !dbg !0
    !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
    !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
                           file: !3, line: 7, type: !4, isLocal: true,
                           isDefinition: false, declaration: !5)


DIGlobalVariableExpression
""""""""""""""""""""""""""

``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
with a :ref:`DIExpression`.

.. code-block:: text

    @lower = global i32, !dbg !0
    @upper = global i32, !dbg !1
    !0 = !DIGlobalVariableExpression(
             var: !2,
             expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
             )
    !1 = !DIGlobalVariableExpression(
             var: !2,
             expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
             )
    !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
                           file: !4, line: 8, type: !5, declaration: !6)

All global variable expressions should be referenced by the `globals:` field of
a :ref:`compile unit <DICompileUnit>`.

.. _DISubprogram:

DISubprogram
""""""""""""

``DISubprogram`` nodes represent functions from the source language. A
distinct ``DISubprogram`` may be attached to a function definition using
``!dbg`` metadata. A unique ``DISubprogram`` may be attached to a function
declaration used for call site debug info. The ``variables:`` field points at
:ref:`variables <DILocalVariable>` that must be retained, even if their IR
counterparts are optimized out of the IR. The ``type:`` field must point at an
:ref:`DISubroutineType`.

.. _DISubprogramDeclaration:

When ``isDefinition: false``, subprograms describe a declaration in the type
tree as opposed to a definition of a function.  If the scope is a composite
type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
then the subprogram declaration is uniqued based only on its ``linkageName:``
and ``scope:``.

.. code-block:: text

    define void @_Z3foov() !dbg !0 {
      ...
    }

    !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
                                file: !2, line: 7, type: !3, isLocal: true,
                                isDefinition: true, scopeLine: 8,
                                containingType: !4,
                                virtuality: DW_VIRTUALITY_pure_virtual,
                                virtualIndex: 10, flags: DIFlagPrototyped,
                                isOptimized: true, unit: !5, templateParams: !6,
                                declaration: !7, variables: !8, thrownTypes: !9)

.. _DILexicalBlock:

DILexicalBlock
""""""""""""""

``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
<DISubprogram>`. The line number and column numbers are used to distinguish
two lexical blocks at same depth. They are valid targets for ``scope:``
fields.

.. code-block:: text

    !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)

Usually lexical blocks are ``distinct`` to prevent node merging based on
operands.

.. _DILexicalBlockFile:

DILexicalBlockFile
""""""""""""""""""

``DILexicalBlockFile`` nodes are used to discriminate between sections of a
:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
indicate textual inclusion, or the ``discriminator:`` field can be used to
discriminate between control flow within a single block in the source language.

.. code-block:: text

    !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
    !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
    !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)

.. _DILocation:

DILocation
""""""""""

``DILocation`` nodes represent source debug locations. The ``scope:`` field is
mandatory, and points at an :ref:`DILexicalBlockFile`, an
:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.

.. code-block:: text

    !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)

.. _DILocalVariable:

DILocalVariable
"""""""""""""""

``DILocalVariable`` nodes represent local variables in the source language. If
the ``arg:`` field is set to non-zero, then this variable is a subprogram
parameter, and it will be included in the ``variables:`` field of its
:ref:`DISubprogram`.

.. code-block:: text

    !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
                          type: !3, flags: DIFlagArtificial)
    !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
                          type: !3)
    !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)

.. _DIExpression:

DIExpression
""""""""""""

``DIExpression`` nodes represent expressions that are inspired by the DWARF
expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
referenced LLVM variable relates to the source language variable. Debug
intrinsics are interpreted left-to-right: start by pushing the value/address
operand of the intrinsic onto a stack, then repeatedly push and evaluate
opcodes from the DIExpression until the final variable description is produced.

The current supported opcode vocabulary is limited:

- ``DW_OP_deref`` dereferences the top of the expression stack.
- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
  them together and appends the result to the expression stack.
- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
  the last entry from the second last entry and appends the result to the
  expression stack.
- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
  here, respectively) of the variable fragment from the working expression. Note
  that contrary to DW_OP_bit_piece, the offset is describing the location
  within the described source variable.
- ``DW_OP_LLVM_convert, 16, DW_ATE_signed`` specifies a bit size and encoding
  (``16`` and ``DW_ATE_signed`` here, respectively) to which the top of the
  expression stack is to be converted. Maps into a ``DW_OP_convert`` operation
  that references a base type constructed from the supplied values.
- ``DW_OP_LLVM_tag_offset, tag_offset`` specifies that a memory tag should be
  optionally applied to the pointer. The memory tag is derived from the
  given tag offset in an implementation-defined manner.
- ``DW_OP_swap`` swaps top two stack entries.
- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
  of the stack is treated as an address. The second stack entry is treated as an
  address space identifier.
- ``DW_OP_stack_value`` marks a constant value.
- ``DW_OP_LLVM_entry_value, N`` can only appear at the beginning of a
  ``DIExpression``, and it specifies that all register and memory read
  operations for the debug value instruction's value/address operand and for
  the ``(N - 1)`` operations immediately following the
  ``DW_OP_LLVM_entry_value`` refer to their respective values at function
  entry. For example, ``!DIExpression(DW_OP_LLVM_entry_value, 1,
  DW_OP_plus_uconst, 123, DW_OP_stack_value)`` specifies an expression where
  the entry value of the debug value instruction's value/address operand is
  pushed to the stack, and is added with 123. Due to framework limitations
  ``N`` can currently only be 1.

  ``DW_OP_LLVM_entry_value`` is only legal in MIR. The operation is introduced
  by the ``LiveDebugValues`` pass; currently only for function parameters that
  are unmodified throughout a function and that are described as simple
  register location descriptions. The operation is also introduced by the
  ``AsmPrinter`` pass when a call site parameter value
  (``DW_AT_call_site_parameter_value``) is represented as entry value of the
  parameter.
- ``DW_OP_breg`` (or ``DW_OP_bregx``) represents a content on the provided
  signed offset of the specified register. The opcode is only generated by the
  ``AsmPrinter`` pass to describe call site parameter value which requires an
  expression over two registers.

DWARF specifies three kinds of simple location descriptions: Register, memory,
and implicit location descriptions.  Note that a location description is
defined over certain ranges of a program, i.e the location of a variable may
change over the course of the program. Register and memory location
descriptions describe the *concrete location* of a source variable (in the
sense that a debugger might modify its value), whereas *implicit locations*
describe merely the actual *value* of a source variable which might not exist
in registers or in memory (see ``DW_OP_stack_value``).

A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
value (the address) of a source variable. The first operand of the intrinsic
must be an address of some kind. A DIExpression attached to the intrinsic
refines this address to produce a concrete location for the source variable.

A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
The first operand of the intrinsic may be a direct or indirect value. A
DIExpresion attached to the intrinsic refines the first operand to produce a
direct value. For example, if the first operand is an indirect value, it may be
necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
valid debug intrinsic.

.. note::

   A DIExpression is interpreted in the same way regardless of which kind of
   debug intrinsic it's attached to.

.. code-block:: text

    !0 = !DIExpression(DW_OP_deref)
    !1 = !DIExpression(DW_OP_plus_uconst, 3)
    !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
    !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
    !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
    !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
    !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)

DIFlags
"""""""""""""""

These flags encode various properties of DINodes.

The `ArgumentNotModified` flag marks a function argument whose value
is not modified throughout of a function. This flag is used to decide
whether a DW_OP_LLVM_entry_value can be used in a location description
after the function prologue. The language frontend is expected to compute
this property for each DILocalVariable. The flag should be used
only in optimized code.

The `ExportSymbols` flag marks a class, struct or union whose members
may be referenced as if they were defined in the containing class or
union. This flag is used to decide whether the DW_AT_export_symbols can
be used for the structure type.

DIObjCProperty
""""""""""""""

``DIObjCProperty`` nodes represent Objective-C property nodes.

.. code-block:: text

    !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
                         getter: "getFoo", attributes: 7, type: !2)

DIImportedEntity
""""""""""""""""

``DIImportedEntity`` nodes represent entities (such as modules) imported into a
compile unit.

.. code-block:: text

   !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
                          entity: !1, line: 7)

DIMacro
"""""""

``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
The ``name:`` field is the macro identifier, followed by macro parameters when
defining a function-like macro, and the ``value`` field is the token-string
used to expand the macro identifier.

.. code-block:: text

   !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
                 value: "((x) + 1)")
   !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")

DIMacroFile
"""""""""""

``DIMacroFile`` nodes represent inclusion of source files.
The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
appear in the included source file.

.. code-block:: text

   !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
                     nodes: !3)

'``tbaa``' Metadata
^^^^^^^^^^^^^^^^^^^

In LLVM IR, memory does not have types, so LLVM's own type system is not
suitable for doing type based alias analysis (TBAA). Instead, metadata is
added to the IR to describe a type system of a higher level language. This
can be used to implement C/C++ strict type aliasing rules, but it can also
be used to implement custom alias analysis behavior for other languages.

This description of LLVM's TBAA system is broken into two parts:
:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
:ref:`Representation<tbaa_node_representation>` talks about the metadata
encoding of various entities.

It is always possible to trace any TBAA node to a "root" TBAA node (details
in the :ref:`Representation<tbaa_node_representation>` section).  TBAA
nodes with different roots have an unknown aliasing relationship, and LLVM
conservatively infers ``MayAlias`` between them.  The rules mentioned in
this section only pertain to TBAA nodes living under the same root.

.. _tbaa_node_semantics:

Semantics
"""""""""

The TBAA metadata system, referred to as "struct path TBAA" (not to be
confused with ``tbaa.struct``), consists of the following high level
concepts: *Type Descriptors*, further subdivided into scalar type
descriptors and struct type descriptors; and *Access Tags*.

**Type descriptors** describe the type system of the higher level language
being compiled.  **Scalar type descriptors** describe types that do not
contain other types.  Each scalar type has a parent type, which must also
be a scalar type or the TBAA root.  Via this parent relation, scalar types
within a TBAA root form a tree.  **Struct type descriptors** denote types
that contain a sequence of other type descriptors, at known offsets.  These
contained type descriptors can either be struct type descriptors themselves
or scalar type descriptors.

**Access tags** are metadata nodes attached to load and store instructions.
Access tags use type descriptors to describe the *location* being accessed
in terms of the type system of the higher level language.  Access tags are
tuples consisting of a base type, an access type and an offset.  The base
type is a scalar type descriptor or a struct type descriptor, the access
type is a scalar type descriptor, and the offset is a constant integer.

The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
things:

 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
   or store) of a value of type ``AccessTy`` contained in the struct type
   ``BaseTy`` at offset ``Offset``.

 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
   ``AccessTy`` must be the same; and the access tag describes a scalar
   access with scalar type ``AccessTy``.

We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
tuples this way:

 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
   ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
   described in the TBAA metadata.  ``ImmediateParent(BaseTy, Offset)`` is
   undefined if ``Offset`` is non-zero.

 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
   is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
   ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
   to be relative within that inner type.

A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
Offset2)`` via the ``Parent`` relation or vice versa.

As a concrete example, the type descriptor graph for the following program

.. code-block:: c

    struct Inner {
      int i;    // offset 0
      float f;  // offset 4
    };

    struct Outer {
      float f;  // offset 0
      double d; // offset 4
      struct Inner inner_a;  // offset 12
    };

    void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
      outer->f = 0;            // tag0: (OuterStructTy, FloatScalarTy, 0)
      outer->inner_a.i = 0;    // tag1: (OuterStructTy, IntScalarTy, 12)
      outer->inner_a.f = 0.0;  // tag2: (OuterStructTy, FloatScalarTy, 16)
      *f = 0.0;                // tag3: (FloatScalarTy, FloatScalarTy, 0)
    }

is (note that in C and C++, ``char`` can be used to access any arbitrary
type):

.. code-block:: text

    Root = "TBAA Root"
    CharScalarTy = ("char", Root, 0)
    FloatScalarTy = ("float", CharScalarTy, 0)
    DoubleScalarTy = ("double", CharScalarTy, 0)
    IntScalarTy = ("int", CharScalarTy, 0)
    InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
    OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
                     (InnerStructTy, 12)}


with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
0)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.

.. _tbaa_node_representation:

Representation
""""""""""""""

The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
with exactly one ``MDString`` operand.

Scalar type descriptors are represented as an ``MDNode`` s with two
operands.  The first operand is an ``MDString`` denoting the name of the
struct type.  LLVM does not assign meaning to the value of this operand, it
only cares about it being an ``MDString``.  The second operand is an
``MDNode`` which points to the parent for said scalar type descriptor,
which is either another scalar type descriptor or the TBAA root.  Scalar
type descriptors can have an optional third argument, but that must be the
constant integer zero.

Struct type descriptors are represented as ``MDNode`` s with an odd number
of operands greater than 1.  The first operand is an ``MDString`` denoting
the name of the struct type.  Like in scalar type descriptors the actual
value of this name operand is irrelevant to LLVM.  After the name operand,
the struct type descriptors have a sequence of alternating ``MDNode`` and
``ConstantInt`` operands.  With N starting from 1, the 2N - 1 th operand,
an ``MDNode``, denotes a contained field, and the 2N th operand, a
``ConstantInt``, is the offset of the said contained field.  The offsets
must be in non-decreasing order.

Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
The first operand is an ``MDNode`` pointing to the node representing the
base type.  The second operand is an ``MDNode`` pointing to the node
representing the access type.  The third operand is a ``ConstantInt`` that
states the offset of the access.  If a fourth field is present, it must be
a ``ConstantInt`` valued at 0 or 1.  If it is 1 then the access tag states
that the location being accessed is "constant" (meaning
``pointsToConstantMemory`` should return true; see `other useful
AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).  The TBAA root of
the access type and the base type of an access tag must be the same, and
that is the TBAA root of the access tag.

'``tbaa.struct``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^

The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
aggregate assignment operations in C and similar languages, however it
is defined to copy a contiguous region of memory, which is more than
strictly necessary for aggregate types which contain holes due to
padding. Also, it doesn't contain any TBAA information about the fields
of the aggregate.

``!tbaa.struct`` metadata can describe which memory subregions in a
memcpy are padding and what the TBAA tags of the struct are.

The current metadata format is very simple. ``!tbaa.struct`` metadata
nodes are a list of operands which are in conceptual groups of three.
For each group of three, the first operand gives the byte offset of a
field in bytes, the second gives its size in bytes, and the third gives
its tbaa tag. e.g.:

.. code-block:: llvm

    !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }

This describes a struct with two fields. The first is at offset 0 bytes
with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
and has size 4 bytes and has tbaa tag !2.

Note that the fields need not be contiguous. In this example, there is a
4 byte gap between the two fields. This gap represents padding which
does not carry useful data and need not be preserved.

'``noalias``' and '``alias.scope``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
noalias memory-access sets. This means that some collection of memory access
instructions (loads, stores, memory-accessing calls, etc.) that carry
``noalias`` metadata can specifically be specified not to alias with some other
collection of memory access instructions that carry ``alias.scope`` metadata.
Each type of metadata specifies a list of scopes where each scope has an id and
a domain.

When evaluating an aliasing query, if for some domain, the set
of scopes with that domain in one instruction's ``alias.scope`` list is a
subset of (or equal to) the set of scopes for that domain in another
instruction's ``noalias`` list, then the two memory accesses are assumed not to
alias.

Because scopes in one domain don't affect scopes in other domains, separate
domains can be used to compose multiple independent noalias sets.  This is
used for example during inlining.  As the noalias function parameters are
turned into noalias scope metadata, a new domain is used every time the
function is inlined.

The metadata identifying each domain is itself a list containing one or two
entries. The first entry is the name of the domain. Note that if the name is a
string then it can be combined across functions and translation units. A
self-reference can be used to create globally unique domain names. A
descriptive string may optionally be provided as a second list entry.

The metadata identifying each scope is also itself a list containing two or
three entries. The first entry is the name of the scope. Note that if the name
is a string then it can be combined across functions and translation units. A
self-reference can be used to create globally unique scope names. A metadata
reference to the scope's domain is the second entry. A descriptive string may
optionally be provided as a third list entry.

For example,

.. code-block:: llvm

    ; Two scope domains:
    !0 = !{!0}
    !1 = !{!1}

    ; Some scopes in these domains:
    !2 = !{!2, !0}
    !3 = !{!3, !0}
    !4 = !{!4, !1}

    ; Some scope lists:
    !5 = !{!4} ; A list containing only scope !4
    !6 = !{!4, !3, !2}
    !7 = !{!3}

    ; These two instructions don't alias:
    %0 = load float, float* %c, align 4, !alias.scope !5
    store float %0, float* %arrayidx.i, align 4, !noalias !5

    ; These two instructions also don't alias (for domain !1, the set of scopes
    ; in the !alias.scope equals that in the !noalias list):
    %2 = load float, float* %c, align 4, !alias.scope !5
    store float %2, float* %arrayidx.i2, align 4, !noalias !6

    ; These two instructions may alias (for domain !0, the set of scopes in
    ; the !noalias list is not a superset of, or equal to, the scopes in the
    ; !alias.scope list):
    %2 = load float, float* %c, align 4, !alias.scope !6
    store float %0, float* %arrayidx.i, align 4, !noalias !7

'``fpmath``' Metadata
^^^^^^^^^^^^^^^^^^^^^

``fpmath`` metadata may be attached to any instruction of floating-point
type. It can be used to express the maximum acceptable error in the
result of that instruction, in ULPs, thus potentially allowing the
compiler to use a more efficient but less accurate method of computing
it. ULP is defined as follows:

    If ``x`` is a real number that lies between two finite consecutive
    floating-point numbers ``a`` and ``b``, without being equal to one
    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
    distance between the two non-equal finite floating-point numbers
    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.

The metadata node shall consist of a single positive float type number
representing the maximum relative error, for example:

.. code-block:: llvm

    !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs

.. _range-metadata:

'``range``' Metadata
^^^^^^^^^^^^^^^^^^^^

``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
integer types. It expresses the possible ranges the loaded value or the value
returned by the called function at this call site is in. If the loaded or
returned value is not in the specified range, the behavior is undefined. The
ranges are represented with a flattened list of integers. The loaded value or
the value returned is known to be in the union of the ranges defined by each
consecutive pair. Each pair has the following properties:

-  The type must match the type loaded by the instruction.
-  The pair ``a,b`` represents the range ``[a,b)``.
-  Both ``a`` and ``b`` are constants.
-  The range is allowed to wrap.
-  The range should not represent the full or empty set. That is,
   ``a!=b``.

In addition, the pairs must be in signed order of the lower bound and
they must be non-contiguous.

Examples:

.. code-block:: llvm

      %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
      %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
      %d = invoke i8 @bar() to label %cont
             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
    ...
    !0 = !{ i8 0, i8 2 }
    !1 = !{ i8 255, i8 2 }
    !2 = !{ i8 0, i8 2, i8 3, i8 6 }
    !3 = !{ i8 -2, i8 0, i8 3, i8 6 }

'``absolute_symbol``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``absolute_symbol`` metadata may be attached to a global variable
declaration. It marks the declaration as a reference to an absolute symbol,
which causes the backend to use absolute relocations for the symbol even
in position independent code, and expresses the possible ranges that the
global variable's *address* (not its value) is in, in the same format as
``range`` metadata, with the extension that the pair ``all-ones,all-ones``
may be used to represent the full set.

Example (assuming 64-bit pointers):

.. code-block:: llvm

      @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
      @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)

    ...
    !0 = !{ i64 0, i64 256 }
    !1 = !{ i64 -1, i64 -1 }

'``callees``' Metadata
^^^^^^^^^^^^^^^^^^^^^^

``callees`` metadata may be attached to indirect call sites. If ``callees``
metadata is attached to a call site, and any callee is not among the set of
functions provided by the metadata, the behavior is undefined. The intent of
this metadata is to facilitate optimizations such as indirect-call promotion.
For example, in the code below, the call instruction may only target the
``add`` or ``sub`` functions:

.. code-block:: llvm

    %result = call i64 %binop(i64 %x, i64 %y), !callees !0

    ...
    !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}

'``callback``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^

``callback`` metadata may be attached to a function declaration, or definition.
(Call sites are excluded only due to the lack of a use case.) For ease of
exposition, we'll refer to the function annotated w/ metadata as a broker
function. The metadata describes how the arguments of a call to the broker are
in turn passed to the callback function specified by the metadata. Thus, the
``callback`` metadata provides a partial description of a call site inside the
broker function with regards to the arguments of a call to the broker. The only
semantic restriction on the broker function itself is that it is not allowed to
inspect or modify arguments referenced in the ``callback`` metadata as
pass-through to the callback function.

The broker is not required to actually invoke the callback function at runtime.
However, the assumptions about not inspecting or modifying arguments that would
be passed to the specified callback function still hold, even if the callback
function is not dynamically invoked. The broker is allowed to invoke the
callback function more than once per invocation of the broker. The broker is
also allowed to invoke (directly or indirectly) the function passed as a
callback through another use. Finally, the broker is also allowed to relay the
callback callee invocation to a different thread.

The metadata is structured as follows: At the outer level, ``callback``
metadata is a list of ``callback`` encodings. Each encoding starts with a
constant ``i64`` which describes the argument position of the callback function
in the call to the broker. The following elements, except the last, describe
what arguments are passed to the callback function. Each element is again an
``i64`` constant identifying the argument of the broker that is passed through,
or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
they are listed has to be the same in which they are passed to the callback
callee. The last element of the encoding is a boolean which specifies how
variadic arguments of the broker are handled. If it is true, all variadic
arguments of the broker are passed through to the callback function *after* the
arguments encoded explicitly before.

In the code below, the ``pthread_create`` function is marked as a broker
through the ``!callback !1`` metadata. In the example, there is only one
callback encoding, namely ``!2``, associated with the broker. This encoding
identifies the callback function as the second argument of the broker (``i64
2``) and the sole argument of the callback function as the third one of the
broker function (``i64 3``).

.. FIXME why does the llvm-sphinx-docs builder give a highlighting
   error if the below is set to highlight as 'llvm', despite that we
   have misc.highlighting_failure set?

.. code-block:: text

    declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)

    ...
    !2 = !{i64 2, i64 3, i1 false}
    !1 = !{!2}

Another example is shown below. The callback callee is the second argument of
the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
values (each identified by a ``i64 -1``) and afterwards all
variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
final ``i1 true``).

.. FIXME why does the llvm-sphinx-docs builder give a highlighting
   error if the below is set to highlight as 'llvm', despite that we
   have misc.highlighting_failure set?

.. code-block:: text

    declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)

    ...
    !1 = !{i64 2, i64 -1, i64 -1, i1 true}
    !0 = !{!1}


'``unpredictable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``unpredictable`` metadata may be attached to any branch or switch
instruction. It can be used to express the unpredictability of control
flow. Similar to the llvm.expect intrinsic, it may be used to alter
optimizations related to compare and branch instructions. The metadata
is treated as a boolean value; if it exists, it signals that the branch
or switch that it is attached to is completely unpredictable.

.. _md_dereferenceable:

'``dereferenceable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The existence of the ``!dereferenceable`` metadata on the instruction
tells the optimizer that the value loaded is known to be dereferenceable.
The number of bytes known to be dereferenceable is specified by the integer
value in the metadata node. This is analogous to the ''dereferenceable''
attribute on parameters and return values.

.. _md_dereferenceable_or_null:

'``dereferenceable_or_null``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The existence of the ``!dereferenceable_or_null`` metadata on the
instruction tells the optimizer that the value loaded is known to be either
dereferenceable or null.
The number of bytes known to be dereferenceable is specified by the integer
value in the metadata node. This is analogous to the ''dereferenceable_or_null''
attribute on parameters and return values.

.. _llvm.loop:

'``llvm.loop``'
^^^^^^^^^^^^^^^

It is sometimes useful to attach information to loop constructs. Currently,
loop metadata is implemented as metadata attached to the branch instruction
in the loop latch block. This type of metadata refer to a metadata node that is
guaranteed to be separate for each loop. The loop identifier metadata is
specified with the name ``llvm.loop``.

The loop identifier metadata is implemented using a metadata that refers to
itself to avoid merging it with any other identifier metadata, e.g.,
during module linkage or function inlining. That is, each loop should refer
to their own identification metadata even if they reside in separate functions.
The following example contains loop identifier metadata for two separate loop
constructs:

.. code-block:: llvm

    !0 = !{!0}
    !1 = !{!1}

The loop identifier metadata can be used to specify additional
per-loop metadata. Any operands after the first operand can be treated
as user-defined metadata. For example the ``llvm.loop.unroll.count``
suggests an unroll factor to the loop unroller:

.. code-block:: llvm

      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
    ...
    !0 = !{!0, !1}
    !1 = !{!"llvm.loop.unroll.count", i32 4}

'``llvm.loop.disable_nonforced``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata disables all optional loop transformations unless
explicitly instructed using other transformation metadata such as
``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
whether a transformation is profitable. The purpose is to avoid that the
loop is transformed to a different loop before an explicitly requested
(forced) transformation is applied. For instance, loop fusion can make
other transformations impossible. Mandatory loop canonicalizations such
as loop rotation are still applied.

It is recommended to use this metadata in addition to any llvm.loop.*
transformation directive. Also, any loop should have at most one
directive applied to it (and a sequence of transformations built using
followup-attributes). Otherwise, which transformation will be applied
depends on implementation details such as the pass pipeline order.

See :ref:`transformation-metadata` for details.

'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
used to control per-loop vectorization and interleaving parameters such as
vectorization width and interleave count. These metadata should be used in
conjunction with ``llvm.loop`` loop identification metadata. The
``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
optimization hints and the optimizer will only interleave and vectorize loops if
it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
which contains information about loop-carried memory dependencies can be helpful
in determining the safety of these transformations.

'``llvm.loop.interleave.count``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests an interleave count to the loop interleaver.
The first operand is the string ``llvm.loop.interleave.count`` and the
second operand is an integer specifying the interleave count. For
example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.interleave.count", i32 4}

Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
then the interleave count will be determined automatically.

'``llvm.loop.vectorize.enable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata selectively enables or disables vectorization for the loop. The
first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
is a bit. If the bit operand value is 1 vectorization is enabled. A value of
0 disables vectorization:

.. code-block:: llvm

   !0 = !{!"llvm.loop.vectorize.enable", i1 0}
   !1 = !{!"llvm.loop.vectorize.enable", i1 1}

'``llvm.loop.vectorize.predicate.enable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata selectively enables or disables creating predicated instructions
for the loop, which can enable folding of the scalar epilogue loop into the
main loop. The first operand is the string
``llvm.loop.vectorize.predicate.enable`` and the second operand is a bit. If
the bit operand value is 1 vectorization is enabled. A value of 0 disables
vectorization:

.. code-block:: llvm

   !0 = !{!"llvm.loop.vectorize.predicate.enable", i1 0}
   !1 = !{!"llvm.loop.vectorize.predicate.enable", i1 1}

'``llvm.loop.vectorize.width``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata sets the target width of the vectorizer. The first
operand is the string ``llvm.loop.vectorize.width`` and the second
operand is an integer specifying the width. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.vectorize.width", i32 4}

Note that setting ``llvm.loop.vectorize.width`` to 1 disables
vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
0 or if the loop does not have this metadata the width will be
determined automatically.

'``llvm.loop.vectorize.followup_vectorized``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the vectorized loop will
have. See :ref:`transformation-metadata` for details.

'``llvm.loop.vectorize.followup_epilogue``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the epilogue will have. The
epilogue is not vectorized and is executed when either the vectorized
loop is not known to preserve semantics (because e.g., it processes two
arrays that are found to alias by a runtime check) or for the last
iterations that do not fill a complete set of vector lanes. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.vectorize.followup_all``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Attributes in the metadata will be added to both the vectorized and
epilogue loop.
See :ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.unroll``'
^^^^^^^^^^^^^^^^^^^^^^

Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
optimization hints such as the unroll factor. ``llvm.loop.unroll``
metadata should be used in conjunction with ``llvm.loop`` loop
identification metadata. The ``llvm.loop.unroll`` metadata are only
optimization hints and the unrolling will only be performed if the
optimizer believes it is safe to do so.

'``llvm.loop.unroll.count``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests an unroll factor to the loop unroller. The
first operand is the string ``llvm.loop.unroll.count`` and the second
operand is a positive integer specifying the unroll factor. For
example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll.count", i32 4}

If the trip count of the loop is less than the unroll count the loop
will be partially unrolled.

'``llvm.loop.unroll.disable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata disables loop unrolling. The metadata has a single operand
which is the string ``llvm.loop.unroll.disable``. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll.disable"}

'``llvm.loop.unroll.runtime.disable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata disables runtime loop unrolling. The metadata has a single
operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll.runtime.disable"}

'``llvm.loop.unroll.enable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests that the loop should be fully unrolled if the trip count
is known at compile time and partially unrolled if the trip count is not known
at compile time. The metadata has a single operand which is the string
``llvm.loop.unroll.enable``.  For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll.enable"}

'``llvm.loop.unroll.full``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests that the loop should be unrolled fully. The
metadata has a single operand which is the string ``llvm.loop.unroll.full``.
For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll.full"}

'``llvm.loop.unroll.followup``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the unrolled loop will have.
See :ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.unroll.followup_remainder``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the remainder loop after
partial/runtime unrolling will have. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.unroll_and_jam``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
above, but affect the unroll and jam pass. In addition any loop with
``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
too.)

The metadata for unroll and jam otherwise is the same as for ``unroll``.
``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
and the normal safety checks will still be performed.

'``llvm.loop.unroll_and_jam.count``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests an unroll and jam factor to use, similarly to
``llvm.loop.unroll.count``. The first operand is the string
``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
specifying the unroll factor. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}

If the trip count of the loop is less than the unroll count the loop
will be partially unroll and jammed.

'``llvm.loop.unroll_and_jam.disable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata disables loop unroll and jamming. The metadata has a single
operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll_and_jam.disable"}

'``llvm.loop.unroll_and_jam.enable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata suggests that the loop should be fully unroll and jammed if the
trip count is known at compile time and partially unrolled if the trip count is
not known at compile time. The metadata has a single operand which is the
string ``llvm.loop.unroll_and_jam.enable``.  For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.unroll_and_jam.enable"}

'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the outer unrolled loop will
have. See :ref:`Transformation Metadata <transformation-metadata>` for
details.

'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which loop attributes the inner jammed loop will
have. See :ref:`Transformation Metadata <transformation-metadata>` for
details.

'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which attributes the epilogue of the outer loop
will have. This loop is usually unrolled, meaning there is no such
loop. This attribute will be ignored in this case. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which attributes the inner loop of the epilogue
will have. The outer epilogue will usually be unrolled, meaning there
can be multiple inner remainder loops. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.unroll_and_jam.followup_all``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Attributes specified in the metadata is added to all
``llvm.loop.unroll_and_jam.*`` loops. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.licm_versioning.disable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata indicates that the loop should not be versioned for the purpose
of enabling loop-invariant code motion (LICM). The metadata has a single operand
which is the string ``llvm.loop.licm_versioning.disable``. For example:

.. code-block:: llvm

   !0 = !{!"llvm.loop.licm_versioning.disable"}

'``llvm.loop.distribute.enable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Loop distribution allows splitting a loop into multiple loops.  Currently,
this is only performed if the entire loop cannot be vectorized due to unsafe
memory dependencies.  The transformation will attempt to isolate the unsafe
dependencies into their own loop.

This metadata can be used to selectively enable or disable distribution of the
loop.  The first operand is the string ``llvm.loop.distribute.enable`` and the
second operand is a bit. If the bit operand value is 1 distribution is
enabled. A value of 0 disables distribution:

.. code-block:: llvm

   !0 = !{!"llvm.loop.distribute.enable", i1 0}
   !1 = !{!"llvm.loop.distribute.enable", i1 1}

This metadata should be used in conjunction with ``llvm.loop`` loop
identification metadata.

'``llvm.loop.distribute.followup_coincident``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which attributes extracted loops with no cyclic
dependencies will have (i.e. can be vectorized). See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.distribute.followup_sequential``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata defines which attributes the isolated loops with unsafe
memory dependencies will have. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.distribute.followup_fallback``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If loop versioning is necessary, this metadata defined the attributes
the non-distributed fallback version will have. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.loop.distribute.followup_all``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The attributes in this metadata is added to all followup loops of the
loop distribution pass. See
:ref:`Transformation Metadata <transformation-metadata>` for details.

'``llvm.licm.disable``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This metadata indicates that loop-invariant code motion (LICM) should not be
performed on this loop. The metadata has a single operand which is the string
``llvm.licm.disable``. For example:

.. code-block:: llvm

   !0 = !{!"llvm.licm.disable"}

Note that although it operates per loop it isn't given the llvm.loop prefix
as it is not affected by the ``llvm.loop.disable_nonforced`` metadata.

'``llvm.access.group``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``llvm.access.group`` metadata can be attached to any instruction that
potentially accesses memory. It can point to a single distinct metadata
node, which we call access group. This node represents all memory access
instructions referring to it via ``llvm.access.group``. When an
instruction belongs to multiple access groups, it can also point to a
list of accesses groups, illustrated by the following example.

.. code-block:: llvm

   %val = load i32, i32* %arrayidx, !llvm.access.group !0
   ...
   !0 = !{!1, !2}
   !1 = distinct !{}
   !2 = distinct !{}

It is illegal for the list node to be empty since it might be confused
with an access group.

The access group metadata node must be 'distinct' to avoid collapsing
multiple access groups by content. A access group metadata node must
always be empty which can be used to distinguish an access group
metadata node from a list of access groups. Being empty avoids the
situation that the content must be updated which, because metadata is
immutable by design, would required finding and updating all references
to the access group node.

The access group can be used to refer to a memory access instruction
without pointing to it directly (which is not possible in global
metadata). Currently, the only metadata making use of it is
``llvm.loop.parallel_accesses``.

'``llvm.loop.parallel_accesses``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``llvm.loop.parallel_accesses`` metadata refers to one or more
access group metadata nodes (see ``llvm.access.group``). It denotes that
no loop-carried memory dependence exist between it and other instructions
in the loop with this metadata.

Let ``m1`` and ``m2`` be two instructions that both have the
``llvm.access.group`` metadata to the access group ``g1``, respectively
``g2`` (which might be identical). If a loop contains both access groups
in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
assume that there is no dependency between ``m1`` and ``m2`` carried by
this loop. Instructions that belong to multiple access groups are
considered having this property if at least one of the access groups
matches the ``llvm.loop.parallel_accesses`` list.

If all memory-accessing instructions in a loop have
``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
loop has no loop carried memory dependences and is considered to be a
parallel loop.

Note that if not all memory access instructions belong to an access
group referred to by ``llvm.loop.parallel_accesses``, then the loop must
not be considered trivially parallel. Additional
memory dependence analysis is required to make that determination. As a fail
safe mechanism, this causes loops that were originally parallel to be considered
sequential (if optimization passes that are unaware of the parallel semantics
insert new memory instructions into the loop body).

Example of a loop that is considered parallel due to its correct use of
both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
metadata types.

.. code-block:: llvm

   for.body:
     ...
     %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
     ...
     store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
     ...
     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0

   for.end:
   ...
   !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
   !1 = distinct !{}

It is also possible to have nested parallel loops:

.. code-block:: llvm

   outer.for.body:
     ...
     %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
     ...
     br label %inner.for.body

   inner.for.body:
     ...
     %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
     ...
     store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
     ...
     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1

   inner.for.end:
     ...
     store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
     ...
     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2

   outer.for.end:                                          ; preds = %for.body
   ...
   !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}}     ; metadata for the inner loop
   !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
   !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
   !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop

'``irr_loop``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^

``irr_loop`` metadata may be attached to the terminator instruction of a basic
block that's an irreducible loop header (note that an irreducible loop has more
than once header basic blocks.) If ``irr_loop`` metadata is attached to the
terminator instruction of a basic block that is not really an irreducible loop
header, the behavior is undefined. The intent of this metadata is to improve the
accuracy of the block frequency propagation. For example, in the code below, the
block ``header0`` may have a loop header weight (relative to the other headers of
the irreducible loop) of 100:

.. code-block:: llvm

    header0:
    ...
    br i1 %cmp, label %t1, label %t2, !irr_loop !0

    ...
    !0 = !{"loop_header_weight", i64 100}

Irreducible loop header weights are typically based on profile data.

.. _md_invariant.group:

'``invariant.group``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The experimental ``invariant.group`` metadata may be attached to
``load``/``store`` instructions referencing a single metadata with no entries.
The existence of the ``invariant.group`` metadata on the instruction tells
the optimizer that every ``load`` and ``store`` to the same pointer operand
can be assumed to load or store the same
value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
when two pointers are considered the same). Pointers returned by bitcast or
getelementptr with only zero indices are considered the same.

Examples:

.. code-block:: llvm

   @unknownPtr = external global i8
   ...
   %ptr = alloca i8
   store i8 42, i8* %ptr, !invariant.group !0
   call void @foo(i8* %ptr)

   %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
   call void @foo(i8* %ptr)

   %newPtr = call i8* @getPointer(i8* %ptr)
   %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr

   %unknownValue = load i8, i8* @unknownPtr
   store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42

   call void @foo(i8* %ptr)
   %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
   %d = load i8, i8* %newPtr2, !invariant.group !0  ; Can't step through launder.invariant.group to get value of %ptr

   ...
   declare void @foo(i8*)
   declare i8* @getPointer(i8*)
   declare i8* @llvm.launder.invariant.group(i8*)

   !0 = !{}

The invariant.group metadata must be dropped when replacing one pointer by
another based on aliasing information. This is because invariant.group is tied
to the SSA value of the pointer operand.

.. code-block:: llvm

  %v = load i8, i8* %x, !invariant.group !0
  ; if %x mustalias %y then we can replace the above instruction with
  %v = load i8, i8* %y

Note that this is an experimental feature, which means that its semantics might
change in the future.

'``type``' Metadata
^^^^^^^^^^^^^^^^^^^

See :doc:`TypeMetadata`.

'``associated``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^

The ``associated`` metadata may be attached to a global object
declaration with a single argument that references another global object.

This metadata prevents discarding of the global object in linker GC
unless the referenced object is also discarded. The linker support for
this feature is spotty. For best compatibility, globals carrying this
metadata may also:

- Be in a comdat with the referenced global.
- Be in @llvm.compiler.used.
- Have an explicit section with a name which is a valid C identifier.

It does not have any effect on non-ELF targets.

Example:

.. code-block:: text

    $a = comdat any
    @a = global i32 1, comdat $a
    @b = internal global i32 2, comdat $a, section "abc", !associated !0
    !0 = !{i32* @a}


'``prof``' Metadata
^^^^^^^^^^^^^^^^^^^

The ``prof`` metadata is used to record profile data in the IR.
The first operand of the metadata node indicates the profile metadata
type. There are currently 3 types:
:ref:`branch_weights<prof_node_branch_weights>`,
:ref:`function_entry_count<prof_node_function_entry_count>`, and
:ref:`VP<prof_node_VP>`.

.. _prof_node_branch_weights:

branch_weights
""""""""""""""

Branch weight metadata attached to a branch, select, switch or call instruction
represents the likeliness of the associated branch being taken.
For more information, see :doc:`BranchWeightMetadata`.

.. _prof_node_function_entry_count:

function_entry_count
""""""""""""""""""""

Function entry count metadata can be attached to function definitions
to record the number of times the function is called. Used with BFI
information, it is also used to derive the basic block profile count.
For more information, see :doc:`BranchWeightMetadata`.

.. _prof_node_VP:

VP
""

VP (value profile) metadata can be attached to instructions that have
value profile information. Currently this is indirect calls (where it
records the hottest callees) and calls to memory intrinsics such as memcpy,
memmove, and memset (where it records the hottest byte lengths).

Each VP metadata node contains "VP" string, then a uint32_t value for the value
profiling kind, a uint64_t value for the total number of times the instruction
is executed, followed by uint64_t value and execution count pairs.
The value profiling kind is 0 for indirect call targets and 1 for memory
operations. For indirect call targets, each profile value is a hash
of the callee function name, and for memory operations each value is the
byte length.

Note that the value counts do not need to add up to the total count
listed in the third operand (in practice only the top hottest values
are tracked and reported).

Indirect call example:

.. code-block:: llvm

    call void %f(), !prof !1
    !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}

Note that the VP type is 0 (the second operand), which indicates this is
an indirect call value profile data. The third operand indicates that the
indirect call executed 1600 times. The 4th and 6th operands give the
hashes of the 2 hottest target functions' names (this is the same hash used
to represent function names in the profile database), and the 5th and 7th
operands give the execution count that each of the respective prior target
functions was called.

Module Flags Metadata
=====================

Information about the module as a whole is difficult to convey to LLVM's
subsystems. The LLVM IR isn't sufficient to transmit this information.
The ``llvm.module.flags`` named metadata exists in order to facilitate
this. These flags are in the form of key / value pairs --- much like a
dictionary --- making it easy for any subsystem who cares about a flag to
look it up.

The ``llvm.module.flags`` metadata contains a list of metadata triplets.
Each triplet has the following form:

-  The first element is a *behavior* flag, which specifies the behavior
   when two (or more) modules are merged together, and it encounters two
   (or more) metadata with the same ID. The supported behaviors are
   described below.
-  The second element is a metadata string that is a unique ID for the
   metadata. Each module may only have one flag entry for each unique ID (not
   including entries with the **Require** behavior).
-  The third element is the value of the flag.

When two (or more) modules are merged together, the resulting
``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
each unique metadata ID string, there will be exactly one entry in the merged
modules ``llvm.module.flags`` metadata table, and the value for that entry will
be determined by the merge behavior flag, as described below. The only exception
is that entries with the *Require* behavior are always preserved.

The following behaviors are supported:

.. list-table::
   :header-rows: 1
   :widths: 10 90

   * - Value
     - Behavior

   * - 1
     - **Error**
           Emits an error if two values disagree, otherwise the resulting value
           is that of the operands.

   * - 2
     - **Warning**
           Emits a warning if two values disagree. The result value will be the
           operand for the flag from the first module being linked.

   * - 3
     - **Require**
           Adds a requirement that another module flag be present and have a
           specified value after linking is performed. The value must be a
           metadata pair, where the first element of the pair is the ID of the
           module flag to be restricted, and the second element of the pair is
           the value the module flag should be restricted to. This behavior can
           be used to restrict the allowable results (via triggering of an
           error) of linking IDs with the **Override** behavior.

   * - 4
     - **Override**
           Uses the specified value, regardless of the behavior or value of the
           other module. If both modules specify **Override**, but the values
           differ, an error will be emitted.

   * - 5
     - **Append**
           Appends the two values, which are required to be metadata nodes.

   * - 6
     - **AppendUnique**
           Appends the two values, which are required to be metadata
           nodes. However, duplicate entries in the second list are dropped
           during the append operation.

   * - 7
     - **Max**
           Takes the max of the two values, which are required to be integers.

It is an error for a particular unique flag ID to have multiple behaviors,
except in the case of **Require** (which adds restrictions on another metadata
value) or **Override**.

An example of module flags:

.. code-block:: llvm

    !0 = !{ i32 1, !"foo", i32 1 }
    !1 = !{ i32 4, !"bar", i32 37 }
    !2 = !{ i32 2, !"qux", i32 42 }
    !3 = !{ i32 3, !"qux",
      !{
        !"foo", i32 1
      }
    }
    !llvm.module.flags = !{ !0, !1, !2, !3 }

-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
   if two or more ``!"foo"`` flags are seen is to emit an error if their
   values are not equal.

-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
   behavior if two or more ``!"bar"`` flags are seen is to use the value
   '37'.

-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
   behavior if two or more ``!"qux"`` flags are seen is to emit a
   warning if their values are not equal.

-  Metadata ``!3`` has the ID ``!"qux"`` and the value:

   ::

       !{ !"foo", i32 1 }

   The behavior is to emit an error if the ``llvm.module.flags`` does not
   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
   performed.

Objective-C Garbage Collection Module Flags Metadata
----------------------------------------------------

On the Mach-O platform, Objective-C stores metadata about garbage
collection in a special section called "image info". The metadata
consists of a version number and a bitmask specifying what types of
garbage collection are supported (if any) by the file. If two or more
modules are linked together their garbage collection metadata needs to
be merged rather than appended together.

The Objective-C garbage collection module flags metadata consists of the
following key-value pairs:

.. list-table::
   :header-rows: 1
   :widths: 30 70

   * - Key
     - Value

   * - ``Objective-C Version``
     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.

   * - ``Objective-C Image Info Version``
     - **[Required]** --- The version of the image info section. Currently
       always 0.

   * - ``Objective-C Image Info Section``
     - **[Required]** --- The section to place the metadata. Valid values are
       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
       Objective-C ABI version 2.

   * - ``Objective-C Garbage Collection``
     - **[Required]** --- Specifies whether garbage collection is supported or
       not. Valid values are 0, for no garbage collection, and 2, for garbage
       collection supported.

   * - ``Objective-C GC Only``
     - **[Optional]** --- Specifies that only garbage collection is supported.
       If present, its value must be 6. This flag requires that the
       ``Objective-C Garbage Collection`` flag have the value 2.

Some important flag interactions:

-  If a module with ``Objective-C Garbage Collection`` set to 0 is
   merged with a module with ``Objective-C Garbage Collection`` set to
   2, then the resulting module has the
   ``Objective-C Garbage Collection`` flag set to 0.
-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
   merged with a module with ``Objective-C GC Only`` set to 6.

C type width Module Flags Metadata
----------------------------------

The ARM backend emits a section into each generated object file describing the
options that it was compiled with (in a compiler-independent way) to prevent
linking incompatible objects, and to allow automatic library selection. Some
of these options are not visible at the IR level, namely wchar_t width and enum
width.

To pass this information to the backend, these options are encoded in module
flags metadata, using the following key-value pairs:

.. list-table::
   :header-rows: 1
   :widths: 30 70

   * - Key
     - Value

   * - short_wchar
     - * 0 --- sizeof(wchar_t) == 4
       * 1 --- sizeof(wchar_t) == 2

   * - short_enum
     - * 0 --- Enums are at least as large as an ``int``.
       * 1 --- Enums are stored in the smallest integer type which can
         represent all of its values.

For example, the following metadata section specifies that the module was
compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
enum is the smallest type which can represent all of its values::

    !llvm.module.flags = !{!0, !1}
    !0 = !{i32 1, !"short_wchar", i32 1}
    !1 = !{i32 1, !"short_enum", i32 0}

LTO Post-Link Module Flags Metadata
-----------------------------------

Some optimisations are only when the entire LTO unit is present in the current
module. This is represented by the ``LTOPostLink`` module flags metadata, which
will be created with a value of ``1`` when LTO linking occurs.

Automatic Linker Flags Named Metadata
=====================================

Some targets support embedding of flags to the linker inside individual object
files. Typically this is used in conjunction with language extensions which
allow source files to contain linker command line options, and have these
automatically be transmitted to the linker via object files.

These flags are encoded in the IR using named metadata with the name
``!llvm.linker.options``. Each operand is expected to be a metadata node
which should be a list of other metadata nodes, each of which should be a
list of metadata strings defining linker options.

For example, the following metadata section specifies two separate sets of
linker options, presumably to link against ``libz`` and the ``Cocoa``
framework::

    !0 = !{ !"-lz" }
    !1 = !{ !"-framework", !"Cocoa" }
    !llvm.linker.options = !{ !0, !1 }

The metadata encoding as lists of lists of options, as opposed to a collapsed
list of options, is chosen so that the IR encoding can use multiple option
strings to specify e.g., a single library, while still having that specifier be
preserved as an atomic element that can be recognized by a target specific
assembly writer or object file emitter.

Each individual option is required to be either a valid option for the target's
linker, or an option that is reserved by the target specific assembly writer or
object file emitter. No other aspect of these options is defined by the IR.

Dependent Libs Named Metadata
=============================

Some targets support embedding of strings into object files to indicate
a set of libraries to add to the link. Typically this is used in conjunction
with language extensions which allow source files to explicitly declare the
libraries they depend on, and have these automatically be transmitted to the
linker via object files.

The list is encoded in the IR using named metadata with the name
``!llvm.dependent-libraries``. Each operand is expected to be a metadata node
which should contain a single string operand.

For example, the following metadata section contains two library specfiers::

    !0 = !{!"a library specifier"}
    !1 = !{!"another library specifier"}
    !llvm.dependent-libraries = !{ !0, !1 }

Each library specifier will be handled independently by the consuming linker.
The effect of the library specifiers are defined by the consuming linker.

.. _summary:

ThinLTO Summary
===============

Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
causes the building of a compact summary of the module that is emitted into
the bitcode. The summary is emitted into the LLVM assembly and identified
in syntax by a caret ('``^``').

The summary is parsed into a bitcode output, along with the Module
IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
summary entries (just as they currently ignore summary entries in a bitcode
input file).

Eventually, the summary will be parsed into a ModuleSummaryIndex object under
the same conditions where summary index is currently built from bitcode.
Specifically, tools that test the Thin Link portion of a ThinLTO compile
(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
(this part is not yet implemented, use llvm-as to create a bitcode object
before feeding into thin link tools for now).

There are currently 3 types of summary entries in the LLVM assembly:
:ref:`module paths<module_path_summary>`,
:ref:`global values<gv_summary>`, and
:ref:`type identifiers<typeid_summary>`.

.. _module_path_summary:

Module Path Summary Entry
-------------------------

Each module path summary entry lists a module containing global values included
in the summary. For a single IR module there will be one such entry, but
in a combined summary index produced during the thin link, there will be
one module path entry per linked module with summary.

Example:

.. code-block:: text

    ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))

The ``path`` field is a string path to the bitcode file, and the ``hash``
field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
incremental builds and caching.

.. _gv_summary:

Global Value Summary Entry
--------------------------

Each global value summary entry corresponds to a global value defined or
referenced by a summarized module.

Example:

.. code-block:: text

    ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831

For declarations, there will not be a summary list. For definitions, a
global value will contain a list of summaries, one per module containing
a definition. There can be multiple entries in a combined summary index
for symbols with weak linkage.

Each ``Summary`` format will depend on whether the global value is a
:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
:ref:`alias<alias_summary>`.

.. _function_summary:

Function Summary
^^^^^^^^^^^^^^^^

If the global value is a function, the ``Summary`` entry will look like:

.. code-block:: text

    function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?

The ``module`` field includes the summary entry id for the module containing
this definition, and the ``flags`` field contains information such as
the linkage type, a flag indicating whether it is legal to import the
definition, whether it is globally live and whether the linker resolved it
to a local definition (the latter two are populated during the thin link).
The ``insts`` field contains the number of IR instructions in the function.
Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
:ref:`Refs<refs_summary>`.

.. _variable_summary:

Global Variable Summary
^^^^^^^^^^^^^^^^^^^^^^^

If the global value is a variable, the ``Summary`` entry will look like:

.. code-block:: text

    variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?

The variable entry contains a subset of the fields in a
:ref:`function summary <function_summary>`, see the descriptions there.

.. _alias_summary:

Alias Summary
^^^^^^^^^^^^^

If the global value is an alias, the ``Summary`` entry will look like:

.. code-block:: text

    alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)

The ``module`` and ``flags`` fields are as described for a
:ref:`function summary <function_summary>`. The ``aliasee`` field
contains a reference to the global value summary entry of the aliasee.

.. _funcflags_summary:

Function Flags
^^^^^^^^^^^^^^

The optional ``FuncFlags`` field looks like:

.. code-block:: text

    funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)

If unspecified, flags are assumed to hold the conservative ``false`` value of
``0``.

.. _calls_summary:

Calls
^^^^^

The optional ``Calls`` field looks like:

.. code-block:: text

    calls: ((Callee)[, (Callee)]*)

where each ``Callee`` looks like:

.. code-block:: text

    callee: ^1[, hotness: None]?[, relbf: 0]?

The ``callee`` refers to the summary entry id of the callee. At most one
of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
branch frequency relative to the entry frequency, scaled down by 2^8)
may be specified. The defaults are ``Unknown`` and ``0``, respectively.

.. _refs_summary:

Refs
^^^^

The optional ``Refs`` field looks like:

.. code-block:: text

    refs: ((Ref)[, (Ref)]*)

where each ``Ref`` contains a reference to the summary id of the referenced
value (e.g. ``^1``).

.. _typeidinfo_summary:

TypeIdInfo
^^^^^^^^^^

The optional ``TypeIdInfo`` field, used for
`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
looks like:

.. code-block:: text

    typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?

These optional fields have the following forms:

TypeTests
"""""""""

.. code-block:: text

    typeTests: (TypeIdRef[, TypeIdRef]*)

Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
by summary id or ``GUID``.

TypeTestAssumeVCalls
""""""""""""""""""""

.. code-block:: text

    typeTestAssumeVCalls: (VFuncId[, VFuncId]*)

Where each VFuncId has the format:

.. code-block:: text

    vFuncId: (TypeIdRef, offset: 16)

Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
by summary id or ``GUID`` preceded by a ``guid:`` tag.

TypeCheckedLoadVCalls
"""""""""""""""""""""

.. code-block:: text

    typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)

Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.

TypeTestAssumeConstVCalls
"""""""""""""""""""""""""

.. code-block:: text

    typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)

Where each ConstVCall has the format:

.. code-block:: text

    (VFuncId, args: (Arg[, Arg]*))

and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
and each Arg is an integer argument number.

TypeCheckedLoadConstVCalls
""""""""""""""""""""""""""

.. code-block:: text

    typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)

Where each ConstVCall has the format described for
``TypeTestAssumeConstVCalls``.

.. _typeid_summary:

Type ID Summary Entry
---------------------

Each type id summary entry corresponds to a type identifier resolution
which is generated during the LTO link portion of the compile when building
with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
so these are only present in a combined summary index.

Example:

.. code-block:: text

    ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778

The ``typeTestRes`` gives the type test resolution ``kind`` (which may
be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
the ``size-1`` bit width. It is followed by optional flags, which default to 0,
and an optional WpdResolutions (whole program devirtualization resolution)
field that looks like:

.. code-block:: text

    wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*

where each entry is a mapping from the given byte offset to the whole-program
devirtualization resolution WpdRes, that has one of the following formats:

.. code-block:: text

    wpdRes: (kind: branchFunnel)
    wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
    wpdRes: (kind: indir)

Additionally, each wpdRes has an optional ``resByArg`` field, which
describes the resolutions for calls with all constant integer arguments:

.. code-block:: text

    resByArg: (ResByArg[, ResByArg]*)

where ResByArg is:

.. code-block:: text

    args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])

Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
or ``VirtualConstProp``. The ``info`` field is only used if the kind
is ``UniformRetVal`` (indicates the uniform return value), or
``UniqueRetVal`` (holds the return value associated with the unique vtable
(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
not support the use of absolute symbols to store constants.

.. _intrinsicglobalvariables:

Intrinsic Global Variables
==========================

LLVM has a number of "magic" global variables that contain data that
affect code generation or other IR semantics. These are documented here.
All globals of this sort should have a section specified as
"``llvm.metadata``". This section and all globals that start with
"``llvm.``" are reserved for use by LLVM.

.. _gv_llvmused:

The '``llvm.used``' Global Variable
-----------------------------------

The ``@llvm.used`` global is an array which has
:ref:`appending linkage <linkage_appending>`. This array contains a list of
pointers to named global variables, functions and aliases which may optionally
have a pointer cast formed of bitcast or getelementptr. For example, a legal
use of it is:

.. code-block:: llvm

    @X = global i8 4
    @Y = global i32 123

    @llvm.used = appending global [2 x i8*] [
       i8* @X,
       i8* bitcast (i32* @Y to i8*)
    ], section "llvm.metadata"

If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
and linker are required to treat the symbol as if there is a reference to the
symbol that it cannot see (which is why they have to be named). For example, if
a variable has internal linkage and no references other than that from the
``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
references from inline asms and other things the compiler cannot "see", and
corresponds to "``attribute((used))``" in GNU C.

On some targets, the code generator must emit a directive to the
assembler or object file to prevent the assembler and linker from
molesting the symbol.

.. _gv_llvmcompilerused:

The '``llvm.compiler.used``' Global Variable
--------------------------------------------

The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
directive, except that it only prevents the compiler from touching the
symbol. On targets that support it, this allows an intelligent linker to
optimize references to the symbol without being impeded as it would be
by ``@llvm.used``.

This is a rare construct that should only be used in rare circumstances,
and should not be exposed to source languages.

.. _gv_llvmglobalctors:

The '``llvm.global_ctors``' Global Variable
-------------------------------------------

.. code-block:: llvm

    %0 = type { i32, void ()*, i8* }
    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]

The ``@llvm.global_ctors`` array contains a list of constructor
functions, priorities, and an associated global or function.
The functions referenced by this array will be called in ascending order
of priority (i.e. lowest first) when the module is loaded. The order of
functions with the same priority is not defined.

If the third field is non-null, and points to a global variable
or function, the initializer function will only run if the associated
data from the current module is not discarded.

.. _llvmglobaldtors:

The '``llvm.global_dtors``' Global Variable
-------------------------------------------

.. code-block:: llvm

    %0 = type { i32, void ()*, i8* }
    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]

The ``@llvm.global_dtors`` array contains a list of destructor
functions, priorities, and an associated global or function.
The functions referenced by this array will be called in descending
order of priority (i.e. highest first) when the module is unloaded. The
order of functions with the same priority is not defined.

If the third field is non-null, and points to a global variable
or function, the destructor function will only run if the associated
data from the current module is not discarded.

Instruction Reference
=====================

The LLVM instruction set consists of several different classifications
of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
instructions <binaryops>`, :ref:`bitwise binary
instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
:ref:`other instructions <otherops>`.

.. _terminators:

Terminator Instructions
-----------------------

As mentioned :ref:`previously <functionstructure>`, every basic block in a
program ends with a "Terminator" instruction, which indicates which
block should be executed after the current block is finished. These
terminator instructions typically yield a '``void``' value: they produce
control flow, not values (the one exception being the
':ref:`invoke <i_invoke>`' instruction).

The terminator instructions are: ':ref:`ret <i_ret>`',
':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
':ref:`callbr <i_callbr>`'
':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
':ref:`catchret <i_catchret>`',
':ref:`cleanupret <i_cleanupret>`',
and ':ref:`unreachable <i_unreachable>`'.

.. _i_ret:

'``ret``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      ret <type> <value>       ; Return a value from a non-void function
      ret void                 ; Return from void function

Overview:
"""""""""

The '``ret``' instruction is used to return control flow (and optionally
a value) from a function back to the caller.

There are two forms of the '``ret``' instruction: one that returns a
value and then causes control flow, and one that just causes control
flow to occur.

Arguments:
""""""""""

The '``ret``' instruction optionally accepts a single argument, the
return value. The type of the return value must be a ':ref:`first
class <t_firstclass>`' type.

A function is not :ref:`well formed <wellformed>` if it has a non-void
return type and contains a '``ret``' instruction with no return value or
a return value with a type that does not match its type, or if it has a
void return type and contains a '``ret``' instruction with a return
value.

Semantics:
""""""""""

When the '``ret``' instruction is executed, control flow returns back to
the calling function's context. If the caller is a
":ref:`call <i_call>`" instruction, execution continues at the
instruction after the call. If the caller was an
":ref:`invoke <i_invoke>`" instruction, execution continues at the
beginning of the "normal" destination block. If the instruction returns
a value, that value shall set the call or invoke instruction's return
value.

Example:
""""""""

.. code-block:: llvm

      ret i32 5                       ; Return an integer value of 5
      ret void                        ; Return from a void function
      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2

.. _i_br:

'``br``' Instruction
^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      br i1 <cond>, label <iftrue>, label <iffalse>
      br label <dest>          ; Unconditional branch

Overview:
"""""""""

The '``br``' instruction is used to cause control flow to transfer to a
different basic block in the current function. There are two forms of
this instruction, corresponding to a conditional branch and an
unconditional branch.

Arguments:
""""""""""

The conditional branch form of the '``br``' instruction takes a single
'``i1``' value and two '``label``' values. The unconditional form of the
'``br``' instruction takes a single '``label``' value as a target.

Semantics:
""""""""""

Upon execution of a conditional '``br``' instruction, the '``i1``'
argument is evaluated. If the value is ``true``, control flows to the
'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
to the '``iffalse``' ``label`` argument.

Example:
""""""""

.. code-block:: llvm

    Test:
      %cond = icmp eq i32 %a, %b
      br i1 %cond, label %IfEqual, label %IfUnequal
    IfEqual:
      ret i32 1
    IfUnequal:
      ret i32 0

.. _i_switch:

'``switch``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]

Overview:
"""""""""

The '``switch``' instruction is used to transfer control flow to one of
several different places. It is a generalization of the '``br``'
instruction, allowing a branch to occur to one of many possible
destinations.

Arguments:
""""""""""

The '``switch``' instruction uses three parameters: an integer
comparison value '``value``', a default '``label``' destination, and an
array of pairs of comparison value constants and '``label``'s. The table
is not allowed to contain duplicate constant entries.

Semantics:
""""""""""

The ``switch`` instruction specifies a table of values and destinations.
When the '``switch``' instruction is executed, this table is searched
for the given value. If the value is found, control flow is transferred
to the corresponding destination; otherwise, control flow is transferred
to the default destination.

Implementation:
"""""""""""""""

Depending on properties of the target machine and the particular
``switch`` instruction, this instruction may be code generated in
different ways. For example, it could be generated as a series of
chained conditional branches or with a lookup table.

Example:
""""""""

.. code-block:: llvm

     ; Emulate a conditional br instruction
     %Val = zext i1 %value to i32
     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]

     ; Emulate an unconditional br instruction
     switch i32 0, label %dest [ ]

     ; Implement a jump table:
     switch i32 %val, label %otherwise [ i32 0, label %onzero
                                         i32 1, label %onone
                                         i32 2, label %ontwo ]

.. _i_indirectbr:

'``indirectbr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]

Overview:
"""""""""

The '``indirectbr``' instruction implements an indirect branch to a
label within the current function, whose address is specified by
"``address``". Address must be derived from a
:ref:`blockaddress <blockaddress>` constant.

Arguments:
""""""""""

The '``address``' argument is the address of the label to jump to. The
rest of the arguments indicate the full set of possible destinations
that the address may point to. Blocks are allowed to occur multiple
times in the destination list, though this isn't particularly useful.

This destination list is required so that dataflow analysis has an
accurate understanding of the CFG.

Semantics:
""""""""""

Control transfers to the block specified in the address argument. All
possible destination blocks must be listed in the label list, otherwise
this instruction has undefined behavior. This implies that jumps to
labels defined in other functions have undefined behavior as well.

Implementation:
"""""""""""""""

This is typically implemented with a jump through a register.

Example:
""""""""

.. code-block:: llvm

     indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]

.. _i_invoke:

'``invoke``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
                    [operand bundles] to label <normal label> unwind label <exception label>

Overview:
"""""""""

The '``invoke``' instruction causes control to transfer to a specified
function, with the possibility of control flow transfer to either the
'``normal``' label or the '``exception``' label. If the callee function
returns with the "``ret``" instruction, control flow will return to the
"normal" label. If the callee (or any indirect callees) returns via the
":ref:`resume <i_resume>`" instruction or other exception handling
mechanism, control is interrupted and continued at the dynamically
nearest "exception" label.

The '``exception``' label is a `landing
pad <ExceptionHandling.html#overview>`_ for the exception. As such,
'``exception``' label is required to have the
":ref:`landingpad <i_landingpad>`" instruction, which contains the
information about the behavior of the program after unwinding happens,
as its first non-PHI instruction. The restrictions on the
"``landingpad``" instruction's tightly couples it to the "``invoke``"
instruction, so that the important information contained within the
"``landingpad``" instruction can't be lost through normal code motion.

Arguments:
""""""""""

This instruction requires several arguments:

#. The optional "cconv" marker indicates which :ref:`calling
   convention <callingconv>` the call should use. If none is
   specified, the call defaults to using C calling conventions.
#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   are valid here.
#. The optional addrspace attribute can be used to indicate the address space
   of the called function. If it is not specified, the program address space
   from the :ref:`datalayout string<langref_datalayout>` will be used.
#. '``ty``': the type of the call instruction itself which is also the
   type of the return value. Functions that return no value are marked
   ``void``.
#. '``fnty``': shall be the signature of the function being invoked. The
   argument types must match the types implied by this signature. This
   type can be omitted if the function is not varargs.
#. '``fnptrval``': An LLVM value containing a pointer to a function to
   be invoked. In most cases, this is a direct function invocation, but
   indirect ``invoke``'s are just as possible, calling an arbitrary pointer
   to function value.
#. '``function args``': argument list whose types match the function
   signature argument types and parameter attributes. All arguments must
   be of :ref:`first class <t_firstclass>` type. If the function signature
   indicates the function accepts a variable number of arguments, the
   extra arguments can be specified.
#. '``normal label``': the label reached when the called function
   executes a '``ret``' instruction.
#. '``exception label``': the label reached when a callee returns via
   the :ref:`resume <i_resume>` instruction or other exception handling
   mechanism.
#. The optional :ref:`function attributes <fnattrs>` list.
#. The optional :ref:`operand bundles <opbundles>` list.

Semantics:
""""""""""

This instruction is designed to operate as a standard '``call``'
instruction in most regards. The primary difference is that it
establishes an association with a label, which is used by the runtime
library to unwind the stack.

This instruction is used in languages with destructors to ensure that
proper cleanup is performed in the case of either a ``longjmp`` or a
thrown exception. Additionally, this is important for implementation of
'``catch``' clauses in high-level languages that support them.

For the purposes of the SSA form, the definition of the value returned
by the '``invoke``' instruction is deemed to occur on the edge from the
current block to the "normal" label. If the callee unwinds then no
return value is available.

Example:
""""""""

.. code-block:: llvm

      %retval = invoke i32 @Test(i32 15) to label %Continue
                  unwind label %TestCleanup              ; i32:retval set
      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
                  unwind label %TestCleanup              ; i32:retval set

.. _i_callbr:

'``callbr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = callbr [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
                    [operand bundles] to label <normal label> [other labels]

Overview:
"""""""""

The '``callbr``' instruction causes control to transfer to a specified
function, with the possibility of control flow transfer to either the
'``normal``' label or one of the '``other``' labels.

This instruction should only be used to implement the "goto" feature of gcc
style inline assembly. Any other usage is an error in the IR verifier.

Arguments:
""""""""""

This instruction requires several arguments:

#. The optional "cconv" marker indicates which :ref:`calling
   convention <callingconv>` the call should use. If none is
   specified, the call defaults to using C calling conventions.
#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   are valid here.
#. The optional addrspace attribute can be used to indicate the address space
   of the called function. If it is not specified, the program address space
   from the :ref:`datalayout string<langref_datalayout>` will be used.
#. '``ty``': the type of the call instruction itself which is also the
   type of the return value. Functions that return no value are marked
   ``void``.
#. '``fnty``': shall be the signature of the function being called. The
   argument types must match the types implied by this signature. This
   type can be omitted if the function is not varargs.
#. '``fnptrval``': An LLVM value containing a pointer to a function to
   be called. In most cases, this is a direct function call, but
   indirect ``callbr``'s are just as possible, calling an arbitrary pointer
   to function value.
#. '``function args``': argument list whose types match the function
   signature argument types and parameter attributes. All arguments must
   be of :ref:`first class <t_firstclass>` type. If the function signature
   indicates the function accepts a variable number of arguments, the
   extra arguments can be specified.
#. '``normal label``': the label reached when the called function
   executes a '``ret``' instruction.
#. '``other labels``': the labels reached when a callee transfers control
   to a location other than the normal '``normal label``'. The blockaddress
   constant for these should also be in the list of '``function args``'.
#. The optional :ref:`function attributes <fnattrs>` list.
#. The optional :ref:`operand bundles <opbundles>` list.

Semantics:
""""""""""

This instruction is designed to operate as a standard '``call``'
instruction in most regards. The primary difference is that it
establishes an association with additional labels to define where control
flow goes after the call.

The only use of this today is to implement the "goto" feature of gcc inline
assembly where additional labels can be provided as locations for the inline
assembly to jump to.

Example:
""""""""

.. code-block:: text

      callbr void asm "", "r,x"(i32 %x, i8 *blockaddress(@foo, %fail))
                  to label %normal [label %fail]

.. _i_resume:

'``resume``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      resume <type> <value>

Overview:
"""""""""

The '``resume``' instruction is a terminator instruction that has no
successors.

Arguments:
""""""""""

The '``resume``' instruction requires one argument, which must have the
same type as the result of any '``landingpad``' instruction in the same
function.

Semantics:
""""""""""

The '``resume``' instruction resumes propagation of an existing
(in-flight) exception whose unwinding was interrupted with a
:ref:`landingpad <i_landingpad>` instruction.

Example:
""""""""

.. code-block:: llvm

      resume { i8*, i32 } %exn

.. _i_catchswitch:

'``catchswitch``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>

Overview:
"""""""""

The '``catchswitch``' instruction is used by `LLVM's exception handling system
<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
that may be executed by the :ref:`EH personality routine <personalityfn>`.

Arguments:
""""""""""

The ``parent`` argument is the token of the funclet that contains the
``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
this operand may be the token ``none``.

The ``default`` argument is the label of another basic block beginning with
either a ``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination
must be a legal target with respect to the ``parent`` links, as described in
the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.

The ``handlers`` are a nonempty list of successor blocks that each begin with a
:ref:`catchpad <i_catchpad>` instruction.

Semantics:
""""""""""

Executing this instruction transfers control to one of the successors in
``handlers``, if appropriate, or continues to unwind via the unwind label if
present.

The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
it must be both the first non-phi instruction and last instruction in the basic
block. Therefore, it must be the only non-phi instruction in the block.

Example:
""""""""

.. code-block:: text

    dispatch1:
      %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
    dispatch2:
      %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup

.. _i_catchret:

'``catchret``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      catchret from <token> to label <normal>

Overview:
"""""""""

The '``catchret``' instruction is a terminator instruction that has a
single successor.


Arguments:
""""""""""

The first argument to a '``catchret``' indicates which ``catchpad`` it
exits.  It must be a :ref:`catchpad <i_catchpad>`.
The second argument to a '``catchret``' specifies where control will
transfer to next.

Semantics:
""""""""""

The '``catchret``' instruction ends an existing (in-flight) exception whose
unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction.  The
:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
code to, for example, destroy the active exception.  Control then transfers to
``normal``.

The ``token`` argument must be a token produced by a ``catchpad`` instruction.
If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
the ``catchret``'s behavior is undefined.

Example:
""""""""

.. code-block:: text

      catchret from %catch label %continue

.. _i_cleanupret:

'``cleanupret``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      cleanupret from <value> unwind label <continue>
      cleanupret from <value> unwind to caller

Overview:
"""""""""

The '``cleanupret``' instruction is a terminator instruction that has
an optional successor.


Arguments:
""""""""""

The '``cleanupret``' instruction requires one argument, which indicates
which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
the ``cleanupret``'s behavior is undefined.

The '``cleanupret``' instruction also has an optional successor, ``continue``,
which must be the label of another basic block beginning with either a
``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination must
be a legal target with respect to the ``parent`` links, as described in the
`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.

Semantics:
""""""""""

The '``cleanupret``' instruction indicates to the
:ref:`personality function <personalityfn>` that one
:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
It transfers control to ``continue`` or unwinds out of the function.

Example:
""""""""

.. code-block:: text

      cleanupret from %cleanup unwind to caller
      cleanupret from %cleanup unwind label %continue

.. _i_unreachable:

'``unreachable``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      unreachable

Overview:
"""""""""

The '``unreachable``' instruction has no defined semantics. This
instruction is used to inform the optimizer that a particular portion of
the code is not reachable. This can be used to indicate that the code
after a no-return function cannot be reached, and other facts.

Semantics:
""""""""""

The '``unreachable``' instruction has no defined semantics.

.. _unaryops:

Unary Operations
-----------------

Unary operators require a single operand, execute an operation on
it, and produce a single value. The operand might represent multiple
data, as is the case with the :ref:`vector <t_vector>` data type. The
result value has the same type as its operand.

.. _i_fneg:

'``fneg``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fneg [fast-math flags]* <ty> <op1>   ; yields ty:result

Overview:
"""""""""

The '``fneg``' instruction returns the negation of its operand.

Arguments:
""""""""""

The argument to the '``fneg``' instruction must be a
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values.

Semantics:
""""""""""

The value produced is a copy of the operand with its sign bit flipped.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = fneg float %val          ; yields float:result = -%var

.. _binaryops:

Binary Operations
-----------------

Binary operators are used to do most of the computation in a program.
They require two operands of the same type, execute an operation on
them, and produce a single value. The operands might represent multiple
data, as is the case with the :ref:`vector <t_vector>` data type. The
result value has the same type as its operands.

There are several different binary operators:

.. _i_add:

'``add``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = add <ty> <op1>, <op2>          ; yields ty:result
      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result

Overview:
"""""""""

The '``add``' instruction returns the sum of its two operands.

Arguments:
""""""""""

The two arguments to the '``add``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The value produced is the integer sum of the two operands.

If the sum has unsigned overflow, the result returned is the
mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
the result.

Because LLVM integers use a two's complement representation, this
instruction is appropriate for both signed and unsigned integers.

``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
unsigned and/or signed overflow, respectively, occurs.

Example:
""""""""

.. code-block:: text

      <result> = add i32 4, %var          ; yields i32:result = 4 + %var

.. _i_fadd:

'``fadd``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``fadd``' instruction returns the sum of its two operands.

Arguments:
""""""""""

The two arguments to the '``fadd``' instruction must be
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values. Both arguments must have identical types.

Semantics:
""""""""""

The value produced is the floating-point sum of the two operands.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var

'``sub``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result

Overview:
"""""""""

The '``sub``' instruction returns the difference of its two operands.

Note that the '``sub``' instruction is used to represent the '``neg``'
instruction present in most other intermediate representations.

Arguments:
""""""""""

The two arguments to the '``sub``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The value produced is the integer difference of the two operands.

If the difference has unsigned overflow, the result returned is the
mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
the result.

Because LLVM integers use a two's complement representation, this
instruction is appropriate for both signed and unsigned integers.

``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
unsigned and/or signed overflow, respectively, occurs.

Example:
""""""""

.. code-block:: text

      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
      <result> = sub i32 0, %val          ; yields i32:result = -%var

.. _i_fsub:

'``fsub``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``fsub``' instruction returns the difference of its two operands.

Arguments:
""""""""""

The two arguments to the '``fsub``' instruction must be
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values. Both arguments must have identical types.

Semantics:
""""""""""

The value produced is the floating-point difference of the two operands.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
      <result> = fsub float -0.0, %val          ; yields float:result = -%var

'``mul``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result

Overview:
"""""""""

The '``mul``' instruction returns the product of its two operands.

Arguments:
""""""""""

The two arguments to the '``mul``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The value produced is the integer product of the two operands.

If the result of the multiplication has unsigned overflow, the result
returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
bit width of the result.

Because LLVM integers use a two's complement representation, and the
result is the same width as the operands, this instruction returns the
correct result for both signed and unsigned integers. If a full product
(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
sign-extended or zero-extended as appropriate to the width of the full
product.

``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
unsigned and/or signed overflow, respectively, occurs.

Example:
""""""""

.. code-block:: text

      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var

.. _i_fmul:

'``fmul``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``fmul``' instruction returns the product of its two operands.

Arguments:
""""""""""

The two arguments to the '``fmul``' instruction must be
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values. Both arguments must have identical types.

Semantics:
""""""""""

The value produced is the floating-point product of the two operands.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var

'``udiv``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``udiv``' instruction returns the quotient of its two operands.

Arguments:
""""""""""

The two arguments to the '``udiv``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The value produced is the unsigned integer quotient of the two operands.

Note that unsigned integer division and signed integer division are
distinct operations; for signed integer division, use '``sdiv``'.

Division by zero is undefined behavior. For vectors, if any element
of the divisor is zero, the operation has undefined behavior.


If the ``exact`` keyword is present, the result value of the ``udiv`` is
a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
such, "((a udiv exact b) mul b) == a").

Example:
""""""""

.. code-block:: text

      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var

'``sdiv``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``sdiv``' instruction returns the quotient of its two operands.

Arguments:
""""""""""

The two arguments to the '``sdiv``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The value produced is the signed integer quotient of the two operands
rounded towards zero.

Note that signed integer division and unsigned integer division are
distinct operations; for unsigned integer division, use '``udiv``'.

Division by zero is undefined behavior. For vectors, if any element
of the divisor is zero, the operation has undefined behavior.
Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by doing a 32-bit division of -2147483648 by -1.

If the ``exact`` keyword is present, the result value of the ``sdiv`` is
a :ref:`poison value <poisonvalues>` if the result would be rounded.

Example:
""""""""

.. code-block:: text

      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var

.. _i_fdiv:

'``fdiv``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``fdiv``' instruction returns the quotient of its two operands.

Arguments:
""""""""""

The two arguments to the '``fdiv``' instruction must be
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values. Both arguments must have identical types.

Semantics:
""""""""""

The value produced is the floating-point quotient of the two operands.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var

'``urem``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = urem <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``urem``' instruction returns the remainder from the unsigned
division of its two arguments.

Arguments:
""""""""""

The two arguments to the '``urem``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

This instruction returns the unsigned integer *remainder* of a division.
This instruction always performs an unsigned division to get the
remainder.

Note that unsigned integer remainder and signed integer remainder are
distinct operations; for signed integer remainder, use '``srem``'.

Taking the remainder of a division by zero is undefined behavior.
For vectors, if any element of the divisor is zero, the operation has
undefined behavior.

Example:
""""""""

.. code-block:: text

      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var

'``srem``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = srem <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``srem``' instruction returns the remainder from the signed
division of its two operands. This instruction can also take
:ref:`vector <t_vector>` versions of the values in which case the elements
must be integers.

Arguments:
""""""""""

The two arguments to the '``srem``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

This instruction returns the *remainder* of a division (where the result
is either zero or has the same sign as the dividend, ``op1``), not the
*modulo* operator (where the result is either zero or has the same sign
as the divisor, ``op2``) of a value. For more information about the
difference, see `The Math
Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
table of how this is implemented in various languages, please see
`Wikipedia: modulo
operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.

Note that signed integer remainder and unsigned integer remainder are
distinct operations; for unsigned integer remainder, use '``urem``'.

Taking the remainder of a division by zero is undefined behavior.
For vectors, if any element of the divisor is zero, the operation has
undefined behavior.
Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by taking the remainder of a 32-bit division of
-2147483648 by -1. (The remainder doesn't actually overflow, but this
rule lets srem be implemented using instructions that return both the
result of the division and the remainder.)

Example:
""""""""

.. code-block:: text

      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var

.. _i_frem:

'``frem``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``frem``' instruction returns the remainder from the division of
its two operands.

Arguments:
""""""""""

The two arguments to the '``frem``' instruction must be
:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
floating-point values. Both arguments must have identical types.

Semantics:
""""""""""

The value produced is the floating-point remainder of the two operands.
This is the same output as a libm '``fmod``' function, but without any
possibility of setting ``errno``. The remainder has the same sign as the
dividend.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.
This instruction can also take any number of :ref:`fast-math
flags <fastmath>`, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:
""""""""

.. code-block:: text

      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var

.. _bitwiseops:

Bitwise Binary Operations
-------------------------

Bitwise binary operators are used to do various forms of bit-twiddling
in a program. They are generally very efficient instructions and can
commonly be strength reduced from other instructions. They require two
operands of the same type, execute an operation on them, and produce a
single value. The resulting value is the same type as its operands.

'``shl``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``shl``' instruction returns the first operand shifted to the left
a specified number of bits.

Arguments:
""""""""""

Both arguments to the '``shl``' instruction must be the same
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
'``op2``' is treated as an unsigned value.

Semantics:
""""""""""

The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
where ``n`` is the width of the result. If ``op2`` is (statically or
dynamically) equal to or larger than the number of bits in
``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
If the arguments are vectors, each vector element of ``op1`` is shifted
by the corresponding shift amount in ``op2``.

If the ``nuw`` keyword is present, then the shift produces a poison
value if it shifts out any non-zero bits.
If the ``nsw`` keyword is present, then the shift produces a poison
value if it shifts out any bits that disagree with the resultant sign bit.

Example:
""""""""

.. code-block:: text

      <result> = shl i32 4, %var   ; yields i32: 4 << %var
      <result> = shl i32 4, 2      ; yields i32: 16
      <result> = shl i32 1, 10     ; yields i32: 1024
      <result> = shl i32 1, 32     ; undefined
      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>

'``lshr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``lshr``' instruction (logical shift right) returns the first
operand shifted to the right a specified number of bits with zero fill.

Arguments:
""""""""""

Both arguments to the '``lshr``' instruction must be the same
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
'``op2``' is treated as an unsigned value.

Semantics:
""""""""""

This instruction always performs a logical shift right operation. The
most significant bits of the result will be filled with zero bits after
the shift. If ``op2`` is (statically or dynamically) equal to or larger
than the number of bits in ``op1``, this instruction returns a :ref:`poison
value <poisonvalues>`. If the arguments are vectors, each vector element
of ``op1`` is shifted by the corresponding shift amount in ``op2``.

If the ``exact`` keyword is present, the result value of the ``lshr`` is
a poison value if any of the bits shifted out are non-zero.

Example:
""""""""

.. code-block:: text

      <result> = lshr i32 4, 1   ; yields i32:result = 2
      <result> = lshr i32 4, 2   ; yields i32:result = 1
      <result> = lshr i8  4, 3   ; yields i8:result = 0
      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
      <result> = lshr i32 1, 32  ; undefined
      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>

'``ashr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``ashr``' instruction (arithmetic shift right) returns the first
operand shifted to the right a specified number of bits with sign
extension.

Arguments:
""""""""""

Both arguments to the '``ashr``' instruction must be the same
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
'``op2``' is treated as an unsigned value.

Semantics:
""""""""""

This instruction always performs an arithmetic shift right operation,
The most significant bits of the result will be filled with the sign bit
of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
than the number of bits in ``op1``, this instruction returns a :ref:`poison
value <poisonvalues>`. If the arguments are vectors, each vector element
of ``op1`` is shifted by the corresponding shift amount in ``op2``.

If the ``exact`` keyword is present, the result value of the ``ashr`` is
a poison value if any of the bits shifted out are non-zero.

Example:
""""""""

.. code-block:: text

      <result> = ashr i32 4, 1   ; yields i32:result = 2
      <result> = ashr i32 4, 2   ; yields i32:result = 1
      <result> = ashr i8  4, 3   ; yields i8:result = 0
      <result> = ashr i8 -2, 1   ; yields i8:result = -1
      <result> = ashr i32 1, 32  ; undefined
      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>

'``and``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = and <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``and``' instruction returns the bitwise logical and of its two
operands.

Arguments:
""""""""""

The two arguments to the '``and``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The truth table used for the '``and``' instruction is:

+-----+-----+-----+
| In0 | In1 | Out |
+-----+-----+-----+
|   0 |   0 |   0 |
+-----+-----+-----+
|   0 |   1 |   0 |
+-----+-----+-----+
|   1 |   0 |   0 |
+-----+-----+-----+
|   1 |   1 |   1 |
+-----+-----+-----+

Example:
""""""""

.. code-block:: text

      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
      <result> = and i32 15, 40          ; yields i32:result = 8
      <result> = and i32 4, 8            ; yields i32:result = 0

'``or``' Instruction
^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = or <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``or``' instruction returns the bitwise logical inclusive or of its
two operands.

Arguments:
""""""""""

The two arguments to the '``or``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The truth table used for the '``or``' instruction is:

+-----+-----+-----+
| In0 | In1 | Out |
+-----+-----+-----+
|   0 |   0 |   0 |
+-----+-----+-----+
|   0 |   1 |   1 |
+-----+-----+-----+
|   1 |   0 |   1 |
+-----+-----+-----+
|   1 |   1 |   1 |
+-----+-----+-----+

Example:
""""""""

::

      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
      <result> = or i32 15, 40          ; yields i32:result = 47
      <result> = or i32 4, 8            ; yields i32:result = 12

'``xor``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = xor <ty> <op1>, <op2>   ; yields ty:result

Overview:
"""""""""

The '``xor``' instruction returns the bitwise logical exclusive or of
its two operands. The ``xor`` is used to implement the "one's
complement" operation, which is the "~" operator in C.

Arguments:
""""""""""

The two arguments to the '``xor``' instruction must be
:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
arguments must have identical types.

Semantics:
""""""""""

The truth table used for the '``xor``' instruction is:

+-----+-----+-----+
| In0 | In1 | Out |
+-----+-----+-----+
|   0 |   0 |   0 |
+-----+-----+-----+
|   0 |   1 |   1 |
+-----+-----+-----+
|   1 |   0 |   1 |
+-----+-----+-----+
|   1 |   1 |   0 |
+-----+-----+-----+

Example:
""""""""

.. code-block:: text

      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
      <result> = xor i32 15, 40          ; yields i32:result = 39
      <result> = xor i32 4, 8            ; yields i32:result = 12
      <result> = xor i32 %V, -1          ; yields i32:result = ~%V

Vector Operations
-----------------

LLVM supports several instructions to represent vector operations in a
target-independent manner. These instructions cover the element-access
and vector-specific operations needed to process vectors effectively.
While LLVM does directly support these vector operations, many
sophisticated algorithms will want to use target-specific intrinsics to
take full advantage of a specific target.

.. _i_extractelement:

'``extractelement``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
      <result> = extractelement <vscale x n x <ty>> <val>, <ty2> <idx> ; yields <ty>

Overview:
"""""""""

The '``extractelement``' instruction extracts a single scalar element
from a vector at a specified index.

Arguments:
""""""""""

The first operand of an '``extractelement``' instruction is a value of
:ref:`vector <t_vector>` type. The second operand is an index indicating
the position from which to extract the element. The index may be a
variable of any integer type.

Semantics:
""""""""""

The result is a scalar of the same type as the element type of ``val``.
Its value is the value at position ``idx`` of ``val``. If ``idx``
exceeds the length of ``val`` for a fixed-length vector, the result is a
:ref:`poison value <poisonvalues>`. For a scalable vector, if the value
of ``idx`` exceeds the runtime length of the vector, the result is a
:ref:`poison value <poisonvalues>`.

Example:
""""""""

.. code-block:: text

      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32

.. _i_insertelement:

'``insertelement``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
      <result> = insertelement <vscale x n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <vscale x n x <ty>>

Overview:
"""""""""

The '``insertelement``' instruction inserts a scalar element into a
vector at a specified index.

Arguments:
""""""""""

The first operand of an '``insertelement``' instruction is a value of
:ref:`vector <t_vector>` type. The second operand is a scalar value whose
type must equal the element type of the first operand. The third operand
is an index indicating the position at which to insert the value. The
index may be a variable of any integer type.

Semantics:
""""""""""

The result is a vector of the same type as ``val``. Its element values
are those of ``val`` except at position ``idx``, where it gets the value
``elt``. If ``idx`` exceeds the length of ``val`` for a fixed-length vector,
the result is a :ref:`poison value <poisonvalues>`. For a scalable vector,
if the value of ``idx`` exceeds the runtime length of the vector, the result
is a :ref:`poison value <poisonvalues>`.

Example:
""""""""

.. code-block:: text

      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>

.. _i_shufflevector:

'``shufflevector``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
      <result> = shufflevector <vscale x n x <ty>> <v1>, <vscale x n x <ty>> v2, <vscale x m x i32> <mask>  ; yields <vscale x m x <ty>>

Overview:
"""""""""

The '``shufflevector``' instruction constructs a permutation of elements
from two input vectors, returning a vector with the same element type as
the input and length that is the same as the shuffle mask.

Arguments:
""""""""""

The first two operands of a '``shufflevector``' instruction are vectors
with the same type. The third argument is a shuffle mask whose element
type is always 'i32'. The result of the instruction is a vector whose
length is the same as the shuffle mask and whose element type is the
same as the element type of the first two operands.

The shuffle mask operand is required to be a constant vector with either
constant integer or undef values.

Semantics:
""""""""""

The elements of the two input vectors are numbered from left to right
across both of the vectors. The shuffle mask operand specifies, for each
element of the result vector, which element of the two input vectors the
result element gets. If the shuffle mask is undef, the result vector is
undef. If any element of the mask operand is undef, that element of the
result is undef. If the shuffle mask selects an undef element from one
of the input vectors, the resulting element is undef.

For scalable vectors, the only valid mask values at present are
``zeroinitializer`` and ``undef``, since we cannot write all indices as
literals for a vector with a length unknown at compile time.

Example:
""""""""

.. code-block:: text

      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>

Aggregate Operations
--------------------

LLVM supports several instructions for working with
:ref:`aggregate <t_aggregate>` values.

.. _i_extractvalue:

'``extractvalue``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*

Overview:
"""""""""

The '``extractvalue``' instruction extracts the value of a member field
from an :ref:`aggregate <t_aggregate>` value.

Arguments:
""""""""""

The first operand of an '``extractvalue``' instruction is a value of
:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
constant indices to specify which value to extract in a similar manner
as indices in a '``getelementptr``' instruction.

The major differences to ``getelementptr`` indexing are:

-  Since the value being indexed is not a pointer, the first index is
   omitted and assumed to be zero.
-  At least one index must be specified.
-  Not only struct indices but also array indices must be in bounds.

Semantics:
""""""""""

The result is the value at the position in the aggregate specified by
the index operands.

Example:
""""""""

.. code-block:: text

      <result> = extractvalue {i32, float} %agg, 0    ; yields i32

.. _i_insertvalue:

'``insertvalue``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>

Overview:
"""""""""

The '``insertvalue``' instruction inserts a value into a member field in
an :ref:`aggregate <t_aggregate>` value.

Arguments:
""""""""""

The first operand of an '``insertvalue``' instruction is a value of
:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
a first-class value to insert. The following operands are constant
indices indicating the position at which to insert the value in a
similar manner as indices in a '``extractvalue``' instruction. The value
to insert must have the same type as the value identified by the
indices.

Semantics:
""""""""""

The result is an aggregate of the same type as ``val``. Its value is
that of ``val`` except that the value at the position specified by the
indices is that of ``elt``.

Example:
""""""""

.. code-block:: llvm

      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
      %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}

.. _memoryops:

Memory Access and Addressing Operations
---------------------------------------

A key design point of an SSA-based representation is how it represents
memory. In LLVM, no memory locations are in SSA form, which makes things
very simple. This section describes how to read, write, and allocate
memory in LLVM.

.. _i_alloca:

'``alloca``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)]     ; yields type addrspace(num)*:result

Overview:
"""""""""

The '``alloca``' instruction allocates memory on the stack frame of the
currently executing function, to be automatically released when this
function returns to its caller. The object is always allocated in the
address space for allocas indicated in the datalayout.

Arguments:
""""""""""

The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
bytes of memory on the runtime stack, returning a pointer of the
appropriate type to the program. If "NumElements" is specified, it is
the number of elements allocated, otherwise "NumElements" is defaulted
to be one. If a constant alignment is specified, the value result of the
allocation is guaranteed to be aligned to at least that boundary. The
alignment may not be greater than ``1 << 29``. If not specified, or if
zero, the target can choose to align the allocation on any convenient
boundary compatible with the type.

'``type``' may be any sized type.

Semantics:
""""""""""

Memory is allocated; a pointer is returned. The allocated memory is
uninitialized, and loading from uninitialized memory produces an undefined
value. The operation itself is undefined if there is insufficient stack
space for the allocation.'``alloca``'d memory is automatically released
when the function returns. The '``alloca``' instruction is commonly used
to represent automatic variables that must have an address available. When
the function returns (either with the ``ret`` or ``resume`` instructions),
the memory is reclaimed. Allocating zero bytes is legal, but the returned
pointer may not be unique. The order in which memory is allocated (ie.,
which way the stack grows) is not specified.

Example:
""""""""

.. code-block:: llvm

      %ptr = alloca i32                             ; yields i32*:ptr
      %ptr = alloca i32, i32 4                      ; yields i32*:ptr
      %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
      %ptr = alloca i32, align 1024                 ; yields i32*:ptr

.. _i_load:

'``load``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
      <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
      !<index> = !{ i32 1 }
      !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
      !<align_node> = !{ i64 <value_alignment> }

Overview:
"""""""""

The '``load``' instruction is used to read from memory.

Arguments:
""""""""""

The argument to the ``load`` instruction specifies the memory address from which
to load. The type specified must be a :ref:`first class <t_firstclass>` type of
known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
modify the number or order of execution of this ``load`` with other
:ref:`volatile operations <volatile>`.

If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
Atomic loads produce :ref:`defined <memmodel>` results when they may see
multiple atomic stores. The type of the pointee must be an integer, pointer, or
floating-point type whose bit width is a power of two greater than or equal to
eight and less than or equal to a target-specific size limit.  ``align`` must be
explicitly specified on atomic loads, and the load has undefined behavior if the
alignment is not set to a value which is at least the size in bytes of the
pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.

The optional constant ``align`` argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted ``align`` argument means that the operation has the ABI
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in undefined behavior. Underestimating the alignment
may produce less efficient code. An alignment of 1 is always safe. The
maximum possible alignment is ``1 << 29``. An alignment value higher
than the size of the loaded type implies memory up to the alignment
value bytes can be safely loaded without trapping in the default
address space. Access of the high bytes can interfere with debugging
tools, so should not be accessed if the function has the
``sanitize_thread`` or ``sanitize_address`` attributes.

The optional ``!nontemporal`` metadata must reference a single
metadata name ``<index>`` corresponding to a metadata node with one
``i32`` entry of value 1. The existence of the ``!nontemporal``
metadata on the instruction tells the optimizer and code generator
that this load is not expected to be reused in the cache. The code
generator may select special instructions to save cache bandwidth, such
as the ``MOVNT`` instruction on x86.

The optional ``!invariant.load`` metadata must reference a single
metadata name ``<index>`` corresponding to a metadata node with no
entries. If a load instruction tagged with the ``!invariant.load``
metadata is executed, the optimizer may assume the memory location
referenced by the load contains the same value at all points in the
program where the memory location is known to be dereferenceable;
otherwise, the behavior is undefined.

The optional ``!invariant.group`` metadata must reference a single metadata name
 ``<index>`` corresponding to a metadata node with no entries.
 See ``invariant.group`` metadata :ref:`invariant.group <md_invariant.group>`

The optional ``!nonnull`` metadata must reference a single
metadata name ``<index>`` corresponding to a metadata node with no
entries. The existence of the ``!nonnull`` metadata on the
instruction tells the optimizer that the value loaded is known to
never be null. If the value is null at runtime, the behavior is undefined.
This is analogous to the ``nonnull`` attribute on parameters and return
values. This metadata can only be applied to loads of a pointer type.

The optional ``!dereferenceable`` metadata must reference a single metadata
name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
entry.
See ``dereferenceable`` metadata :ref:`dereferenceable <md_dereferenceable>`

The optional ``!dereferenceable_or_null`` metadata must reference a single
metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
``i64`` entry.
See ``dereferenceable_or_null`` metadata :ref:`dereferenceable_or_null
<md_dereferenceable_or_null>`

The optional ``!align`` metadata must reference a single metadata name
``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
The existence of the ``!align`` metadata on the instruction tells the
optimizer that the value loaded is known to be aligned to a boundary specified
by the integer value in the metadata node. The alignment must be a power of 2.
This is analogous to the ''align'' attribute on parameters and return values.
This metadata can only be applied to loads of a pointer type. If the returned
value is not appropriately aligned at runtime, the behavior is undefined.

Semantics:
""""""""""

The location of memory pointed to is loaded. If the value being loaded
is of scalar type then the number of bytes read does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, loading an ``i24`` reads at most three bytes. When loading a
value of a type like ``i20`` with a size that is not an integral number
of bytes, the result is undefined if the value was not originally
written using a store of the same type.

Examples:
"""""""""

.. code-block:: llvm

      %ptr = alloca i32                               ; yields i32*:ptr
      store i32 3, i32* %ptr                          ; yields void
      %val = load i32, i32* %ptr                      ; yields i32:val = i32 3

.. _i_store:

'``store``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>]        ; yields void
      store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void

Overview:
"""""""""

The '``store``' instruction is used to write to memory.

Arguments:
""""""""""

There are two arguments to the ``store`` instruction: a value to store and an
address at which to store it. The type of the ``<pointer>`` operand must be a
pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
allowed to modify the number or order of execution of this ``store`` with other
:ref:`volatile operations <volatile>`.  Only values of :ref:`first class
<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
structural type <t_opaque>`) can be stored.

If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
Atomic loads produce :ref:`defined <memmodel>` results when they may see
multiple atomic stores. The type of the pointee must be an integer, pointer, or
floating-point type whose bit width is a power of two greater than or equal to
eight and less than or equal to a target-specific size limit.  ``align`` must be
explicitly specified on atomic stores, and the store has undefined behavior if
the alignment is not set to a value which is at least the size in bytes of the
pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.

The optional constant ``align`` argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted ``align`` argument means that the operation has the ABI
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in undefined behavior. Underestimating the
alignment may produce less efficient code. An alignment of 1 is always
safe. The maximum possible alignment is ``1 << 29``. An alignment
value higher than the size of the stored type implies memory up to the
alignment value bytes can be stored to without trapping in the default
address space. Storing to the higher bytes however may result in data
races if another thread can access the same address. Introducing a
data race is not allowed. Storing to the extra bytes is not allowed
even in situations where a data race is known to not exist if the
function has the ``sanitize_address`` attribute.

The optional ``!nontemporal`` metadata must reference a single metadata
name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
value 1. The existence of the ``!nontemporal`` metadata on the instruction
tells the optimizer and code generator that this load is not expected to
be reused in the cache. The code generator may select special
instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
x86.

The optional ``!invariant.group`` metadata must reference a
single metadata name ``<index>``. See ``invariant.group`` metadata.

Semantics:
""""""""""

The contents of memory are updated to contain ``<value>`` at the
location specified by the ``<pointer>`` operand. If ``<value>`` is
of scalar type then the number of bytes written does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, storing an ``i24`` writes at most three bytes. When writing a
value of a type like ``i20`` with a size that is not an integral number
of bytes, it is unspecified what happens to the extra bits that do not
belong to the type, but they will typically be overwritten.

Example:
""""""""

.. code-block:: llvm

      %ptr = alloca i32                               ; yields i32*:ptr
      store i32 3, i32* %ptr                          ; yields void
      %val = load i32, i32* %ptr                      ; yields i32:val = i32 3

.. _i_fence:

'``fence``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      fence [syncscope("<target-scope>")] <ordering>  ; yields void

Overview:
"""""""""

The '``fence``' instruction is used to introduce happens-before edges
between operations.

Arguments:
""""""""""

'``fence``' instructions take an :ref:`ordering <ordering>` argument which
defines what *synchronizes-with* edges they add. They can only be given
``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.

Semantics:
""""""""""

A fence A which has (at least) ``release`` ordering semantics
*synchronizes with* a fence B with (at least) ``acquire`` ordering
semantics if and only if there exist atomic operations X and Y, both
operating on some atomic object M, such that A is sequenced before X, X
modifies M (either directly or through some side effect of a sequence
headed by X), Y is sequenced before B, and Y observes M. This provides a
*happens-before* dependency between A and B. Rather than an explicit
``fence``, one (but not both) of the atomic operations X or Y might
provide a ``release`` or ``acquire`` (resp.) ordering constraint and
still *synchronize-with* the explicit ``fence`` and establish the
*happens-before* edge.

A ``fence`` which has ``seq_cst`` ordering, in addition to having both
``acquire`` and ``release`` semantics specified above, participates in
the global program order of other ``seq_cst`` operations and/or fences.

A ``fence`` instruction can also take an optional
":ref:`syncscope <syncscope>`" argument.

Example:
""""""""

.. code-block:: text

      fence acquire                                        ; yields void
      fence syncscope("singlethread") seq_cst              ; yields void
      fence syncscope("agent") seq_cst                     ; yields void

.. _i_cmpxchg:

'``cmpxchg``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields  { ty, i1 }

Overview:
"""""""""

The '``cmpxchg``' instruction is used to atomically modify memory. It
loads a value in memory and compares it to a given value. If they are
equal, it tries to store a new value into the memory.

Arguments:
""""""""""

There are three arguments to the '``cmpxchg``' instruction: an address
to operate on, a value to compare to the value currently be at that
address, and a new value to place at that address if the compared values
are equal. The type of '<cmp>' must be an integer or pointer type whose
bit width is a power of two greater than or equal to eight and less
than or equal to a target-specific size limit. '<cmp>' and '<new>' must
have the same type, and the type of '<pointer>' must be a pointer to
that type. If the ``cmpxchg`` is marked as ``volatile``, then the
optimizer is not allowed to modify the number or order of execution of
this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.

The success and failure :ref:`ordering <ordering>` arguments specify how this
``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
must be at least ``monotonic``, the ordering constraint on failure must be no
stronger than that on success, and the failure ordering cannot be either
``release`` or ``acq_rel``.

A ``cmpxchg`` instruction can also take an optional
":ref:`syncscope <syncscope>`" argument.

The pointer passed into cmpxchg must have alignment greater than or
equal to the size in memory of the operand.

Semantics:
""""""""""

The contents of memory at the location specified by the '``<pointer>``' operand
is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
written to the location. The original value at the location is returned,
together with a flag indicating success (true) or failure (false).

If the cmpxchg operation is marked as ``weak`` then a spurious failure is
permitted: the operation may not write ``<new>`` even if the comparison
matched.

If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
if the value loaded equals ``cmp``.

A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
load with an ordering parameter determined the second ordering parameter.

Example:
""""""""

.. code-block:: llvm

    entry:
      %orig = load atomic i32, i32* %ptr unordered, align 4                      ; yields i32
      br label %loop

    loop:
      %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
      %squared = mul i32 %cmp, %cmp
      %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
      %value_loaded = extractvalue { i32, i1 } %val_success, 0
      %success = extractvalue { i32, i1 } %val_success, 1
      br i1 %success, label %done, label %loop

    done:
      ...

.. _i_atomicrmw:

'``atomicrmw``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering>                   ; yields ty

Overview:
"""""""""

The '``atomicrmw``' instruction is used to atomically modify memory.

Arguments:
""""""""""

There are three arguments to the '``atomicrmw``' instruction: an
operation to apply, an address whose value to modify, an argument to the
operation. The operation must be one of the following keywords:

-  xchg
-  add
-  sub
-  and
-  nand
-  or
-  xor
-  max
-  min
-  umax
-  umin
-  fadd
-  fsub

For most of these operations, the type of '<value>' must be an integer
type whose bit width is a power of two greater than or equal to eight
and less than or equal to a target-specific size limit. For xchg, this
may also be a floating point type with the same size constraints as
integers.  For fadd/fsub, this must be a floating point type.  The
type of the '``<pointer>``' operand must be a pointer to that type. If
the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
allowed to modify the number or order of execution of this
``atomicrmw`` with other :ref:`volatile operations <volatile>`.

A ``atomicrmw`` instruction can also take an optional
":ref:`syncscope <syncscope>`" argument.

Semantics:
""""""""""

The contents of memory at the location specified by the '``<pointer>``'
operand are atomically read, modified, and written back. The original
value at the location is returned. The modification is specified by the
operation argument:

-  xchg: ``*ptr = val``
-  add: ``*ptr = *ptr + val``
-  sub: ``*ptr = *ptr - val``
-  and: ``*ptr = *ptr & val``
-  nand: ``*ptr = ~(*ptr & val)``
-  or: ``*ptr = *ptr | val``
-  xor: ``*ptr = *ptr ^ val``
-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
   comparison)
-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
   comparison)
- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)

Example:
""""""""

.. code-block:: llvm

      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32

.. _i_getelementptr:

'``getelementptr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
      <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
      <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>

Overview:
"""""""""

The '``getelementptr``' instruction is used to get the address of a
subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
address calculation only and does not access memory. The instruction can also
be used to calculate a vector of such addresses.

Arguments:
""""""""""

The first argument is always a type used as the basis for the calculations.
The second argument is always a pointer or a vector of pointers, and is the
base address to start from. The remaining arguments are indices
that indicate which of the elements of the aggregate object are indexed.
The interpretation of each index is dependent on the type being indexed
into. The first index always indexes the pointer value given as the
second argument, the second index indexes a value of the type pointed to
(not necessarily the value directly pointed to, since the first index
can be non-zero), etc. The first type indexed into must be a pointer
value, subsequent types can be arrays, vectors, and structs. Note that
subsequent types being indexed into can never be pointers, since that
would require loading the pointer before continuing calculation.

The type of each index argument depends on the type it is indexing into.
When indexing into a (optionally packed) structure, only ``i32`` integer
**constants** are allowed (when using a vector of indices they must all
be the **same** ``i32`` integer constant). When indexing into an array,
pointer or vector, integers of any width are allowed, and they are not
required to be constant. These integers are treated as signed values
where relevant.

For example, let's consider a C code fragment and how it gets compiled
to LLVM:

.. code-block:: c

    struct RT {
      char A;
      int B[10][20];
      char C;
    };
    struct ST {
      int X;
      double Y;
      struct RT Z;
    };

    int *foo(struct ST *s) {
      return &s[1].Z.B[5][13];
    }

The LLVM code generated by Clang is:

.. code-block:: llvm

    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
    %struct.ST = type { i32, double, %struct.RT }

    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
    entry:
      %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
      ret i32* %arrayidx
    }

Semantics:
""""""""""

In the example above, the first index is indexing into the
'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
= '``{ i32, double, %struct.RT }``' type, a structure. The second index
indexes into the third element of the structure, yielding a
'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
structure. The third index indexes into the second element of the
structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
dimensions of the array are subscripted into, yielding an '``i32``'
type. The '``getelementptr``' instruction returns a pointer to this
element, thus computing a value of '``i32*``' type.

Note that it is perfectly legal to index partially through a structure,
returning a pointer to an inner element. Because of this, the LLVM code
for the given testcase is equivalent to:

.. code-block:: llvm

    define i32* @foo(%struct.ST* %s) {
      %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1                        ; yields %struct.ST*:%t1
      %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2                ; yields %struct.RT*:%t2
      %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1                ; yields [10 x [20 x i32]]*:%t3
      %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
      %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13               ; yields i32*:%t5
      ret i32* %t5
    }

If the ``inbounds`` keyword is present, the result value of the
``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
pointer is not an *in bounds* address of an allocated object, or if any
of the addresses that would be formed by successive addition of the
offsets implied by the indices to the base address with infinitely
precise signed arithmetic are not an *in bounds* address of that
allocated object. The *in bounds* addresses for an allocated object are
all the addresses that point into the object, plus the address one byte
past the end. The only *in bounds* address for a null pointer in the
default address-space is the null pointer itself. In cases where the
base is a vector of pointers the ``inbounds`` keyword applies to each
of the computations element-wise.

If the ``inbounds`` keyword is not present, the offsets are added to the
base address with silently-wrapping two's complement arithmetic. If the
offsets have a different width from the pointer, they are sign-extended
or truncated to the width of the pointer. The result value of the
``getelementptr`` may be outside the object pointed to by the base
pointer. The result value may not necessarily be used to access memory
though, even if it happens to point into allocated storage. See the
:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
information.

If the ``inrange`` keyword is present before any index, loading from or
storing to any pointer derived from the ``getelementptr`` has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as ``inrange``. The result of a
pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
involving memory) involving a pointer derived from a ``getelementptr`` with
the ``inrange`` keyword is undefined, with the exception of comparisons
in the case where both operands are in the range of the element selected
by the ``inrange`` keyword, inclusive of the address one past the end of
that element. Note that the ``inrange`` keyword is currently only allowed
in constant ``getelementptr`` expressions.

The getelementptr instruction is often confusing. For some more insight
into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.

Example:
""""""""

.. code-block:: llvm

        ; yields [12 x i8]*:aptr
        %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
        ; yields i8*:vptr
        %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
        ; yields i8*:eptr
        %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
        ; yields i32*:iptr
        %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0

Vector of pointers:
"""""""""""""""""""

The ``getelementptr`` returns a vector of pointers, instead of a single address,
when one or more of its arguments is a vector. In such cases, all vector
arguments should have the same number of elements, and every scalar argument
will be effectively broadcast into a vector during address calculation.

.. code-block:: llvm

     ; All arguments are vectors:
     ;   A[i] = ptrs[i] + offsets[i]*sizeof(i8)
     %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets

     ; Add the same scalar offset to each pointer of a vector:
     ;   A[i] = ptrs[i] + offset*sizeof(i8)
     %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset

     ; Add distinct offsets to the same pointer:
     ;   A[i] = ptr + offsets[i]*sizeof(i8)
     %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets

     ; In all cases described above the type of the result is <4 x i8*>

The two following instructions are equivalent:

.. code-block:: llvm

     getelementptr  %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
       <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
       <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
       <4 x i32> %ind4,
       <4 x i64> <i64 13, i64 13, i64 13, i64 13>

     getelementptr  %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
       i32 2, i32 1, <4 x i32> %ind4, i64 13

Let's look at the C code, where the vector version of ``getelementptr``
makes sense:

.. code-block:: c

    // Let's assume that we vectorize the following loop:
    double *A, *B; int *C;
    for (int i = 0; i < size; ++i) {
      A[i] = B[C[i]];
    }

.. code-block:: llvm

    ; get pointers for 8 elements from array B
    %ptrs = getelementptr double, double* %B, <8 x i32> %C
    ; load 8 elements from array B into A
    %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
         i32 8, <8 x i1> %mask, <8 x double> %passthru)

Conversion Operations
---------------------

The instructions in this category are the conversion instructions
(casting) which all take a single operand and a type. They perform
various bit conversions on the operand.

.. _i_trunc:

'``trunc .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = trunc <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``trunc``' instruction truncates its operand to the type ``ty2``.

Arguments:
""""""""""

The '``trunc``' instruction takes a value to trunc, and a type to trunc
it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
of the same number of integers. The bit size of the ``value`` must be
larger than the bit size of the destination type, ``ty2``. Equal sized
types are not allowed.

Semantics:
""""""""""

The '``trunc``' instruction truncates the high order bits in ``value``
and converts the remaining bits to ``ty2``. Since the source size must
be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
It will always truncate bits.

Example:
""""""""

.. code-block:: llvm

      %X = trunc i32 257 to i8                        ; yields i8:1
      %Y = trunc i32 123 to i1                        ; yields i1:true
      %Z = trunc i32 122 to i1                        ; yields i1:false
      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>

.. _i_zext:

'``zext .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = zext <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``zext``' instruction zero extends its operand to type ``ty2``.

Arguments:
""""""""""

The '``zext``' instruction takes a value to cast, and a type to cast it
to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
the same number of integers. The bit size of the ``value`` must be
smaller than the bit size of the destination type, ``ty2``.

Semantics:
""""""""""

The ``zext`` fills the high order bits of the ``value`` with zero bits
until it reaches the size of the destination type, ``ty2``.

When zero extending from i1, the result will always be either 0 or 1.

Example:
""""""""

.. code-block:: llvm

      %X = zext i32 257 to i64              ; yields i64:257
      %Y = zext i1 true to i32              ; yields i32:1
      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

.. _i_sext:

'``sext .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = sext <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``sext``' sign extends ``value`` to the type ``ty2``.

Arguments:
""""""""""

The '``sext``' instruction takes a value to cast, and a type to cast it
to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
the same number of integers. The bit size of the ``value`` must be
smaller than the bit size of the destination type, ``ty2``.

Semantics:
""""""""""

The '``sext``' instruction performs a sign extension by copying the sign
bit (highest order bit) of the ``value`` until it reaches the bit size
of the type ``ty2``.

When sign extending from i1, the extension always results in -1 or 0.

Example:
""""""""

.. code-block:: llvm

      %X = sext i8  -1 to i16              ; yields i16   :65535
      %Y = sext i1 true to i32             ; yields i32:-1
      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

'``fptrunc .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.

Arguments:
""""""""""

The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
The size of ``value`` must be larger than the size of ``ty2``. This
implies that ``fptrunc`` cannot be used to make a *no-op cast*.

Semantics:
""""""""""

The '``fptrunc``' instruction casts a ``value`` from a larger
:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
<t_floating>` type.
This instruction is assumed to execute in the default :ref:`floating-point
environment <floatenv>`.

Example:
""""""""

.. code-block:: llvm

      %X = fptrunc double 16777217.0 to float    ; yields float:16777216.0
      %Y = fptrunc double 1.0E+300 to half       ; yields half:+infinity

'``fpext .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fpext <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``fpext``' extends a floating-point ``value`` to a larger floating-point
value.

Arguments:
""""""""""

The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
to. The source type must be smaller than the destination type.

Semantics:
""""""""""

The '``fpext``' instruction extends the ``value`` from a smaller
:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
<t_floating>` type. The ``fpext`` cannot be used to make a
*no-op cast* because it always changes bits. Use ``bitcast`` to make a
*no-op cast* for a floating-point cast.

Example:
""""""""

.. code-block:: llvm

      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000

'``fptoui .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``fptoui``' converts a floating-point ``value`` to its unsigned
integer equivalent of type ``ty2``.

Arguments:
""""""""""

The '``fptoui``' instruction takes a value to cast, which must be a
scalar or vector :ref:`floating-point <t_floating>` value, and a type to
cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
type with the same number of elements as ``ty``

Semantics:
""""""""""

The '``fptoui``' instruction converts its :ref:`floating-point
<t_floating>` operand into the nearest (rounding towards zero)
unsigned integer value. If the value cannot fit in ``ty2``, the result
is a :ref:`poison value <poisonvalues>`.

Example:
""""""""

.. code-block:: llvm

      %X = fptoui double 123.0 to i32      ; yields i32:123
      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1

'``fptosi .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
``value`` to type ``ty2``.

Arguments:
""""""""""

The '``fptosi``' instruction takes a value to cast, which must be a
scalar or vector :ref:`floating-point <t_floating>` value, and a type to
cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
type with the same number of elements as ``ty``

Semantics:
""""""""""

The '``fptosi``' instruction converts its :ref:`floating-point
<t_floating>` operand into the nearest (rounding towards zero)
signed integer value. If the value cannot fit in ``ty2``, the result
is a :ref:`poison value <poisonvalues>`.

Example:
""""""""

.. code-block:: llvm

      %X = fptosi double -123.0 to i32      ; yields i32:-123
      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1

'``uitofp .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``uitofp``' instruction regards ``value`` as an unsigned integer
and converts that value to the ``ty2`` type.

Arguments:
""""""""""

The '``uitofp``' instruction takes a value to cast, which must be a
scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
type with the same number of elements as ``ty``

Semantics:
""""""""""

The '``uitofp``' instruction interprets its operand as an unsigned
integer quantity and converts it to the corresponding floating-point
value. If the value cannot be exactly represented, it is rounded using
the default rounding mode.


Example:
""""""""

.. code-block:: llvm

      %X = uitofp i32 257 to float         ; yields float:257.0
      %Y = uitofp i8 -1 to double          ; yields double:255.0

'``sitofp .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``sitofp``' instruction regards ``value`` as a signed integer and
converts that value to the ``ty2`` type.

Arguments:
""""""""""

The '``sitofp``' instruction takes a value to cast, which must be a
scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
type with the same number of elements as ``ty``

Semantics:
""""""""""

The '``sitofp``' instruction interprets its operand as a signed integer
quantity and converts it to the corresponding floating-point value. If the
value cannot be exactly represented, it is rounded using the default rounding
mode.

Example:
""""""""

.. code-block:: llvm

      %X = sitofp i32 257 to float         ; yields float:257.0
      %Y = sitofp i8 -1 to double          ; yields double:-1.0

.. _i_ptrtoint:

'``ptrtoint .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``ptrtoint``' instruction converts the pointer or a vector of
pointers ``value`` to the integer (or vector of integers) type ``ty2``.

Arguments:
""""""""""

The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
a vector of integers type.

Semantics:
""""""""""

The '``ptrtoint``' instruction converts ``value`` to integer type
``ty2`` by interpreting the pointer value as an integer and either
truncating or zero extending that value to the size of the integer type.
If ``value`` is smaller than ``ty2`` then a zero extension is done. If
``value`` is larger than ``ty2`` then a truncation is done. If they are
the same size, then nothing is done (*no-op cast*) other than a type
change.

Example:
""""""""

.. code-block:: llvm

      %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
      %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
      %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture

.. _i_inttoptr:

'``inttoptr .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = inttoptr <ty> <value> to <ty2>[, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node]             ; yields ty2

Overview:
"""""""""

The '``inttoptr``' instruction converts an integer ``value`` to a
pointer type, ``ty2``.

Arguments:
""""""""""

The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
type.

The optional ``!dereferenceable`` metadata must reference a single metadata
name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
entry.
See ``dereferenceable`` metadata.

The optional ``!dereferenceable_or_null`` metadata must reference a single
metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
``i64`` entry.
See ``dereferenceable_or_null`` metadata.

Semantics:
""""""""""

The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
applying either a zero extension or a truncation depending on the size
of the integer ``value``. If ``value`` is larger than the size of a
pointer then a truncation is done. If ``value`` is smaller than the size
of a pointer then a zero extension is done. If they are the same size,
nothing is done (*no-op cast*).

Example:
""""""""

.. code-block:: llvm

      %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
      %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
      %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
      %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers

.. _i_bitcast:

'``bitcast .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
changing any bits.

Arguments:
""""""""""

The '``bitcast``' instruction takes a value to cast, which must be a
non-aggregate first class value, and a type to cast it to, which must
also be a non-aggregate :ref:`first class <t_firstclass>` type. The
bit sizes of ``value`` and the destination type, ``ty2``, must be
identical. If the source type is a pointer, the destination type must
also be a pointer of the same size. This instruction supports bitwise
conversion of vectors to integers and to vectors of other types (as
long as they have the same size).

Semantics:
""""""""""

The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
is always a *no-op cast* because no bits change with this
conversion. The conversion is done as if the ``value`` had been stored
to memory and read back as type ``ty2``. Pointer (or vector of
pointers) types may only be converted to other pointer (or vector of
pointers) types with the same address space through this instruction.
To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
or :ref:`ptrtoint <i_ptrtoint>` instructions first.

Example:
""""""""

.. code-block:: text

      %X = bitcast i8 255 to i8              ; yields i8 :-1
      %Y = bitcast i32* %x to sint*          ; yields sint*:%x
      %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>

.. _i_addrspacecast:

'``addrspacecast .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2

Overview:
"""""""""

The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
address space ``n`` to type ``pty2`` in address space ``m``.

Arguments:
""""""""""

The '``addrspacecast``' instruction takes a pointer or vector of pointer value
to cast and a pointer type to cast it to, which must have a different
address space.

Semantics:
""""""""""

The '``addrspacecast``' instruction converts the pointer value
``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
value modification, depending on the target and the address space
pair. Pointer conversions within the same address space must be
performed with the ``bitcast`` instruction. Note that if the address space
conversion is legal then both result and operand refer to the same memory
location.

Example:
""""""""

.. code-block:: llvm

      %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
      %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
      %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z

.. _otherops:

Other Operations
----------------

The instructions in this category are the "miscellaneous" instructions,
which defy better classification.

.. _i_icmp:

'``icmp``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result

Overview:
"""""""""

The '``icmp``' instruction returns a boolean value or a vector of
boolean values based on comparison of its two integer, integer vector,
pointer, or pointer vector operands.

Arguments:
""""""""""

The '``icmp``' instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is
not a value, just a keyword. The possible condition codes are:

#. ``eq``: equal
#. ``ne``: not equal
#. ``ugt``: unsigned greater than
#. ``uge``: unsigned greater or equal
#. ``ult``: unsigned less than
#. ``ule``: unsigned less or equal
#. ``sgt``: signed greater than
#. ``sge``: signed greater or equal
#. ``slt``: signed less than
#. ``sle``: signed less or equal

The remaining two arguments must be :ref:`integer <t_integer>` or
:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
must also be identical types.

Semantics:
""""""""""

The '``icmp``' compares ``op1`` and ``op2`` according to the condition
code given as ``cond``. The comparison performed always yields either an
:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:

#. ``eq``: yields ``true`` if the operands are equal, ``false``
   otherwise. No sign interpretation is necessary or performed.
#. ``ne``: yields ``true`` if the operands are unequal, ``false``
   otherwise. No sign interpretation is necessary or performed.
#. ``ugt``: interprets the operands as unsigned values and yields
   ``true`` if ``op1`` is greater than ``op2``.
#. ``uge``: interprets the operands as unsigned values and yields
   ``true`` if ``op1`` is greater than or equal to ``op2``.
#. ``ult``: interprets the operands as unsigned values and yields
   ``true`` if ``op1`` is less than ``op2``.
#. ``ule``: interprets the operands as unsigned values and yields
   ``true`` if ``op1`` is less than or equal to ``op2``.
#. ``sgt``: interprets the operands as signed values and yields ``true``
   if ``op1`` is greater than ``op2``.
#. ``sge``: interprets the operands as signed values and yields ``true``
   if ``op1`` is greater than or equal to ``op2``.
#. ``slt``: interprets the operands as signed values and yields ``true``
   if ``op1`` is less than ``op2``.
#. ``sle``: interprets the operands as signed values and yields ``true``
   if ``op1`` is less than or equal to ``op2``.

If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
are compared as if they were integers.

If the operands are integer vectors, then they are compared element by
element. The result is an ``i1`` vector with the same number of elements
as the values being compared. Otherwise, the result is an ``i1``.

Example:
""""""""

.. code-block:: text

      <result> = icmp eq i32 4, 5          ; yields: result=false
      <result> = icmp ne float* %X, %X     ; yields: result=false
      <result> = icmp ult i16  4, 5        ; yields: result=true
      <result> = icmp sgt i16  4, 5        ; yields: result=false
      <result> = icmp ule i16 -4, 5        ; yields: result=false
      <result> = icmp sge i16  4, 5        ; yields: result=false

.. _i_fcmp:

'``fcmp``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result

Overview:
"""""""""

The '``fcmp``' instruction returns a boolean value or vector of boolean
values based on comparison of its operands.

If the operands are floating-point scalars, then the result type is a
boolean (:ref:`i1 <t_integer>`).

If the operands are floating-point vectors, then the result type is a
vector of boolean with the same number of elements as the operands being
compared.

Arguments:
""""""""""

The '``fcmp``' instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is
not a value, just a keyword. The possible condition codes are:

#. ``false``: no comparison, always returns false
#. ``oeq``: ordered and equal
#. ``ogt``: ordered and greater than
#. ``oge``: ordered and greater than or equal
#. ``olt``: ordered and less than
#. ``ole``: ordered and less than or equal
#. ``one``: ordered and not equal
#. ``ord``: ordered (no nans)
#. ``ueq``: unordered or equal
#. ``ugt``: unordered or greater than
#. ``uge``: unordered or greater than or equal
#. ``ult``: unordered or less than
#. ``ule``: unordered or less than or equal
#. ``une``: unordered or not equal
#. ``uno``: unordered (either nans)
#. ``true``: no comparison, always returns true

*Ordered* means that neither operand is a QNAN while *unordered* means
that either operand may be a QNAN.

Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
They must have identical types.

Semantics:
""""""""""

The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
condition code given as ``cond``. If the operands are vectors, then the
vectors are compared element by element. Each comparison performed
always yields an :ref:`i1 <t_integer>` result, as follows:

#. ``false``: always yields ``false``, regardless of operands.
#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
   is equal to ``op2``.
#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
   is greater than ``op2``.
#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
   is greater than or equal to ``op2``.
#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
   is less than ``op2``.
#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
   is less than or equal to ``op2``.
#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
   is not equal to ``op2``.
#. ``ord``: yields ``true`` if both operands are not a QNAN.
#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
   equal to ``op2``.
#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
   greater than ``op2``.
#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
   greater than or equal to ``op2``.
#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
   less than ``op2``.
#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
   less than or equal to ``op2``.
#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
   not equal to ``op2``.
#. ``uno``: yields ``true`` if either operand is a QNAN.
#. ``true``: always yields ``true``, regardless of operands.

The ``fcmp`` instruction can also optionally take any number of
:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
otherwise unsafe floating-point optimizations.

Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
only flags that have any effect on its semantics are those that allow
assumptions to be made about the values of input arguments; namely
``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.

Example:
""""""""

.. code-block:: text

      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false

.. _i_phi:

'``phi``' Instruction
^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = phi [fast-math-flags] <ty> [ <val0>, <label0>], ...

Overview:
"""""""""

The '``phi``' instruction is used to implement the φ node in the SSA
graph representing the function.

Arguments:
""""""""""

The type of the incoming values is specified with the first type field.
After this, the '``phi``' instruction takes a list of pairs as
arguments, with one pair for each predecessor basic block of the current
block. Only values of :ref:`first class <t_firstclass>` type may be used as
the value arguments to the PHI node. Only labels may be used as the
label arguments.

There must be no non-phi instructions between the start of a basic block
and the PHI instructions: i.e. PHI instructions must be first in a basic
block.

For the purposes of the SSA form, the use of each incoming value is
deemed to occur on the edge from the corresponding predecessor block to
the current block (but after any definition of an '``invoke``'
instruction's return value on the same edge).

The optional ``fast-math-flags`` marker indicates that the phi has one
or more :ref:`fast-math-flags <fastmath>`. These are optimization hints
to enable otherwise unsafe floating-point optimizations. Fast-math-flags
are only valid for phis that return a floating-point scalar or vector
type.

Semantics:
""""""""""

At runtime, the '``phi``' instruction logically takes on the value
specified by the pair corresponding to the predecessor basic block that
executed just prior to the current block.

Example:
""""""""

.. code-block:: llvm

    Loop:       ; Infinite loop that counts from 0 on up...
      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
      %nextindvar = add i32 %indvar, 1
      br label %Loop

.. _i_select:

'``select``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = select [fast-math flags] selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty

      selty is either i1 or {<N x i1>}

Overview:
"""""""""

The '``select``' instruction is used to choose one value based on a
condition, without IR-level branching.

Arguments:
""""""""""

The '``select``' instruction requires an 'i1' value or a vector of 'i1'
values indicating the condition, and two values of the same :ref:`first
class <t_firstclass>` type.

#. The optional ``fast-math flags`` marker indicates that the select has one or more
   :ref:`fast-math flags <fastmath>`. These are optimization hints to enable
   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
   for selects that return a floating-point scalar or vector type.

Semantics:
""""""""""

If the condition is an i1 and it evaluates to 1, the instruction returns
the first value argument; otherwise, it returns the second value
argument.

If the condition is a vector of i1, then the value arguments must be
vectors of the same size, and the selection is done element by element.

If the condition is an i1 and the value arguments are vectors of the
same size, then an entire vector is selected.

Example:
""""""""

.. code-block:: llvm

      %X = select i1 true, i8 17, i8 42          ; yields i8:17

.. _i_call:

'``call``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
                 <ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]

Overview:
"""""""""

The '``call``' instruction represents a simple function call.

Arguments:
""""""""""

This instruction requires several arguments:

#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
   should perform tail call optimization. The ``tail`` marker is a hint that
   `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
   means that the call must be tail call optimized in order for the program to
   be correct. The ``musttail`` marker provides these guarantees:

   #. The call will not cause unbounded stack growth if it is part of a
      recursive cycle in the call graph.
   #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
      forwarded in place.
   #. If the musttail call appears in a function with the ``"thunk"`` attribute
      and the caller and callee both have varargs, than any unprototyped
      arguments in register or memory are forwarded to the callee. Similarly,
      the return value of the callee is returned the the caller's caller, even
      if a void return type is in use.

   Both markers imply that the callee does not access allocas from the caller.
   The ``tail`` marker additionally implies that the callee does not access
   varargs from the caller. Calls marked ``musttail`` must obey the following
   additional  rules:

   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
     or a pointer bitcast followed by a ret instruction.
   - The ret instruction must return the (possibly bitcasted) value
     produced by the call or void.
   - The caller and callee prototypes must match. Pointer types of
     parameters or return types may differ in pointee type, but not
     in address space.
   - The calling conventions of the caller and callee must match.
   - All ABI-impacting function attributes, such as sret, byval, inreg,
     returned, and inalloca, must match.
   - The callee must be varargs iff the caller is varargs. Bitcasting a
     non-varargs function to the appropriate varargs type is legal so
     long as the non-varargs prefixes obey the other rules.

   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
   the following conditions are met:

   -  Caller and callee both have the calling convention ``fastcc`` or ``tailcc``.
   -  The call is in tail position (ret immediately follows call and ret
      uses value of call or is void).
   -  Option ``-tailcallopt`` is enabled,
      ``llvm::GuaranteedTailCallOpt`` is ``true``, or the calling convention
      is ``tailcc``
   -  `Platform-specific constraints are
      met. <CodeGenerator.html#tailcallopt>`_

#. The optional ``notail`` marker indicates that the optimizers should not add
   ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
   call optimization from being performed on the call.

#. The optional ``fast-math flags`` marker indicates that the call has one or more
   :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
   for calls that return a floating-point scalar or vector type.

#. The optional "cconv" marker indicates which :ref:`calling
   convention <callingconv>` the call should use. If none is
   specified, the call defaults to using C calling conventions. The
   calling convention of the call must match the calling convention of
   the target function, or else the behavior is undefined.
#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   are valid here.
#. The optional addrspace attribute can be used to indicate the address space
   of the called function. If it is not specified, the program address space
   from the :ref:`datalayout string<langref_datalayout>` will be used.
#. '``ty``': the type of the call instruction itself which is also the
   type of the return value. Functions that return no value are marked
   ``void``.
#. '``fnty``': shall be the signature of the function being called. The
   argument types must match the types implied by this signature. This
   type can be omitted if the function is not varargs.
#. '``fnptrval``': An LLVM value containing a pointer to a function to
   be called. In most cases, this is a direct function call, but
   indirect ``call``'s are just as possible, calling an arbitrary pointer
   to function value.
#. '``function args``': argument list whose types match the function
   signature argument types and parameter attributes. All arguments must
   be of :ref:`first class <t_firstclass>` type. If the function signature
   indicates the function accepts a variable number of arguments, the
   extra arguments can be specified.
#. The optional :ref:`function attributes <fnattrs>` list.
#. The optional :ref:`operand bundles <opbundles>` list.

Semantics:
""""""""""

The '``call``' instruction is used to cause control flow to transfer to
a specified function, with its incoming arguments bound to the specified
values. Upon a '``ret``' instruction in the called function, control
flow continues with the instruction after the function call, and the
return value of the function is bound to the result argument.

Example:
""""""""

.. code-block:: llvm

      %retval = call i32 @test(i32 %argc)
      call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
      %X = tail call i32 @foo()                                    ; yields i32
      %Y = tail call fastcc i32 @foo()  ; yields i32
      call void %foo(i8 97 signext)

      %struct.A = type { i32, i8 }
      %r = call %struct.A @foo()                        ; yields { i32, i8 }
      %gr = extractvalue %struct.A %r, 0                ; yields i32
      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended

llvm treats calls to some functions with names and arguments that match
the standard C99 library as being the C99 library functions, and may
perform optimizations or generate code for them under that assumption.
This is something we'd like to change in the future to provide better
support for freestanding environments and non-C-based languages.

.. _i_va_arg:

'``va_arg``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <resultval> = va_arg <va_list*> <arglist>, <argty>

Overview:
"""""""""

The '``va_arg``' instruction is used to access arguments passed through
the "variable argument" area of a function call. It is used to implement
the ``va_arg`` macro in C.

Arguments:
""""""""""

This instruction takes a ``va_list*`` value and the type of the
argument. It returns a value of the specified argument type and
increments the ``va_list`` to point to the next argument. The actual
type of ``va_list`` is target specific.

Semantics:
""""""""""

The '``va_arg``' instruction loads an argument of the specified type
from the specified ``va_list`` and causes the ``va_list`` to point to
the next argument. For more information, see the variable argument
handling :ref:`Intrinsic Functions <int_varargs>`.

It is legal for this instruction to be called in a function which does
not take a variable number of arguments, for example, the ``vfprintf``
function.

``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
function <intrinsics>` because it takes a type as an argument.

Example:
""""""""

See the :ref:`variable argument processing <int_varargs>` section.

Note that the code generator does not yet fully support va\_arg on many
targets. Also, it does not currently support va\_arg with aggregate
types on any target.

.. _i_landingpad:

'``landingpad``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <resultval> = landingpad <resultty> <clause>+
      <resultval> = landingpad <resultty> cleanup <clause>*

      <clause> := catch <type> <value>
      <clause> := filter <array constant type> <array constant>

Overview:
"""""""""

The '``landingpad``' instruction is used by `LLVM's exception handling
system <ExceptionHandling.html#overview>`_ to specify that a basic block
is a landing pad --- one where the exception lands, and corresponds to the
code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
defines values supplied by the :ref:`personality function <personalityfn>` upon
re-entry to the function. The ``resultval`` has the type ``resultty``.

Arguments:
""""""""""

The optional
``cleanup`` flag indicates that the landing pad block is a cleanup.

A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
contains the global variable representing the "type" that may be caught
or filtered respectively. Unlike the ``catch`` clause, the ``filter``
clause takes an array constant as its argument. Use
"``[0 x i8**] undef``" for a filter which cannot throw. The
'``landingpad``' instruction must contain *at least* one ``clause`` or
the ``cleanup`` flag.

Semantics:
""""""""""

The '``landingpad``' instruction defines the values which are set by the
:ref:`personality function <personalityfn>` upon re-entry to the function, and
therefore the "result type" of the ``landingpad`` instruction. As with
calling conventions, how the personality function results are
represented in LLVM IR is target specific.

The clauses are applied in order from top to bottom. If two
``landingpad`` instructions are merged together through inlining, the
clauses from the calling function are appended to the list of clauses.
When the call stack is being unwound due to an exception being thrown,
the exception is compared against each ``clause`` in turn. If it doesn't
match any of the clauses, and the ``cleanup`` flag is not set, then
unwinding continues further up the call stack.

The ``landingpad`` instruction has several restrictions:

-  A landing pad block is a basic block which is the unwind destination
   of an '``invoke``' instruction.
-  A landing pad block must have a '``landingpad``' instruction as its
   first non-PHI instruction.
-  There can be only one '``landingpad``' instruction within the landing
   pad block.
-  A basic block that is not a landing pad block may not include a
   '``landingpad``' instruction.

Example:
""""""""

.. code-block:: llvm

      ;; A landing pad which can catch an integer.
      %res = landingpad { i8*, i32 }
               catch i8** @_ZTIi
      ;; A landing pad that is a cleanup.
      %res = landingpad { i8*, i32 }
               cleanup
      ;; A landing pad which can catch an integer and can only throw a double.
      %res = landingpad { i8*, i32 }
               catch i8** @_ZTIi
               filter [1 x i8**] [@_ZTId]

.. _i_catchpad:

'``catchpad``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <resultval> = catchpad within <catchswitch> [<args>*]

Overview:
"""""""""

The '``catchpad``' instruction is used by `LLVM's exception handling
system <ExceptionHandling.html#overview>`_ to specify that a basic block
begins a catch handler --- one where a personality routine attempts to transfer
control to catch an exception.

Arguments:
""""""""""

The ``catchswitch`` operand must always be a token produced by a
:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
ensures that each ``catchpad`` has exactly one predecessor block, and it always
terminates in a ``catchswitch``.

The ``args`` correspond to whatever information the personality routine
requires to know if this is an appropriate handler for the exception. Control
will transfer to the ``catchpad`` if this is the first appropriate handler for
the exception.

The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
pads.

Semantics:
""""""""""

When the call stack is being unwound due to an exception being thrown, the
exception is compared against the ``args``. If it doesn't match, control will
not reach the ``catchpad`` instruction.  The representation of ``args`` is
entirely target and personality function-specific.

Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
instruction must be the first non-phi of its parent basic block.

The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
instructions is described in the
`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.

When a ``catchpad`` has been "entered" but not yet "exited" (as
described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.

Example:
""""""""

.. code-block:: text

    dispatch:
      %cs = catchswitch within none [label %handler0] unwind to caller
      ;; A catch block which can catch an integer.
    handler0:
      %tok = catchpad within %cs [i8** @_ZTIi]

.. _i_cleanuppad:

'``cleanuppad``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <resultval> = cleanuppad within <parent> [<args>*]

Overview:
"""""""""

The '``cleanuppad``' instruction is used by `LLVM's exception handling
system <ExceptionHandling.html#overview>`_ to specify that a basic block
is a cleanup block --- one where a personality routine attempts to
transfer control to run cleanup actions.
The ``args`` correspond to whatever additional
information the :ref:`personality function <personalityfn>` requires to
execute the cleanup.
The ``resultval`` has the type :ref:`token <t_token>` and is used to
match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
The ``parent`` argument is the token of the funclet that contains the
``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
this operand may be the token ``none``.

Arguments:
""""""""""

The instruction takes a list of arbitrary values which are interpreted
by the :ref:`personality function <personalityfn>`.

Semantics:
""""""""""

When the call stack is being unwound due to an exception being thrown,
the :ref:`personality function <personalityfn>` transfers control to the
``cleanuppad`` with the aid of the personality-specific arguments.
As with calling conventions, how the personality function results are
represented in LLVM IR is target specific.

The ``cleanuppad`` instruction has several restrictions:

-  A cleanup block is a basic block which is the unwind destination of
   an exceptional instruction.
-  A cleanup block must have a '``cleanuppad``' instruction as its
   first non-PHI instruction.
-  There can be only one '``cleanuppad``' instruction within the
   cleanup block.
-  A basic block that is not a cleanup block may not include a
   '``cleanuppad``' instruction.

When a ``cleanuppad`` has been "entered" but not yet "exited" (as
described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.

Example:
""""""""

.. code-block:: text

      %tok = cleanuppad within %cs []

.. _intrinsics:

Intrinsic Functions
===================

LLVM supports the notion of an "intrinsic function". These functions
have well known names and semantics and are required to follow certain
restrictions. Overall, these intrinsics represent an extension mechanism
for the LLVM language that does not require changing all of the
transformations in LLVM when adding to the language (or the bitcode
reader/writer, the parser, etc...).

Intrinsic function names must all start with an "``llvm.``" prefix. This
prefix is reserved in LLVM for intrinsic names; thus, function names may
not begin with this prefix. Intrinsic functions must always be external
functions: you cannot define the body of intrinsic functions. Intrinsic
functions may only be used in call or invoke instructions: it is illegal
to take the address of an intrinsic function. Additionally, because
intrinsic functions are part of the LLVM language, it is required if any
are added that they be documented here.

Some intrinsic functions can be overloaded, i.e., the intrinsic
represents a family of functions that perform the same operation but on
different data types. Because LLVM can represent over 8 million
different integer types, overloading is used commonly to allow an
intrinsic function to operate on any integer type. One or more of the
argument types or the result type can be overloaded to accept any
integer type. Argument types may also be defined as exactly matching a
previous argument's type or the result type. This allows an intrinsic
function which accepts multiple arguments, but needs all of them to be
of the same type, to only be overloaded with respect to a single
argument or the result.

Overloaded intrinsics will have the names of its overloaded argument
types encoded into its function name, each preceded by a period. Only
those types which are overloaded result in a name suffix. Arguments
whose type is matched against another type do not. For example, the
``llvm.ctpop`` function can take an integer of any width and returns an
integer of exactly the same integer width. This leads to a family of
functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
overloaded, and only one type suffix is required. Because the argument's
type is matched against the return type, it does not require its own
name suffix.

For target developers who are defining intrinsics for back-end code
generation, any intrinsic overloads based solely the distinction between
integer or floating point types should not be relied upon for correct
code generation. In such cases, the recommended approach for target
maintainers when defining intrinsics is to create separate integer and
FP intrinsics rather than rely on overloading. For example, if different
codegen is required for ``llvm.target.foo(<4 x i32>)`` and
``llvm.target.foo(<4 x float>)`` then these should be split into
different intrinsics.

To learn how to add an intrinsic function, please see the `Extending
LLVM Guide <ExtendingLLVM.html>`_.

.. _int_varargs:

Variable Argument Handling Intrinsics
-------------------------------------

Variable argument support is defined in LLVM with the
:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
functions. These functions are related to the similarly named macros
defined in the ``<stdarg.h>`` header file.

All of these functions operate on arguments that use a target-specific
value type "``va_list``". The LLVM assembly language reference manual
does not define what this type is, so all transformations should be
prepared to handle these functions regardless of the type used.

This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
variable argument handling intrinsic functions are used.

.. code-block:: llvm

    ; This struct is different for every platform. For most platforms,
    ; it is merely an i8*.
    %struct.va_list = type { i8* }

    ; For Unix x86_64 platforms, va_list is the following struct:
    ; %struct.va_list = type { i32, i32, i8*, i8* }

    define i32 @test(i32 %X, ...) {
      ; Initialize variable argument processing
      %ap = alloca %struct.va_list
      %ap2 = bitcast %struct.va_list* %ap to i8*
      call void @llvm.va_start(i8* %ap2)

      ; Read a single integer argument
      %tmp = va_arg i8* %ap2, i32

      ; Demonstrate usage of llvm.va_copy and llvm.va_end
      %aq = alloca i8*
      %aq2 = bitcast i8** %aq to i8*
      call void @llvm.va_copy(i8* %aq2, i8* %ap2)
      call void @llvm.va_end(i8* %aq2)

      ; Stop processing of arguments.
      call void @llvm.va_end(i8* %ap2)
      ret i32 %tmp
    }

    declare void @llvm.va_start(i8*)
    declare void @llvm.va_copy(i8*, i8*)
    declare void @llvm.va_end(i8*)

.. _int_va_start:

'``llvm.va_start``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.va_start(i8* <arglist>)

Overview:
"""""""""

The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
subsequent use by ``va_arg``.

Arguments:
""""""""""

The argument is a pointer to a ``va_list`` element to initialize.

Semantics:
""""""""""

The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
available in C. In a target-dependent way, it initializes the
``va_list`` element to which the argument points, so that the next call
to ``va_arg`` will produce the first variable argument passed to the
function. Unlike the C ``va_start`` macro, this intrinsic does not need
to know the last argument of the function as the compiler can figure
that out.

'``llvm.va_end``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.va_end(i8* <arglist>)

Overview:
"""""""""

The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.

Arguments:
""""""""""

The argument is a pointer to a ``va_list`` to destroy.

Semantics:
""""""""""

The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
available in C. In a target-dependent way, it destroys the ``va_list``
element to which the argument points. Calls to
:ref:`llvm.va_start <int_va_start>` and
:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
``llvm.va_end``.

.. _int_va_copy:

'``llvm.va_copy``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)

Overview:
"""""""""

The '``llvm.va_copy``' intrinsic copies the current argument position
from the source argument list to the destination argument list.

Arguments:
""""""""""

The first argument is a pointer to a ``va_list`` element to initialize.
The second argument is a pointer to a ``va_list`` element to copy from.

Semantics:
""""""""""

The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
available in C. In a target-dependent way, it copies the source
``va_list`` element into the destination ``va_list`` element. This
intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
arbitrarily complex and require, for example, memory allocation.

Accurate Garbage Collection Intrinsics
--------------------------------------

LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
(GC) requires the frontend to generate code containing appropriate intrinsic
calls and select an appropriate GC strategy which knows how to lower these
intrinsics in a manner which is appropriate for the target collector.

These intrinsics allow identification of :ref:`GC roots on the
stack <int_gcroot>`, as well as garbage collector implementations that
require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Frontends for type-safe garbage collected languages should generate
these intrinsics to make use of the LLVM garbage collectors. For more
details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.

Experimental Statepoint Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

LLVM provides an second experimental set of intrinsics for describing garbage
collection safepoints in compiled code. These intrinsics are an alternative
to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
differences in approach are covered in the `Garbage Collection with LLVM
<GarbageCollection.html>`_ documentation. The intrinsics themselves are
described in :doc:`Statepoints`.

.. _int_gcroot:

'``llvm.gcroot``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

Overview:
"""""""""

The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
the code generator, and allows some metadata to be associated with it.

Arguments:
""""""""""

The first argument specifies the address of a stack object that contains
the root pointer. The second pointer (which must be either a constant or
a global value address) contains the meta-data to be associated with the
root.

Semantics:
""""""""""

At runtime, a call to this intrinsic stores a null pointer into the
"ptrloc" location. At compile-time, the code generator generates
information to allow the runtime to find the pointer at GC safe points.
The '``llvm.gcroot``' intrinsic may only be used in a function which
:ref:`specifies a GC algorithm <gc>`.

.. _int_gcread:

'``llvm.gcread``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)

Overview:
"""""""""

The '``llvm.gcread``' intrinsic identifies reads of references from heap
locations, allowing garbage collector implementations that require read
barriers.

Arguments:
""""""""""

The second argument is the address to read from, which should be an
address allocated from the garbage collector. The first object is a
pointer to the start of the referenced object, if needed by the language
runtime (otherwise null).

Semantics:
""""""""""

The '``llvm.gcread``' intrinsic has the same semantics as a load
instruction, but may be replaced with substantially more complex code by
the garbage collector runtime, as needed. The '``llvm.gcread``'
intrinsic may only be used in a function which :ref:`specifies a GC
algorithm <gc>`.

.. _int_gcwrite:

'``llvm.gcwrite``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)

Overview:
"""""""""

The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
locations, allowing garbage collector implementations that require write
barriers (such as generational or reference counting collectors).

Arguments:
""""""""""

The first argument is the reference to store, the second is the start of
the object to store it to, and the third is the address of the field of
Obj to store to. If the runtime does not require a pointer to the
object, Obj may be null.

Semantics:
""""""""""

The '``llvm.gcwrite``' intrinsic has the same semantics as a store
instruction, but may be replaced with substantially more complex code by
the garbage collector runtime, as needed. The '``llvm.gcwrite``'
intrinsic may only be used in a function which :ref:`specifies a GC
algorithm <gc>`.

Code Generator Intrinsics
-------------------------

These intrinsics are provided by LLVM to expose special features that
may only be implemented with code generator support.

'``llvm.returnaddress``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.returnaddress(i32 <level>)

Overview:
"""""""""

The '``llvm.returnaddress``' intrinsic attempts to compute a
target-specific value indicating the return address of the current
function or one of its callers.

Arguments:
""""""""""

The argument to this intrinsic indicates which function to return the
address for. Zero indicates the calling function, one indicates its
caller, etc. The argument is **required** to be a constant integer
value.

Semantics:
""""""""""

The '``llvm.returnaddress``' intrinsic either returns a pointer
indicating the return address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to
be incorrect or 0 for arguments other than zero, so it should only be
used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

'``llvm.addressofreturnaddress``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.addressofreturnaddress()

Overview:
"""""""""

The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
pointer to the place in the stack frame where the return address of the
current function is stored.

Semantics:
""""""""""

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

This intrinsic is only implemented for x86 and aarch64.

'``llvm.sponentry``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.sponentry()

Overview:
"""""""""

The '``llvm.sponentry``' intrinsic returns the stack pointer value at
the entry of the current function calling this intrinsic.

Semantics:
""""""""""

Note this intrinsic is only verified on AArch64.

'``llvm.frameaddress``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.frameaddress(i32 <level>)

Overview:
"""""""""

The '``llvm.frameaddress``' intrinsic attempts to return the
target-specific frame pointer value for the specified stack frame.

Arguments:
""""""""""

The argument to this intrinsic indicates which function to return the
frame pointer for. Zero indicates the calling function, one indicates
its caller, etc. The argument is **required** to be a constant integer
value.

Semantics:
""""""""""

The '``llvm.frameaddress``' intrinsic either returns a pointer
indicating the frame address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to
be incorrect or 0 for arguments other than zero, so it should only be
used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.localescape(...)
      declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)

Overview:
"""""""""

The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
live frame pointer to recover the address of the allocation. The offset is
computed during frame layout of the caller of ``llvm.localescape``.

Arguments:
""""""""""

All arguments to '``llvm.localescape``' must be pointers to static allocas or
casts of static allocas. Each function can only call '``llvm.localescape``'
once, and it can only do so from the entry block.

The ``func`` argument to '``llvm.localrecover``' must be a constant
bitcasted pointer to a function defined in the current module. The code
generator cannot determine the frame allocation offset of functions defined in
other modules.

The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
call frame that is currently live. The return value of '``llvm.localaddress``'
is one way to produce such a value, but various runtimes also expose a suitable
pointer in platform-specific ways.

The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
'``llvm.localescape``' to recover. It is zero-indexed.

Semantics:
""""""""""

These intrinsics allow a group of functions to share access to a set of local
stack allocations of a one parent function. The parent function may call the
'``llvm.localescape``' intrinsic once from the function entry block, and the
child functions can use '``llvm.localrecover``' to access the escaped allocas.
The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
the escaped allocas are allocated, which would break attempts to use
'``llvm.localrecover``'.

.. _int_read_register:
.. _int_write_register:

'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.read_register.i32(metadata)
      declare i64 @llvm.read_register.i64(metadata)
      declare void @llvm.write_register.i32(metadata, i32 @value)
      declare void @llvm.write_register.i64(metadata, i64 @value)
      !0 = !{!"sp\00"}

Overview:
"""""""""

The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
provides access to the named register. The register must be valid on
the architecture being compiled to. The type needs to be compatible
with the register being read.

Semantics:
""""""""""

The '``llvm.read_register``' intrinsic returns the current value of the
register, where possible. The '``llvm.write_register``' intrinsic sets
the current value of the register, where possible.

This is useful to implement named register global variables that need
to always be mapped to a specific register, as is common practice on
bare-metal programs including OS kernels.

The compiler doesn't check for register availability or use of the used
register in surrounding code, including inline assembly. Because of that,
allocatable registers are not supported.

Warning: So far it only works with the stack pointer on selected
architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
work is needed to support other registers and even more so, allocatable
registers.

.. _int_stacksave:

'``llvm.stacksave``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.stacksave()

Overview:
"""""""""

The '``llvm.stacksave``' intrinsic is used to remember the current state
of the function stack, for use with
:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
implementing language features like scoped automatic variable sized
arrays in C99.

Semantics:
""""""""""

This intrinsic returns a opaque pointer value that can be passed to
:ref:`llvm.stackrestore <int_stackrestore>`. When an
``llvm.stackrestore`` intrinsic is executed with a value saved from
``llvm.stacksave``, it effectively restores the state of the stack to
the state it was in when the ``llvm.stacksave`` intrinsic executed. In
practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
were allocated after the ``llvm.stacksave`` was executed.

.. _int_stackrestore:

'``llvm.stackrestore``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.stackrestore(i8* %ptr)

Overview:
"""""""""

The '``llvm.stackrestore``' intrinsic is used to restore the state of
the function stack to the state it was in when the corresponding
:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
useful for implementing language features like scoped automatic variable
sized arrays in C99.

Semantics:
""""""""""

See the description for :ref:`llvm.stacksave <int_stacksave>`.

.. _int_get_dynamic_area_offset:

'``llvm.get.dynamic.area.offset``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.get.dynamic.area.offset.i32()
      declare i64 @llvm.get.dynamic.area.offset.i64()

Overview:
"""""""""

      The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
      get the offset from native stack pointer to the address of the most
      recent dynamic alloca on the caller's stack. These intrinsics are
      intendend for use in combination with
      :ref:`llvm.stacksave <int_stacksave>` to get a
      pointer to the most recent dynamic alloca. This is useful, for example,
      for AddressSanitizer's stack unpoisoning routines.

Semantics:
""""""""""

      These intrinsics return a non-negative integer value that can be used to
      get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
      on the caller's stack. In particular, for targets where stack grows downwards,
      adding this offset to the native stack pointer would get the address of the most
      recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
      complicated, because subtracting this value from stack pointer would get the address
      one past the end of the most recent dynamic alloca.

      Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
      returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
      compile-time-known constant value.

      The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
      must match the target's default address space's (address space 0) pointer type.

'``llvm.prefetch``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)

Overview:
"""""""""

The '``llvm.prefetch``' intrinsic is a hint to the code generator to
insert a prefetch instruction if supported; otherwise, it is a noop.
Prefetches have no effect on the behavior of the program but can change
its performance characteristics.

Arguments:
""""""""""

``address`` is the address to be prefetched, ``rw`` is the specifier
determining if the fetch should be for a read (0) or write (1), and
``locality`` is a temporal locality specifier ranging from (0) - no
locality, to (3) - extremely local keep in cache. The ``cache type``
specifies whether the prefetch is performed on the data (1) or
instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
arguments must be constant integers.

Semantics:
""""""""""

This intrinsic does not modify the behavior of the program. In
particular, prefetches cannot trap and do not produce a value. On
targets that support this intrinsic, the prefetch can provide hints to
the processor cache for better performance.

'``llvm.pcmarker``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.pcmarker(i32 <id>)

Overview:
"""""""""

The '``llvm.pcmarker``' intrinsic is a method to export a Program
Counter (PC) in a region of code to simulators and other tools. The
method is target specific, but it is expected that the marker will use
exported symbols to transmit the PC of the marker. The marker makes no
guarantees that it will remain with any specific instruction after
optimizations. It is possible that the presence of a marker will inhibit
optimizations. The intended use is to be inserted after optimizations to
allow correlations of simulation runs.

Arguments:
""""""""""

``id`` is a numerical id identifying the marker.

Semantics:
""""""""""

This intrinsic does not modify the behavior of the program. Backends
that do not support this intrinsic may ignore it.

'``llvm.readcyclecounter``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i64 @llvm.readcyclecounter()

Overview:
"""""""""

The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
counter register (or similar low latency, high accuracy clocks) on those
targets that support it. On X86, it should map to RDTSC. On Alpha, it
should map to RPCC. As the backing counters overflow quickly (on the
order of 9 seconds on alpha), this should only be used for small
timings.

Semantics:
""""""""""

When directly supported, reading the cycle counter should not modify any
memory. Implementations are allowed to either return a application
specific value or a system wide value. On backends without support, this
is lowered to a constant 0.

Note that runtime support may be conditional on the privilege-level code is
running at and the host platform.

'``llvm.clear_cache``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.clear_cache(i8*, i8*)

Overview:
"""""""""

The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
in the specified range to the execution unit of the processor. On
targets with non-unified instruction and data cache, the implementation
flushes the instruction cache.

Semantics:
""""""""""

On platforms with coherent instruction and data caches (e.g. x86), this
intrinsic is a nop. On platforms with non-coherent instruction and data
cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
instructions or a system call, if cache flushing requires special
privileges.

The default behavior is to emit a call to ``__clear_cache`` from the run
time library.

This intrinsic does *not* empty the instruction pipeline. Modifications
of the current function are outside the scope of the intrinsic.

'``llvm.instrprof.increment``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
                                             i32 <num-counters>, i32 <index>)

Overview:
"""""""""

The '``llvm.instrprof.increment``' intrinsic can be emitted by a
frontend for use with instrumentation based profiling. These will be
lowered by the ``-instrprof`` pass to generate execution counts of a
program at runtime.

Arguments:
""""""""""

The first argument is a pointer to a global variable containing the
name of the entity being instrumented. This should generally be the
(mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer
of the profile data to detect changes to the instrumented source, and
the third is the number of counters associated with ``name``. It is an
error if ``hash`` or ``num-counters`` differ between two instances of
``instrprof.increment`` that refer to the same name.

The last argument refers to which of the counters for ``name`` should
be incremented. It should be a value between 0 and ``num-counters``.

Semantics:
""""""""""

This intrinsic represents an increment of a profiling counter. It will
cause the ``-instrprof`` pass to generate the appropriate data
structures and the code to increment the appropriate value, in a
format that can be written out by a compiler runtime and consumed via
the ``llvm-profdata`` tool.

'``llvm.instrprof.increment.step``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
                                                  i32 <num-counters>,
                                                  i32 <index>, i64 <step>)

Overview:
"""""""""

The '``llvm.instrprof.increment.step``' intrinsic is an extension to
the '``llvm.instrprof.increment``' intrinsic with an additional fifth
argument to specify the step of the increment.

Arguments:
""""""""""
The first four arguments are the same as '``llvm.instrprof.increment``'
intrinsic.

The last argument specifies the value of the increment of the counter variable.

Semantics:
""""""""""
See description of '``llvm.instrprof.increment``' intrinsic.


'``llvm.instrprof.value.profile``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
                                                 i64 <value>, i32 <value_kind>,
                                                 i32 <index>)

Overview:
"""""""""

The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
frontend for use with instrumentation based profiling. This will be
lowered by the ``-instrprof`` pass to find out the target values,
instrumented expressions take in a program at runtime.

Arguments:
""""""""""

The first argument is a pointer to a global variable containing the
name of the entity being instrumented. ``name`` should generally be the
(mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer
of the profile data to detect changes to the instrumented source. It
is an error if ``hash`` differs between two instances of
``llvm.instrprof.*`` that refer to the same name.

The third argument is the value of the expression being profiled. The profiled
expression's value should be representable as an unsigned 64-bit value. The
fourth argument represents the kind of value profiling that is being done. The
supported value profiling kinds are enumerated through the
``InstrProfValueKind`` type declared in the
``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
index of the instrumented expression within ``name``. It should be >= 0.

Semantics:
""""""""""

This intrinsic represents the point where a call to a runtime routine
should be inserted for value profiling of target expressions. ``-instrprof``
pass will generate the appropriate data structures and replace the
``llvm.instrprof.value.profile`` intrinsic with the call to the profile
runtime library with proper arguments.

'``llvm.thread.pointer``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.thread.pointer()

Overview:
"""""""""

The '``llvm.thread.pointer``' intrinsic returns the value of the thread
pointer.

Semantics:
""""""""""

The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
for the current thread.  The exact semantics of this value are target
specific: it may point to the start of TLS area, to the end, or somewhere
in the middle.  Depending on the target, this intrinsic may read a register,
call a helper function, read from an alternate memory space, or perform
other operations necessary to locate the TLS area.  Not all targets support
this intrinsic.

Standard C Library Intrinsics
-----------------------------

LLVM provides intrinsics for a few important standard C library
functions. These intrinsics allow source-language front-ends to pass
information about the alignment of the pointer arguments to the code
generator, providing opportunity for more efficient code generation.

.. _int_memcpy:

'``llvm.memcpy``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
integer bit width and for different address spaces. Not all targets
support all bit widths however.

::

      declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
                                              i32 <len>, i1 <isvolatile>)
      declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
                                              i64 <len>, i1 <isvolatile>)

Overview:
"""""""""

The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
source location to the destination location.

Note that, unlike the standard libc function, the ``llvm.memcpy.*``
intrinsics do not return a value, takes extra isvolatile
arguments and the pointers can be in specified address spaces.

Arguments:
""""""""""

The first argument is a pointer to the destination, the second is a
pointer to the source. The third argument is an integer argument
specifying the number of bytes to copy, and the fourth is a
boolean indicating a volatile access.

The :ref:`align <attr_align>` parameter attribute can be provided
for the first and second arguments.

If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
a :ref:`volatile operation <volatile>`. The detailed access behavior is not
very cleanly specified and it is unwise to depend on it.

Semantics:
""""""""""

The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
source location to the destination location, which are not allowed to
overlap. It copies "len" bytes of memory over. If the argument is known
to be aligned to some boundary, this can be specified as an attribute on
the argument.

If "len" is 0, the pointers may be NULL or dangling. However, they must still
be appropriately aligned.

.. _int_memmove:

'``llvm.memmove``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use llvm.memmove on any integer
bit width and for different address space. Not all targets support all
bit widths however.

::

      declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
                                               i32 <len>, i1 <isvolatile>)
      declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
                                               i64 <len>, i1 <isvolatile>)

Overview:
"""""""""

The '``llvm.memmove.*``' intrinsics move a block of memory from the
source location to the destination location. It is similar to the
'``llvm.memcpy``' intrinsic but allows the two memory locations to
overlap.

Note that, unlike the standard libc function, the ``llvm.memmove.*``
intrinsics do not return a value, takes an extra isvolatile
argument and the pointers can be in specified address spaces.

Arguments:
""""""""""

The first argument is a pointer to the destination, the second is a
pointer to the source. The third argument is an integer argument
specifying the number of bytes to copy, and the fourth is a
boolean indicating a volatile access.

The :ref:`align <attr_align>` parameter attribute can be provided
for the first and second arguments.

If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
is a :ref:`volatile operation <volatile>`. The detailed access behavior is
not very cleanly specified and it is unwise to depend on it.

Semantics:
""""""""""

The '``llvm.memmove.*``' intrinsics copy a block of memory from the
source location to the destination location, which may overlap. It
copies "len" bytes of memory over. If the argument is known to be
aligned to some boundary, this can be specified as an attribute on
the argument.

If "len" is 0, the pointers may be NULL or dangling. However, they must still
be appropriately aligned.

.. _int_memset:

'``llvm.memset.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use llvm.memset on any integer
bit width and for different address spaces. However, not all targets
support all bit widths.

::

      declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
                                         i32 <len>, i1 <isvolatile>)
      declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
                                         i64 <len>, i1 <isvolatile>)

Overview:
"""""""""

The '``llvm.memset.*``' intrinsics fill a block of memory with a
particular byte value.

Note that, unlike the standard libc function, the ``llvm.memset``
intrinsic does not return a value and takes an extra volatile
argument. Also, the destination can be in an arbitrary address space.

Arguments:
""""""""""

The first argument is a pointer to the destination to fill, the second
is the byte value with which to fill it, the third argument is an
integer argument specifying the number of bytes to fill, and the fourth
is a boolean indicating a volatile access.

The :ref:`align <attr_align>` parameter attribute can be provided
for the first arguments.

If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
a :ref:`volatile operation <volatile>`. The detailed access behavior is not
very cleanly specified and it is unwise to depend on it.

Semantics:
""""""""""

The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
at the destination location. If the argument is known to be
aligned to some boundary, this can be specified as an attribute on
the argument.

If "len" is 0, the pointers may be NULL or dangling. However, they must still
be appropriately aligned.

'``llvm.sqrt.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.sqrt.f32(float %Val)
      declare double    @llvm.sqrt.f64(double %Val)
      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
      declare fp128     @llvm.sqrt.f128(fp128 %Val)
      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)

Overview:
"""""""""

The '``llvm.sqrt``' intrinsics return the square root of the specified value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``sqrt``' function but without
trapping or setting ``errno``. For types specified by IEEE-754, the result
matches a conforming libm implementation.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.powi.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.powi`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.powi.f32(float  %Val, i32 %power)
      declare double    @llvm.powi.f64(double %Val, i32 %power)
      declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
      declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
      declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)

Overview:
"""""""""

The '``llvm.powi.*``' intrinsics return the first operand raised to the
specified (positive or negative) power. The order of evaluation of
multiplications is not defined. When a vector of floating-point type is
used, the second argument remains a scalar integer value.

Arguments:
""""""""""

The second argument is an integer power, and the first is a value to
raise to that power.

Semantics:
""""""""""

This function returns the first value raised to the second power with an
unspecified sequence of rounding operations.

'``llvm.sin.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.sin`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.sin.f32(float  %Val)
      declare double    @llvm.sin.f64(double %Val)
      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
      declare fp128     @llvm.sin.f128(fp128 %Val)
      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.sin.*``' intrinsics return the sine of the operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``sin``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.cos.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.cos`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.cos.f32(float  %Val)
      declare double    @llvm.cos.f64(double %Val)
      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
      declare fp128     @llvm.cos.f128(fp128 %Val)
      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.cos.*``' intrinsics return the cosine of the operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``cos``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.pow.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.pow`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.pow.f32(float  %Val, float %Power)
      declare double    @llvm.pow.f64(double %Val, double %Power)
      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)

Overview:
"""""""""

The '``llvm.pow.*``' intrinsics return the first operand raised to the
specified (positive or negative) power.

Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``pow``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.exp.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.exp`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.exp.f32(float  %Val)
      declare double    @llvm.exp.f64(double %Val)
      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
      declare fp128     @llvm.exp.f128(fp128 %Val)
      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``exp``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.exp2.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.exp2.f32(float  %Val)
      declare double    @llvm.exp2.f64(double %Val)
      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
      declare fp128     @llvm.exp2.f128(fp128 %Val)
      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
specified value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``exp2``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.log.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.log`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.log.f32(float  %Val)
      declare double    @llvm.log.f64(double %Val)
      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
      declare fp128     @llvm.log.f128(fp128 %Val)
      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``log``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.log10.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.log10`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.log10.f32(float  %Val)
      declare double    @llvm.log10.f64(double %Val)
      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
      declare fp128     @llvm.log10.f128(fp128 %Val)
      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
specified value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``log10``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.log2.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.log2`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.log2.f32(float  %Val)
      declare double    @llvm.log2.f64(double %Val)
      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
      declare fp128     @llvm.log2.f128(fp128 %Val)
      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
value.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``log2``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

.. _int_fma:

'``llvm.fma.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.fma`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
      declare double    @llvm.fma.f64(double %a, double %b, double %c)
      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)

Overview:
"""""""""

The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.

Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same type.

Semantics:
""""""""""

Return the same value as a corresponding libm '``fma``' function but without
trapping or setting ``errno``.

When specified with the fast-math-flag 'afn', the result may be approximated
using a less accurate calculation.

'``llvm.fabs.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.fabs.f32(float  %Val)
      declare double    @llvm.fabs.f64(double %Val)
      declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
      declare fp128     @llvm.fabs.f128(fp128 %Val)
      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)

Overview:
"""""""""

The '``llvm.fabs.*``' intrinsics return the absolute value of the
operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``fabs`` functions
would, and handles error conditions in the same way.

'``llvm.minnum.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.minnum.f32(float %Val0, float %Val1)
      declare double    @llvm.minnum.f64(double %Val0, double %Val1)
      declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
      declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
      declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:
"""""""""

The '``llvm.minnum.*``' intrinsics return the minimum of the two
arguments.


Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

Follows the IEEE-754 semantics for minNum, except for handling of
signaling NaNs. This match's the behavior of libm's fmin.

If either operand is a NaN, returns the other non-NaN operand. Returns
NaN only if both operands are NaN. The returned NaN is always
quiet. If the operands compare equal, returns a value that compares
equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
return either -0.0 or 0.0.

Unlike the IEEE-754 2008 behavior, this does not distinguish between
signaling and quiet NaN inputs. If a target's implementation follows
the standard and returns a quiet NaN if either input is a signaling
NaN, the intrinsic lowering is responsible for quieting the inputs to
correctly return the non-NaN input (e.g. by using the equivalent of
``llvm.canonicalize``).


'``llvm.maxnum.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
      declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
      declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
      declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
      declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)

Overview:
"""""""""

The '``llvm.maxnum.*``' intrinsics return the maximum of the two
arguments.


Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same
type.

Semantics:
""""""""""
Follows the IEEE-754 semantics for maxNum except for the handling of
signaling NaNs. This matches the behavior of libm's fmax.

If either operand is a NaN, returns the other non-NaN operand. Returns
NaN only if both operands are NaN. The returned NaN is always
quiet. If the operands compare equal, returns a value that compares
equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
return either -0.0 or 0.0.

Unlike the IEEE-754 2008 behavior, this does not distinguish between
signaling and quiet NaN inputs. If a target's implementation follows
the standard and returns a quiet NaN if either input is a signaling
NaN, the intrinsic lowering is responsible for quieting the inputs to
correctly return the non-NaN input (e.g. by using the equivalent of
``llvm.canonicalize``).

'``llvm.minimum.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.minimum.f32(float %Val0, float %Val1)
      declare double    @llvm.minimum.f64(double %Val0, double %Val1)
      declare x86_fp80  @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
      declare fp128     @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
      declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:
"""""""""

The '``llvm.minimum.*``' intrinsics return the minimum of the two
arguments, propagating NaNs and treating -0.0 as less than +0.0.


Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same
type.

Semantics:
""""""""""
If either operand is a NaN, returns NaN. Otherwise returns the lesser
of the two arguments. -0.0 is considered to be less than +0.0 for this
intrinsic. Note that these are the semantics specified in the draft of
IEEE 754-2018.

'``llvm.maximum.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.maximum.f32(float %Val0, float %Val1)
      declare double    @llvm.maximum.f64(double %Val0, double %Val1)
      declare x86_fp80  @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
      declare fp128     @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
      declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:
"""""""""

The '``llvm.maximum.*``' intrinsics return the maximum of the two
arguments, propagating NaNs and treating -0.0 as less than +0.0.


Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same
type.

Semantics:
""""""""""
If either operand is a NaN, returns NaN. Otherwise returns the greater
of the two arguments. -0.0 is considered to be less than +0.0 for this
intrinsic. Note that these are the semantics specified in the draft of
IEEE 754-2018.

'``llvm.copysign.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)

Overview:
"""""""""

The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
first operand and the sign of the second operand.

Arguments:
""""""""""

The arguments and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``copysign``
functions would, and handles error conditions in the same way.

'``llvm.floor.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.floor`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.floor.f32(float  %Val)
      declare double    @llvm.floor.f64(double %Val)
      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
      declare fp128     @llvm.floor.f128(fp128 %Val)
      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.floor.*``' intrinsics return the floor of the operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``floor`` functions
would, and handles error conditions in the same way.

'``llvm.ceil.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.ceil.f32(float  %Val)
      declare double    @llvm.ceil.f64(double %Val)
      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
      declare fp128     @llvm.ceil.f128(fp128 %Val)
      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``ceil`` functions
would, and handles error conditions in the same way.

'``llvm.trunc.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.trunc.f32(float  %Val)
      declare double    @llvm.trunc.f64(double %Val)
      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
      declare fp128     @llvm.trunc.f128(fp128 %Val)
      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
nearest integer not larger in magnitude than the operand.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``trunc`` functions
would, and handles error conditions in the same way.

'``llvm.rint.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.rint`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.rint.f32(float  %Val)
      declare double    @llvm.rint.f64(double %Val)
      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
      declare fp128     @llvm.rint.f128(fp128 %Val)
      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.rint.*``' intrinsics returns the operand rounded to the
nearest integer. It may raise an inexact floating-point exception if the
operand isn't an integer.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``rint`` functions
would, and handles error conditions in the same way.

'``llvm.nearbyint.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.nearbyint.f32(float  %Val)
      declare double    @llvm.nearbyint.f64(double %Val)
      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``nearbyint``
functions would, and handles error conditions in the same way.

'``llvm.round.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.round`` on any
floating-point or vector of floating-point type. Not all targets support
all types however.

::

      declare float     @llvm.round.f32(float  %Val)
      declare double    @llvm.round.f64(double %Val)
      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
      declare fp128     @llvm.round.f128(fp128 %Val)
      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)

Overview:
"""""""""

The '``llvm.round.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument and return value are floating-point numbers of the same
type.

Semantics:
""""""""""

This function returns the same values as the libm ``round``
functions would, and handles error conditions in the same way.

'``llvm.lround.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.lround`` on any
floating-point type. Not all targets support all types however.

::

      declare i32 @llvm.lround.i32.f32(float %Val)
      declare i32 @llvm.lround.i32.f64(double %Val)
      declare i32 @llvm.lround.i32.f80(float %Val)
      declare i32 @llvm.lround.i32.f128(double %Val)
      declare i32 @llvm.lround.i32.ppcf128(double %Val)

      declare i64 @llvm.lround.i64.f32(float %Val)
      declare i64 @llvm.lround.i64.f64(double %Val)
      declare i64 @llvm.lround.i64.f80(float %Val)
      declare i64 @llvm.lround.i64.f128(double %Val)
      declare i64 @llvm.lround.i64.ppcf128(double %Val)

Overview:
"""""""""

The '``llvm.lround.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument is a floating-point number and return is an integer type.

Semantics:
""""""""""

This function returns the same values as the libm ``lround``
functions would, but without setting errno.

'``llvm.llround.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.llround`` on any
floating-point type. Not all targets support all types however.

::

      declare i64 @llvm.lround.i64.f32(float %Val)
      declare i64 @llvm.lround.i64.f64(double %Val)
      declare i64 @llvm.lround.i64.f80(float %Val)
      declare i64 @llvm.lround.i64.f128(double %Val)
      declare i64 @llvm.lround.i64.ppcf128(double %Val)

Overview:
"""""""""

The '``llvm.llround.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument is a floating-point number and return is an integer type.

Semantics:
""""""""""

This function returns the same values as the libm ``llround``
functions would, but without setting errno.

'``llvm.lrint.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.lrint`` on any
floating-point type. Not all targets support all types however.

::

      declare i32 @llvm.lrint.i32.f32(float %Val)
      declare i32 @llvm.lrint.i32.f64(double %Val)
      declare i32 @llvm.lrint.i32.f80(float %Val)
      declare i32 @llvm.lrint.i32.f128(double %Val)
      declare i32 @llvm.lrint.i32.ppcf128(double %Val)

      declare i64 @llvm.lrint.i64.f32(float %Val)
      declare i64 @llvm.lrint.i64.f64(double %Val)
      declare i64 @llvm.lrint.i64.f80(float %Val)
      declare i64 @llvm.lrint.i64.f128(double %Val)
      declare i64 @llvm.lrint.i64.ppcf128(double %Val)

Overview:
"""""""""

The '``llvm.lrint.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument is a floating-point number and return is an integer type.

Semantics:
""""""""""

This function returns the same values as the libm ``lrint``
functions would, but without setting errno.

'``llvm.llrint.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.llrint`` on any
floating-point type. Not all targets support all types however.

::

      declare i64 @llvm.llrint.i64.f32(float %Val)
      declare i64 @llvm.llrint.i64.f64(double %Val)
      declare i64 @llvm.llrint.i64.f80(float %Val)
      declare i64 @llvm.llrint.i64.f128(double %Val)
      declare i64 @llvm.llrint.i64.ppcf128(double %Val)

Overview:
"""""""""

The '``llvm.llrint.*``' intrinsics returns the operand rounded to the
nearest integer.

Arguments:
""""""""""

The argument is a floating-point number and return is an integer type.

Semantics:
""""""""""

This function returns the same values as the libm ``llrint``
functions would, but without setting errno.

Bit Manipulation Intrinsics
---------------------------

LLVM provides intrinsics for a few important bit manipulation
operations. These allow efficient code generation for some algorithms.

'``llvm.bitreverse.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic function. You can use bitreverse on any
integer type.

::

      declare i16 @llvm.bitreverse.i16(i16 <id>)
      declare i32 @llvm.bitreverse.i32(i32 <id>)
      declare i64 @llvm.bitreverse.i64(i64 <id>)
      declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)

Overview:
"""""""""

The '``llvm.bitreverse``' family of intrinsics is used to reverse the
bitpattern of an integer value or vector of integer values; for example
``0b10110110`` becomes ``0b01101101``.

Semantics:
""""""""""

The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
``M`` in the input moved to bit ``N-M`` in the output. The vector
intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
basis and the element order is not affected.

'``llvm.bswap.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic function. You can use bswap on any
integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).

::

      declare i16 @llvm.bswap.i16(i16 <id>)
      declare i32 @llvm.bswap.i32(i32 <id>)
      declare i64 @llvm.bswap.i64(i64 <id>)
      declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)

Overview:
"""""""""

The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
value or vector of integer values with an even number of bytes (positive
multiple of 16 bits).

Semantics:
""""""""""

The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
intrinsic returns an i32 value that has the four bytes of the input i32
swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
returned i32 will have its bytes in 3, 2, 1, 0 order. The
``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
concept to additional even-byte lengths (6 bytes, 8 bytes and more,
respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
operate on a per-element basis and the element order is not affected.

'``llvm.ctpop.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use llvm.ctpop on any integer
bit width, or on any vector with integer elements. Not all targets
support all bit widths or vector types, however.

::

      declare i8 @llvm.ctpop.i8(i8  <src>)
      declare i16 @llvm.ctpop.i16(i16 <src>)
      declare i32 @llvm.ctpop.i32(i32 <src>)
      declare i64 @llvm.ctpop.i64(i64 <src>)
      declare i256 @llvm.ctpop.i256(i256 <src>)
      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)

Overview:
"""""""""

The '``llvm.ctpop``' family of intrinsics counts the number of bits set
in a value.

Arguments:
""""""""""

The only argument is the value to be counted. The argument may be of any
integer type, or a vector with integer elements. The return type must
match the argument type.

Semantics:
""""""""""

The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
each element of a vector.

'``llvm.ctlz.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
integer bit width, or any vector whose elements are integers. Not all
targets support all bit widths or vector types, however.

::

      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
      declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
      declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
      declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
      declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
      declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:
"""""""""

The '``llvm.ctlz``' family of intrinsic functions counts the number of
leading zeros in a variable.

Arguments:
""""""""""

The first argument is the value to be counted. This argument may be of
any integer type, or a vector with integer element type. The return
type must match the first argument type.

The second argument must be a constant and is a flag to indicate whether
the intrinsic should ensure that a zero as the first argument produces a
defined result. Historically some architectures did not provide a
defined result for zero values as efficiently, and many algorithms are
now predicated on avoiding zero-value inputs.

Semantics:
""""""""""

The '``llvm.ctlz``' intrinsic counts the leading (most significant)
zeros in a variable, or within each element of the vector. If
``src == 0`` then the result is the size in bits of the type of ``src``
if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
``llvm.ctlz(i32 2) = 30``.

'``llvm.cttz.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
integer bit width, or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

::

      declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
      declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
      declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
      declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
      declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
      declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:
"""""""""

The '``llvm.cttz``' family of intrinsic functions counts the number of
trailing zeros.

Arguments:
""""""""""

The first argument is the value to be counted. This argument may be of
any integer type, or a vector with integer element type. The return
type must match the first argument type.

The second argument must be a constant and is a flag to indicate whether
the intrinsic should ensure that a zero as the first argument produces a
defined result. Historically some architectures did not provide a
defined result for zero values as efficiently, and many algorithms are
now predicated on avoiding zero-value inputs.

Semantics:
""""""""""

The '``llvm.cttz``' intrinsic counts the trailing (least significant)
zeros in a variable, or within each element of a vector. If ``src == 0``
then the result is the size in bits of the type of ``src`` if
``is_zero_undef == 0`` and ``undef`` otherwise. For example,
``llvm.cttz(2) = 1``.

.. _int_overflow:

'``llvm.fshl.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
integer bit width or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

::

      declare i8  @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
      declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
      declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)

Overview:
"""""""""

The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
the first two values are concatenated as { %a : %b } (%a is the most significant
bits of the wide value), the combined value is shifted left, and the most
significant bits are extracted to produce a result that is the same size as the
original arguments. If the first 2 arguments are identical, this is equivalent
to a rotate left operation. For vector types, the operation occurs for each
element of the vector. The shift argument is treated as an unsigned amount
modulo the element size of the arguments.

Arguments:
""""""""""

The first two arguments are the values to be concatenated. The third
argument is the shift amount. The arguments may be any integer type or a
vector with integer element type. All arguments and the return value must
have the same type.

Example:
""""""""

.. code-block:: text

      %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
      %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15)  ; %r = i8: 128 (0b10000000)
      %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11)  ; %r = i8: 120 (0b01111000)
      %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8)   ; %r = i8: 0   (0b00000000)

'``llvm.fshr.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
integer bit width or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

::

      declare i8  @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
      declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
      declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)

Overview:
"""""""""

The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
the first two values are concatenated as { %a : %b } (%a is the most significant
bits of the wide value), the combined value is shifted right, and the least
significant bits are extracted to produce a result that is the same size as the
original arguments. If the first 2 arguments are identical, this is equivalent
to a rotate right operation. For vector types, the operation occurs for each
element of the vector. The shift argument is treated as an unsigned amount
modulo the element size of the arguments.

Arguments:
""""""""""

The first two arguments are the values to be concatenated. The third
argument is the shift amount. The arguments may be any integer type or a
vector with integer element type. All arguments and the return value must
have the same type.

Example:
""""""""

.. code-block:: text

      %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
      %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15)  ; %r = i8: 254 (0b11111110)
      %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11)  ; %r = i8: 225 (0b11100001)
      %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8)   ; %r = i8: 255 (0b11111111)

Arithmetic with Overflow Intrinsics
-----------------------------------

LLVM provides intrinsics for fast arithmetic overflow checking.

Each of these intrinsics returns a two-element struct. The first
element of this struct contains the result of the corresponding
arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
the result. Therefore, for example, the first element of the struct
returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
result of a 32-bit ``add`` instruction with the same operands, where
the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.

The second element of the result is an ``i1`` that is 1 if the
arithmetic operation overflowed and 0 otherwise. An operation
overflows if, for any values of its operands ``A`` and ``B`` and for
any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
``sext`` for signed overflow and ``zext`` for unsigned overflow, and
``op`` is the underlying arithmetic operation.

The behavior of these intrinsics is well-defined for all argument
values.

'``llvm.sadd.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.sadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
a signed addition of the two arguments, and indicate whether an overflow
occurred during the signed summation.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
addition.

Semantics:
""""""""""

The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
a signed addition of the two variables. They return a structure --- the
first element of which is the signed summation, and the second element
of which is a bit specifying if the signed summation resulted in an
overflow.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %overflow, label %normal

'``llvm.uadd.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.uadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
an unsigned addition of the two arguments, and indicate whether a carry
occurred during the unsigned summation.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
addition.

Semantics:
""""""""""

The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
an unsigned addition of the two arguments. They return a structure --- the
first element of which is the sum, and the second element of which is a
bit specifying if the unsigned summation resulted in a carry.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %carry, label %normal

'``llvm.ssub.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.ssub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
a signed subtraction of the two arguments, and indicate whether an
overflow occurred during the signed subtraction.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
subtraction.

Semantics:
""""""""""

The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
a signed subtraction of the two arguments. They return a structure --- the
first element of which is the subtraction, and the second element of
which is a bit specifying if the signed subtraction resulted in an
overflow.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %overflow, label %normal

'``llvm.usub.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.usub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.usub.with.overflow``' family of intrinsic functions perform
an unsigned subtraction of the two arguments, and indicate whether an
overflow occurred during the unsigned subtraction.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
subtraction.

Semantics:
""""""""""

The '``llvm.usub.with.overflow``' family of intrinsic functions perform
an unsigned subtraction of the two arguments. They return a structure ---
the first element of which is the subtraction, and the second element of
which is a bit specifying if the unsigned subtraction resulted in an
overflow.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %overflow, label %normal

'``llvm.smul.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.smul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.smul.with.overflow``' family of intrinsic functions perform
a signed multiplication of the two arguments, and indicate whether an
overflow occurred during the signed multiplication.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
multiplication.

Semantics:
""""""""""

The '``llvm.smul.with.overflow``' family of intrinsic functions perform
a signed multiplication of the two arguments. They return a structure ---
the first element of which is the multiplication, and the second element
of which is a bit specifying if the signed multiplication resulted in an
overflow.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %overflow, label %normal

'``llvm.umul.with.overflow.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
on any integer bit width or vectors of integers.

::

      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
      declare {<4 x i32>, <4 x i1>} @llvm.umul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview:
"""""""""

The '``llvm.umul.with.overflow``' family of intrinsic functions perform
a unsigned multiplication of the two arguments, and indicate whether an
overflow occurred during the unsigned multiplication.

Arguments:
""""""""""

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
multiplication.

Semantics:
""""""""""

The '``llvm.umul.with.overflow``' family of intrinsic functions perform
an unsigned multiplication of the two arguments. They return a structure ---
the first element of which is the multiplication, and the second
element of which is a bit specifying if the unsigned multiplication
resulted in an overflow.

Examples:
"""""""""

.. code-block:: llvm

      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
      %sum = extractvalue {i32, i1} %res, 0
      %obit = extractvalue {i32, i1} %res, 1
      br i1 %obit, label %overflow, label %normal

Saturation Arithmetic Intrinsics
---------------------------------

Saturation arithmetic is a version of arithmetic in which operations are
limited to a fixed range between a minimum and maximum value. If the result of
an operation is greater than the maximum value, the result is set (or
"clamped") to this maximum. If it is below the minimum, it is clamped to this
minimum.


'``llvm.sadd.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
      declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
      declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
      declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview
"""""""""

The '``llvm.sadd.sat``' family of intrinsic functions perform signed
saturation addition on the 2 arguments.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo signed addition.

Semantics:
""""""""""

The maximum value this operation can clamp to is the largest signed value
representable by the bit width of the arguments. The minimum value is the
smallest signed value representable by this bit width.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2)  ; %res = 3
      %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6)  ; %res = 7
      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2)  ; %res = -2
      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5)  ; %res = -8


'``llvm.uadd.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
      declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
      declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
      declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview
"""""""""

The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
saturation addition on the 2 arguments.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo unsigned addition.

Semantics:
""""""""""

The maximum value this operation can clamp to is the largest unsigned value
representable by the bit width of the arguments. Because this is an unsigned
operation, the result will never saturate towards zero.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2)  ; %res = 3
      %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6)  ; %res = 11
      %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8)  ; %res = 15


'``llvm.ssub.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
      declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
      declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
      declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview
"""""""""

The '``llvm.ssub.sat``' family of intrinsic functions perform signed
saturation subtraction on the 2 arguments.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo signed subtraction.

Semantics:
""""""""""

The maximum value this operation can clamp to is the largest signed value
representable by the bit width of the arguments. The minimum value is the
smallest signed value representable by this bit width.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1)  ; %res = 1
      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6)  ; %res = -4
      %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5)  ; %res = -8
      %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5)  ; %res = 7


'``llvm.usub.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.usub.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
      declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
      declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
      declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)

Overview
"""""""""

The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
saturation subtraction on the 2 arguments.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo unsigned subtraction.

Semantics:
""""""""""

The minimum value this operation can clamp to is 0, which is the smallest
unsigned value representable by the bit width of the unsigned arguments.
Because this is an unsigned operation, the result will never saturate towards
the largest possible value representable by this bit width.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1)  ; %res = 1
      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6)  ; %res = 0


Fixed Point Arithmetic Intrinsics
---------------------------------

A fixed point number represents a real data type for a number that has a fixed
number of digits after a radix point (equivalent to the decimal point '.').
The number of digits after the radix point is referred as the ``scale``. These
are useful for representing fractional values to a specific precision. The
following intrinsics perform fixed point arithmetic operations on 2 operands
of the same scale, specified as the third argument.

The `llvm.*mul.fix` family of intrinsic functions represents a multiplication
of fixed point numbers through scaled integers. Therefore, fixed point
multplication can be represented as

::
        %result = call i4 @llvm.smul.fix.i4(i4 %a, i4 %b, i32 %scale)

        ; Expands to
        %a2 = sext i4 %a to i8
        %b2 = sext i4 %b to i8
        %mul = mul nsw nuw i8 %a, %b
        %scale2 = trunc i32 %scale to i8
        %r = ashr i8 %mul, i8 %scale2  ; this is for a target rounding down towards negative infinity
        %result = trunc i8 %r to i4

For each of these functions, if the result cannot be represented exactly with
the provided scale, the result is rounded. Rounding is unspecified since
preferred rounding may vary for different targets. Rounding is specified
through a target hook. Different pipelines should legalize or optimize this
using the rounding specified by this hook if it is provided. Operations like
constant folding, instruction combining, KnownBits, and ValueTracking should
also use this hook, if provided, and not assume the direction of rounding. A
rounded result must always be within one unit of precision from the true
result. That is, the error between the returned result and the true result must
be less than 1/2^(scale).


'``llvm.smul.fix.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.smul.fix``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
      declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
      declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
      declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)

Overview
"""""""""

The '``llvm.smul.fix``' family of intrinsic functions perform signed
fixed point multiplication on 2 arguments of the same scale.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. The arguments may also work with
int vectors of the same length and int size. ``%a`` and ``%b`` are the two
values that will undergo signed fixed point multiplication. The argument
``%scale`` represents the scale of both operands, and must be a constant
integer.

Semantics:
""""""""""

This operation performs fixed point multiplication on the 2 arguments of a
specified scale. The result will also be returned in the same scale specified
in the third argument.

If the result value cannot be precisely represented in the given scale, the
value is rounded up or down to the closest representable value. The rounding
direction is unspecified.

It is undefined behavior if the result value does not fit within the range of
the fixed point type.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)

      ; The result in the following could be rounded up to -2 or down to -2.5
      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)


'``llvm.umul.fix.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.umul.fix``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 %scale)
      declare i32 @llvm.umul.fix.i32(i32 %a, i32 %b, i32 %scale)
      declare i64 @llvm.umul.fix.i64(i64 %a, i64 %b, i32 %scale)
      declare <4 x i32> @llvm.umul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)

Overview
"""""""""

The '``llvm.umul.fix``' family of intrinsic functions perform unsigned
fixed point multiplication on 2 arguments of the same scale.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. The arguments may also work with
int vectors of the same length and int size. ``%a`` and ``%b`` are the two
values that will undergo unsigned fixed point multiplication. The argument
``%scale`` represents the scale of both operands, and must be a constant
integer.

Semantics:
""""""""""

This operation performs unsigned fixed point multiplication on the 2 arguments of a
specified scale. The result will also be returned in the same scale specified
in the third argument.

If the result value cannot be precisely represented in the given scale, the
value is rounded up or down to the closest representable value. The rounding
direction is unspecified.

It is undefined behavior if the result value does not fit within the range of
the fixed point type.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)

      ; The result in the following could be rounded down to 3.5 or up to 4
      %res = call i4 @llvm.umul.fix.i4(i4 15, i4 1, i32 1)  ; %res = 7 (or 8) (7.5 x 0.5 = 3.75)


'``llvm.smul.fix.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.smul.fix.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.smul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
      declare i32 @llvm.smul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
      declare i64 @llvm.smul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
      declare <4 x i32> @llvm.smul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)

Overview
"""""""""

The '``llvm.smul.fix.sat``' family of intrinsic functions perform signed
fixed point saturation multiplication on 2 arguments of the same scale.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo signed fixed point multiplication. The argument
``%scale`` represents the scale of both operands, and must be a constant
integer.

Semantics:
""""""""""

This operation performs fixed point multiplication on the 2 arguments of a
specified scale. The result will also be returned in the same scale specified
in the third argument.

If the result value cannot be precisely represented in the given scale, the
value is rounded up or down to the closest representable value. The rounding
direction is unspecified.

The maximum value this operation can clamp to is the largest signed value
representable by the bit width of the first 2 arguments. The minimum value is the
smallest signed value representable by this bit width.


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)

      ; The result in the following could be rounded up to -2 or down to -2.5
      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)

      ; Saturation
      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 2, i32 0)  ; %res = 7
      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 4, i32 2)  ; %res = 7
      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 5, i32 2)  ; %res = -8
      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 -2, i32 1)  ; %res = 7

      ; Scale can affect the saturation result
      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)


'``llvm.umul.fix.sat.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax
"""""""

This is an overloaded intrinsic. You can use ``llvm.umul.fix.sat``
on any integer bit width or vectors of integers.

::

      declare i16 @llvm.umul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
      declare i32 @llvm.umul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
      declare i64 @llvm.umul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
      declare <4 x i32> @llvm.umul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)

Overview
"""""""""

The '``llvm.umul.fix.sat``' family of intrinsic functions perform unsigned
fixed point saturation multiplication on 2 arguments of the same scale.

Arguments
""""""""""

The arguments (%a and %b) and the result may be of integer types of any bit
width, but they must have the same bit width. ``%a`` and ``%b`` are the two
values that will undergo unsigned fixed point multiplication. The argument
``%scale`` represents the scale of both operands, and must be a constant
integer.

Semantics:
""""""""""

This operation performs fixed point multiplication on the 2 arguments of a
specified scale. The result will also be returned in the same scale specified
in the third argument.

If the result value cannot be precisely represented in the given scale, the
value is rounded up or down to the closest representable value. The rounding
direction is unspecified.

The maximum value this operation can clamp to is the largest unsigned value
representable by the bit width of the first 2 arguments. The minimum value is the
smallest unsigned value representable by this bit width (zero).


Examples
"""""""""

.. code-block:: llvm

      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)

      ; The result in the following could be rounded down to 2 or up to 2.5
      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 3, i32 1)  ; %res = 4 (or 5) (1.5 x 1.5 = 2.25)

      ; Saturation
      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 2, i32 0)  ; %res = 15 (8 x 2 -> clamped to 15)
      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 8, i32 2)  ; %res = 15 (2 x 2 -> clamped to 3.75)

      ; Scale can affect the saturation result
      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)


Specialised Arithmetic Intrinsics
---------------------------------

'``llvm.canonicalize.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.canonicalize.f32(float %a)
      declare double @llvm.canonicalize.f64(double %b)

Overview:
"""""""""

The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
encoding of a floating-point number. This canonicalization is useful for
implementing certain numeric primitives such as frexp. The canonical encoding is
defined by IEEE-754-2008 to be:

::

      2.1.8 canonical encoding: The preferred encoding of a floating-point
      representation in a format. Applied to declets, significands of finite
      numbers, infinities, and NaNs, especially in decimal formats.

This operation can also be considered equivalent to the IEEE-754-2008
conversion of a floating-point value to the same format. NaNs are handled
according to section 6.2.

Examples of non-canonical encodings:

- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
  converted to a canonical representation per hardware-specific protocol.
- Many normal decimal floating-point numbers have non-canonical alternative
  encodings.
- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
  These are treated as non-canonical encodings of zero and will be flushed to
  a zero of the same sign by this operation.

Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
default exception handling must signal an invalid exception, and produce a
quiet NaN result.

This function should always be implementable as multiplication by 1.0, provided
that the compiler does not constant fold the operation. Likewise, division by
1.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
-0.0 is also sufficient provided that the rounding mode is not -Infinity.

``@llvm.canonicalize`` must preserve the equality relation. That is:

- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
  to ``(x == y)``

Additionally, the sign of zero must be conserved:
``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``

The payload bits of a NaN must be conserved, with two exceptions.
First, environments which use only a single canonical representation of NaN
must perform said canonicalization. Second, SNaNs must be quieted per the
usual methods.

The canonicalization operation may be optimized away if:

- The input is known to be canonical. For example, it was produced by a
  floating-point operation that is required by the standard to be canonical.
- The result is consumed only by (or fused with) other floating-point
  operations. That is, the bits of the floating-point value are not examined.

'``llvm.fmuladd.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)

Overview:
"""""""""

The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
expressions that can be fused if the code generator determines that (a) the
target instruction set has support for a fused operation, and (b) that the
fused operation is more efficient than the equivalent, separate pair of mul
and add instructions.

Arguments:
""""""""""

The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
multiplicands, a and b, and an addend c.

Semantics:
""""""""""

The expression:

::

      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)

is equivalent to the expression a \* b + c, except that it is unspecified
whether rounding will be performed between the multiplication and addition
steps. Fusion is not guaranteed, even if the target platform supports it.
If a fused multiply-add is required, the corresponding
:ref:`llvm.fma <int_fma>` intrinsic function should be used instead.
This never sets errno, just as '``llvm.fma.*``'.

Examples:
"""""""""

.. code-block:: llvm

      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c


Experimental Vector Reduction Intrinsics
----------------------------------------

Horizontal reductions of vectors can be expressed using the following
intrinsics. Each one takes a vector operand as an input and applies its
respective operation across all elements of the vector, returning a single
scalar result of the same element type.


'``llvm.experimental.vector.reduce.add.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.add.v4i32(<4 x i32> %a)
      declare i64 @llvm.experimental.vector.reduce.add.v2i64(<2 x i64> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.v2.fadd.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.experimental.vector.reduce.v2.fadd.f32.v4f32(float %start_value, <4 x float> %a)
      declare double @llvm.experimental.vector.reduce.v2.fadd.f64.v2f64(double %start_value, <2 x double> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.v2.fadd.*``' intrinsics do a floating-point
``ADD`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the 'reassoc' or 'fast' flags set, then the
reduction will not preserve the associativity of an equivalent scalarized
counterpart. Otherwise the reduction will be *ordered*, thus implying that
the operation respects the associativity of a scalarized reduction.


Arguments:
""""""""""
The first argument to this intrinsic is a scalar start value for the reduction.
The type of the start value matches the element-type of the vector input.
The second argument must be a vector of floating-point values.

Examples:
"""""""""

::

      %unord = call reassoc float @llvm.experimental.vector.reduce.v2.fadd.f32.v4f32(float 0.0, <4 x float> %input) ; unordered reduction
      %ord = call float @llvm.experimental.vector.reduce.v2.fadd.f32.v4f32(float %start_value, <4 x float> %input) ; ordered reduction


'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.mul.v4i32(<4 x i32> %a)
      declare i64 @llvm.experimental.vector.reduce.mul.v2i64(<2 x i64> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.v2.fmul.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.experimental.vector.reduce.v2.fmul.f32.v4f32(float %start_value, <4 x float> %a)
      declare double @llvm.experimental.vector.reduce.v2.fmul.f64.v2f64(double %start_value, <2 x double> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.v2.fmul.*``' intrinsics do a floating-point
``MUL`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the 'reassoc' or 'fast' flags set, then the
reduction will not preserve the associativity of an equivalent scalarized
counterpart. Otherwise the reduction will be *ordered*, thus implying that
the operation respects the associativity of a scalarized reduction.


Arguments:
""""""""""
The first argument to this intrinsic is a scalar start value for the reduction.
The type of the start value matches the element-type of the vector input.
The second argument must be a vector of floating-point values.

Examples:
"""""""""

::

      %unord = call reassoc float @llvm.experimental.vector.reduce.v2.fmul.f32.v4f32(float 1.0, <4 x float> %input) ; unordered reduction
      %ord = call float @llvm.experimental.vector.reduce.v2.fmul.f32.v4f32(float %start_value, <4 x float> %input) ; ordered reduction

'``llvm.experimental.vector.reduce.and.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.and.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.or.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
of a vector, returning the result as a scalar. The return type matches the
element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.xor.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.smax.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
``MAX`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.smin.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
``MIN`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.umax.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
integer ``MAX`` reduction of a vector, returning the result as a scalar. The
return type matches the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.experimental.vector.reduce.umin.v4i32(<4 x i32> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
integer ``MIN`` reduction of a vector, returning the result as a scalar. The
return type matches the element-type of the vector input.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of integer values.

'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.experimental.vector.reduce.fmax.v4f32(<4 x float> %a)
      declare double @llvm.experimental.vector.reduce.fmax.v2f64(<2 x double> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
``MAX`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the ``nnan`` fast-math flag then the operation can
assume that NaNs are not present in the input vector.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of floating-point values.

'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.experimental.vector.reduce.fmin.v4f32(<4 x float> %a)
      declare double @llvm.experimental.vector.reduce.fmin.v2f64(<2 x double> %a)

Overview:
"""""""""

The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
``MIN`` reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the ``nnan`` fast-math flag then the operation can
assume that NaNs are not present in the input vector.

Arguments:
""""""""""
The argument to this intrinsic must be a vector of floating-point values.

Half Precision Floating-Point Intrinsics
----------------------------------------

For most target platforms, half precision floating-point is a
storage-only format. This means that it is a dense encoding (in memory)
but does not support computation in the format.

This means that code must first load the half-precision floating-point
value as an i16, then convert it to float with
:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
then be performed on the float value (including extending to double
etc). To store the value back to memory, it is first converted to float
if needed, then converted to i16 with
:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
i16 value.

.. _int_convert_to_fp16:

'``llvm.convert.to.fp16``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i16 @llvm.convert.to.fp16.f32(float %a)
      declare i16 @llvm.convert.to.fp16.f64(double %a)

Overview:
"""""""""

The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
conventional floating-point type to half precision floating-point format.

Arguments:
""""""""""

The intrinsic function contains single argument - the value to be
converted.

Semantics:
""""""""""

The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
conventional floating-point format to half precision floating-point format. The
return value is an ``i16`` which contains the converted number.

Examples:
"""""""""

.. code-block:: llvm

      %res = call i16 @llvm.convert.to.fp16.f32(float %a)
      store i16 %res, i16* @x, align 2

.. _int_convert_from_fp16:

'``llvm.convert.from.fp16``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare float @llvm.convert.from.fp16.f32(i16 %a)
      declare double @llvm.convert.from.fp16.f64(i16 %a)

Overview:
"""""""""

The '``llvm.convert.from.fp16``' intrinsic function performs a
conversion from half precision floating-point format to single precision
floating-point format.

Arguments:
""""""""""

The intrinsic function contains single argument - the value to be
converted.

Semantics:
""""""""""

The '``llvm.convert.from.fp16``' intrinsic function performs a
conversion from half single precision floating-point format to single
precision floating-point format. The input half-float value is
represented by an ``i16`` value.

Examples:
"""""""""

.. code-block:: llvm

      %a = load i16, i16* @x, align 2
      %res = call float @llvm.convert.from.fp16(i16 %a)

.. _dbg_intrinsics:

Debugger Intrinsics
-------------------

The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
prefix), are described in the `LLVM Source Level
Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
document.

Exception Handling Intrinsics
-----------------------------

The LLVM exception handling intrinsics (which all start with
``llvm.eh.`` prefix), are described in the `LLVM Exception
Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.

.. _int_trampoline:

Trampoline Intrinsics
---------------------

These intrinsics make it possible to excise one parameter, marked with
the :ref:`nest <nest>` attribute, from a function. The result is a
callable function pointer lacking the nest parameter - the caller does
not need to provide a value for it. Instead, the value to use is stored
in advance in a "trampoline", a block of memory usually allocated on the
stack, which also contains code to splice the nest value into the
argument list. This is used to implement the GCC nested function address
extension.

For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
then the resulting function pointer has signature ``i32 (i32, i32)*``.
It can be created as follows:

.. code-block:: llvm

      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
      %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
      call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
      %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
      %fp = bitcast i8* %p to i32 (i32, i32)*

The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.

.. _int_it:

'``llvm.init.trampoline``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)

Overview:
"""""""""

This fills the memory pointed to by ``tramp`` with executable code,
turning it into a trampoline.

Arguments:
""""""""""

The ``llvm.init.trampoline`` intrinsic takes three arguments, all
pointers. The ``tramp`` argument must point to a sufficiently large and
sufficiently aligned block of memory; this memory is written to by the
intrinsic. Note that the size and the alignment are target-specific -
LLVM currently provides no portable way of determining them, so a
front-end that generates this intrinsic needs to have some
target-specific knowledge. The ``func`` argument must hold a function
bitcast to an ``i8*``.

Semantics:
""""""""""

The block of memory pointed to by ``tramp`` is filled with target
dependent code, turning it into a function. Then ``tramp`` needs to be
passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
function's signature is the same as that of ``func`` with any arguments
marked with the ``nest`` attribute removed. At most one such ``nest``
argument is allowed, and it must be of pointer type. Calling the new
function is equivalent to calling ``func`` with the same argument list,
but with ``nval`` used for the missing ``nest`` argument. If, after
calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
modified, then the effect of any later call to the returned function
pointer is undefined.

.. _int_at:

'``llvm.adjust.trampoline``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.adjust.trampoline(i8* <tramp>)

Overview:
"""""""""

This performs any required machine-specific adjustment to the address of
a trampoline (passed as ``tramp``).

Arguments:
""""""""""

``tramp`` must point to a block of memory which already has trampoline
code filled in by a previous call to
:ref:`llvm.init.trampoline <int_it>`.

Semantics:
""""""""""

On some architectures the address of the code to be executed needs to be
different than the address where the trampoline is actually stored. This
intrinsic returns the executable address corresponding to ``tramp``
after performing the required machine specific adjustments. The pointer
returned can then be :ref:`bitcast and executed <int_trampoline>`.

.. _int_mload_mstore:

Masked Vector Load and Store Intrinsics
---------------------------------------

LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.

.. _int_mload:

'``llvm.masked.load.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.

::

      declare <16 x float>  @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
      declare <2 x double>  @llvm.masked.load.v2f64.p0v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
      ;; The data is a vector of pointers to double
      declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64    (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
      ;; The data is a vector of function pointers
      declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)

Overview:
"""""""""

Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.


Arguments:
""""""""""

The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.


Semantics:
""""""""""

The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.


::

       %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)

       ;; The result of the two following instructions is identical aside from potential memory access exception
       %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
       %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru

.. _int_mstore:

'``llvm.masked.store.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.

::

       declare void @llvm.masked.store.v8i32.p0v8i32  (<8  x i32>   <value>, <8  x i32>*   <ptr>, i32 <alignment>,  <8  x i1> <mask>)
       declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
       ;; The data is a vector of pointers to double
       declare void @llvm.masked.store.v8p0f64.p0v8p0f64    (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
       ;; The data is a vector of function pointers
       declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)

Overview:
"""""""""

Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.

Arguments:
""""""""""

The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.


Semantics:
""""""""""

The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.

::

       call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)

       ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
       %oldval = load <16 x float>, <16 x float>* %ptr, align 4
       %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
       store <16 x float> %res, <16 x float>* %ptr, align 4


Masked Vector Gather and Scatter Intrinsics
-------------------------------------------

LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.

.. _int_mgather:

'``llvm.masked.gather.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.

::

      declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32   (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
      declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64     (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
      declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1>  <mask>, <8 x float*> <passthru>)

Overview:
"""""""""

Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.


Arguments:
""""""""""

The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.


Semantics:
""""""""""

The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.


::

       %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)

       ;; The gather with all-true mask is equivalent to the following instruction sequence
       %ptr0 = extractelement <4 x double*> %ptrs, i32 0
       %ptr1 = extractelement <4 x double*> %ptrs, i32 1
       %ptr2 = extractelement <4 x double*> %ptrs, i32 2
       %ptr3 = extractelement <4 x double*> %ptrs, i32 3

       %val0 = load double, double* %ptr0, align 8
       %val1 = load double, double* %ptr1, align 8
       %val2 = load double, double* %ptr2, align 8
       %val3 = load double, double* %ptr3, align 8

       %vec0    = insertelement <4 x double>undef, %val0, 0
       %vec01   = insertelement <4 x double>%vec0, %val1, 1
       %vec012  = insertelement <4 x double>%vec01, %val2, 2
       %vec0123 = insertelement <4 x double>%vec012, %val3, 3

.. _int_mscatter:

'``llvm.masked.scatter.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.

::

       declare void @llvm.masked.scatter.v8i32.v8p0i32     (<8 x i32>     <value>, <8 x i32*>     <ptrs>, i32 <alignment>, <8 x i1>  <mask>)
       declare void @llvm.masked.scatter.v16f32.v16p1f32   (<16 x float>  <value>, <16 x float addrspace(1)*>  <ptrs>, i32 <alignment>, <16 x i1> <mask>)
       declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1>  <mask>)

Overview:
"""""""""

Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.

Arguments:
""""""""""

The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.


Semantics:
""""""""""

The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.

::

       ;; This instruction unconditionally stores data vector in multiple addresses
       call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4,  <8 x i1>  <true, true, .. true>)

       ;; It is equivalent to a list of scalar stores
       %val0 = extractelement <8 x i32> %value, i32 0
       %val1 = extractelement <8 x i32> %value, i32 1
       ..
       %val7 = extractelement <8 x i32> %value, i32 7
       %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
       %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
       ..
       %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
       ;; Note: the order of the following stores is important when they overlap:
       store i32 %val0, i32* %ptr0, align 4
       store i32 %val1, i32* %ptr1, align 4
       ..
       store i32 %val7, i32* %ptr7, align 4


Masked Vector Expanding Load and Compressing Store Intrinsics
-------------------------------------------------------------

LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.

.. _int_expandload:

'``llvm.masked.expandload.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.

::

      declare <16 x float>  @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
      declare <2 x i64>     @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1>  <mask>, <2 x i64> <passthru>)

Overview:
"""""""""

Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.


Arguments:
""""""""""

The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.

Semantics:
""""""""""

The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:

.. code-block:: c

    // In this loop we load from B and spread the elements into array A.
    double *A, B; int *C;
    for (int i = 0; i < size; ++i) {
      if (C[i] != 0)
        A[i] = B[j++];
    }


.. code-block:: llvm

    ; Load several elements from array B and expand them in a vector.
    ; The number of loaded elements is equal to the number of '1' elements in the Mask.
    %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
    ; Store the result in A
    call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)

    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
    %MaskI = bitcast <8 x i1> %Mask to i8
    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
    %MaskI64 = zext i8 %MaskIPopcnt to i64
    %BNextInd = add i64 %BInd, %MaskI64


Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.

.. _int_compressstore:

'``llvm.masked.compressstore.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.

::

      declare void @llvm.masked.compressstore.v8i32  (<8  x i32>   <value>, i32*   <ptr>, <8  x i1> <mask>)
      declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)

Overview:
"""""""""

Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.

Arguments:
""""""""""

The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.


Semantics:
""""""""""

The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:

.. code-block:: c

    // In this loop we load elements from A and store them consecutively in B
    double *A, B; int *C;
    for (int i = 0; i < size; ++i) {
      if (C[i] != 0)
        B[j++] = A[i]
    }


.. code-block:: llvm

    ; Load elements from A.
    %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
    ; Store all selected elements consecutively in array B
    call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)

    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
    %MaskI = bitcast <8 x i1> %Mask to i8
    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
    %MaskI64 = zext i8 %MaskIPopcnt to i64
    %BNextInd = add i64 %BInd, %MaskI64


Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.


Memory Use Markers
------------------

This class of intrinsics provides information about the lifetime of
memory objects and ranges where variables are immutable.

.. _int_lifestart:

'``llvm.lifetime.start``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)

Overview:
"""""""""

The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
object's lifetime.

Arguments:
""""""""""

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:
""""""""""

This intrinsic indicates that before this point in the code, the value
of the memory pointed to by ``ptr`` is dead. This means that it is known
to never be used and has an undefined value. A load from the pointer
that precedes this intrinsic can be replaced with ``'undef'``.

.. _int_lifeend:

'``llvm.lifetime.end``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)

Overview:
"""""""""

The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
object's lifetime.

Arguments:
""""""""""

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:
""""""""""

This intrinsic indicates that after this point in the code, the value of
the memory pointed to by ``ptr`` is dead. This means that it is known to
never be used and has an undefined value. Any stores into the memory
object following this intrinsic may be removed as dead.

'``llvm.invariant.start``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The memory object can belong to any address space.

::

      declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)

Overview:
"""""""""

The '``llvm.invariant.start``' intrinsic specifies that the contents of
a memory object will not change.

Arguments:
""""""""""

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:
""""""""""

This intrinsic indicates that until an ``llvm.invariant.end`` that uses
the return value, the referenced memory location is constant and
unchanging.

'``llvm.invariant.end``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The memory object can belong to any address space.

::

      declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)

Overview:
"""""""""

The '``llvm.invariant.end``' intrinsic specifies that the contents of a
memory object are mutable.

Arguments:
""""""""""

The first argument is the matching ``llvm.invariant.start`` intrinsic.
The second argument is a constant integer representing the size of the
object, or -1 if it is variable sized and the third argument is a
pointer to the object.

Semantics:
""""""""""

This intrinsic indicates that the memory is mutable again.

'``llvm.launder.invariant.group``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The memory object can belong to any address
space. The returned pointer must belong to the same address space as the
argument.

::

      declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)

Overview:
"""""""""

The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
established by ``invariant.group`` metadata no longer holds, to obtain a new
pointer value that carries fresh invariant group information. It is an
experimental intrinsic, which means that its semantics might change in the
future.


Arguments:
""""""""""

The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
to the memory.

Semantics:
""""""""""

Returns another pointer that aliases its argument but which is considered different
for the purposes of ``load``/``store`` ``invariant.group`` metadata.
It does not read any accessible memory and the execution can be speculated.

'``llvm.strip.invariant.group``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
This is an overloaded intrinsic. The memory object can belong to any address
space. The returned pointer must belong to the same address space as the
argument.

::

      declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)

Overview:
"""""""""

The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
value that does not carry the invariant information. It is an experimental
intrinsic, which means that its semantics might change in the future.


Arguments:
""""""""""

The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
to the memory.

Semantics:
""""""""""

Returns another pointer that aliases its argument but which has no associated
``invariant.group`` metadata.
It does not read any memory and can be speculated.



.. _constrainedfp:

Constrained Floating-Point Intrinsics
-------------------------------------

These intrinsics are used to provide special handling of floating-point
operations when specific rounding mode or floating-point exception behavior is
required.  By default, LLVM optimization passes assume that the rounding mode is
round-to-nearest and that floating-point exceptions will not be monitored.
Constrained FP intrinsics are used to support non-default rounding modes and
accurately preserve exception behavior without compromising LLVM's ability to
optimize FP code when the default behavior is used.

If any FP operation in a function is constrained then they all must be
constrained. This is required for correct LLVM IR. Optimizations that
move code around can create miscompiles if mixing of constrained and normal
operations is done. The correct way to mix constrained and less constrained
operations is to use the rounding mode and exception handling metadata to
mark constrained intrinsics as having LLVM's default behavior.

Each of these intrinsics corresponds to a normal floating-point operation. The
data arguments and the return value are the same as the corresponding FP
operation.

The rounding mode argument is a metadata string specifying what 
assumptions, if any, the optimizer can make when transforming constant 
values. Some constrained FP intrinsics omit this argument. If required 
by the intrinsic, this argument must be one of the following strings:

::

      "round.dynamic"
      "round.tonearest"
      "round.downward"
      "round.upward"
      "round.towardzero"

If this argument is "round.dynamic" optimization passes must assume that the
rounding mode is unknown and may change at runtime.  No transformations that
depend on rounding mode may be performed in this case.

The other possible values for the rounding mode argument correspond to the
similarly named IEEE rounding modes.  If the argument is any of these values
optimization passes may perform transformations as long as they are consistent
with the specified rounding mode.

For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
'x-0' should evaluate to '-0' when rounding downward.  However, this
transformation is legal for all other rounding modes.

For values other than "round.dynamic" optimization passes may assume that the
actual runtime rounding mode (as defined in a target-specific manner) matches
the specified rounding mode, but this is not guaranteed.  Using a specific
non-dynamic rounding mode which does not match the actual rounding mode at
runtime results in undefined behavior.

The exception behavior argument is a metadata string describing the floating
point exception semantics that required for the intrinsic. This argument
must be one of the following strings:

::

      "fpexcept.ignore"
      "fpexcept.maytrap"
      "fpexcept.strict"

If this argument is "fpexcept.ignore" optimization passes may assume that the
exception status flags will not be read and that floating-point exceptions will
be masked.  This allows transformations to be performed that may change the
exception semantics of the original code.  For example, FP operations may be
speculatively executed in this case whereas they must not be for either of the
other possible values of this argument.

If the exception behavior argument is "fpexcept.maytrap" optimization passes
must avoid transformations that may raise exceptions that would not have been
raised by the original code (such as speculatively executing FP operations), but
passes are not required to preserve all exceptions that are implied by the
original code.  For example, exceptions may be potentially hidden by constant
folding.

If the exception behavior argument is "fpexcept.strict" all transformations must
strictly preserve the floating-point exception semantics of the original code.
Any FP exception that would have been raised by the original code must be raised
by the transformed code, and the transformed code must not raise any FP
exceptions that would not have been raised by the original code.  This is the
exception behavior argument that will be used if the code being compiled reads
the FP exception status flags, but this mode can also be used with code that
unmasks FP exceptions.

The number and order of floating-point exceptions is NOT guaranteed.  For
example, a series of FP operations that each may raise exceptions may be
vectorized into a single instruction that raises each unique exception a single
time.

Proper :ref:`function attributes <fnattrs>` usage is required for the
constrained intrinsics to function correctly.

All function *calls* done in a function that uses constrained floating
point intrinsics must have the ``strictfp`` attribute.

All function *definitions* that use constrained floating point intrinsics
must have the ``strictfp`` attribute.

'``llvm.experimental.constrained.fadd``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
two operands.


Arguments:
""""""""""

The first two arguments to the '``llvm.experimental.constrained.fadd``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

The value produced is the floating-point sum of the two value operands and has
the same type as the operands.


'``llvm.experimental.constrained.fsub``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
of its two operands.


Arguments:
""""""""""

The first two arguments to the '``llvm.experimental.constrained.fsub``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

The value produced is the floating-point difference of the two value operands
and has the same type as the operands.


'``llvm.experimental.constrained.fmul``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
its two operands.


Arguments:
""""""""""

The first two arguments to the '``llvm.experimental.constrained.fmul``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

The value produced is the floating-point product of the two value operands and
has the same type as the operands.


'``llvm.experimental.constrained.fdiv``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
its two operands.


Arguments:
""""""""""

The first two arguments to the '``llvm.experimental.constrained.fdiv``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

The value produced is the floating-point quotient of the two value operands and
has the same type as the operands.


'``llvm.experimental.constrained.frem``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
from the division of its two operands.


Arguments:
""""""""""

The first two arguments to the '``llvm.experimental.constrained.frem``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.  The rounding mode argument has no effect, since
the result of frem is never rounded, but the argument is included for
consistency with the other constrained floating-point intrinsics.

Semantics:
""""""""""

The value produced is the floating-point remainder from the division of the two
value operands and has the same type as the operands.  The remainder has the
same sign as the dividend.

'``llvm.experimental.constrained.fma``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
fused-multiply-add operation on its operands.

Arguments:
""""""""""

The first three arguments to the '``llvm.experimental.constrained.fma``'
intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
<t_vector>` of floating-point values. All arguments must have identical types.

The fourth and fifth arguments specify the rounding mode and exception behavior
as described above.

Semantics:
""""""""""

The result produced is the product of the first two operands added to the third
operand computed with infinite precision, and then rounded to the target
precision.

'``llvm.experimental.constrained.fptoui``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <ty2>
      @llvm.experimental.constrained.fptoui(<type> <value>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fptoui``' intrinsic converts a 
floating-point ``value`` to its unsigned integer equivalent of type ``ty2``.

Arguments:
""""""""""

The first argument to the '``llvm.experimental.constrained.fptoui``'
intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
<t_vector>` of floating point values.

The second argument specifies the exception behavior as described above.

Semantics:
""""""""""

The result produced is an unsigned integer converted from the floating
point operand. The value is truncated, so it is rounded towards zero.

'``llvm.experimental.constrained.fptosi``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <ty2>
      @llvm.experimental.constrained.fptosi(<type> <value>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fptosi``' intrinsic converts 
:ref:`floating-point <t_floating>` ``value`` to type ``ty2``.

Arguments:
""""""""""

The first argument to the '``llvm.experimental.constrained.fptosi``'
intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
<t_vector>` of floating point values. 

The second argument specifies the exception behavior as described above.

Semantics:
""""""""""

The result produced is a signed integer converted from the floating
point operand. The value is truncated, so it is rounded towards zero.

'``llvm.experimental.constrained.fptrunc``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <ty2>
      @llvm.experimental.constrained.fptrunc(<type> <value>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fptrunc``' intrinsic truncates ``value``
to type ``ty2``.

Arguments:
""""""""""

The first argument to the '``llvm.experimental.constrained.fptrunc``'
intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
<t_vector>` of floating point values. This argument must be larger in size
than the result.

The second and third arguments specify the rounding mode and exception 
behavior as described above.

Semantics:
""""""""""

The result produced is a floating point value truncated to be smaller in size
than the operand.

'``llvm.experimental.constrained.fpext``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <ty2>
      @llvm.experimental.constrained.fpext(<type> <value>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.fpext``' intrinsic extends a 
floating-point ``value`` to a larger floating-point value.

Arguments:
""""""""""

The first argument to the '``llvm.experimental.constrained.fpext``'
intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
<t_vector>` of floating point values. This argument must be smaller in size
than the result.

The second argument specifies the exception behavior as described above.

Semantics:
""""""""""

The result produced is a floating point value extended to be larger in size
than the operand. All restrictions that apply to the fpext instruction also
apply to this intrinsic.

Constrained libm-equivalent Intrinsics
--------------------------------------

In addition to the basic floating-point operations for which constrained
intrinsics are described above, there are constrained versions of various
operations which provide equivalent behavior to a corresponding libm function.
These intrinsics allow the precise behavior of these operations with respect to
rounding mode and exception behavior to be controlled.

As with the basic constrained floating-point intrinsics, the rounding mode
and exception behavior arguments only control the behavior of the optimizer.
They do not change the runtime floating-point environment.


'``llvm.experimental.constrained.sqrt``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.sqrt(<type> <op1>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
of the specified value, returning the same value as the libm '``sqrt``'
functions would, but without setting ``errno``.

Arguments:
""""""""""

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the nonnegative square root of the specified value.
If the value is less than negative zero, a floating-point exception occurs
and the return value is architecture specific.


'``llvm.experimental.constrained.pow``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
                                         metadata <rounding mode>,
                                         metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
raised to the (positive or negative) power specified by the second operand.

Arguments:
""""""""""

The first two arguments and the return value are floating-point numbers of the
same type.  The second argument specifies the power to which the first argument
should be raised.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the first value raised to the second power,
returning the same values as the libm ``pow`` functions would, and
handles error conditions in the same way.


'``llvm.experimental.constrained.powi``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
raised to the (positive or negative) power specified by the second operand. The
order of evaluation of multiplications is not defined. When a vector of
floating-point type is used, the second argument remains a scalar integer value.


Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.  The second argument is a 32-bit signed integer specifying the power to
which the first argument should be raised.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the first value raised to the second power with an
unspecified sequence of rounding operations.


'``llvm.experimental.constrained.sin``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.sin(<type> <op1>,
                                         metadata <rounding mode>,
                                         metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
first operand.

Arguments:
""""""""""

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the sine of the specified operand, returning the
same values as the libm ``sin`` functions would, and handles error
conditions in the same way.


'``llvm.experimental.constrained.cos``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.cos(<type> <op1>,
                                         metadata <rounding mode>,
                                         metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
first operand.

Arguments:
""""""""""

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the cosine of the specified operand, returning the
same values as the libm ``cos`` functions would, and handles error
conditions in the same way.


'``llvm.experimental.constrained.exp``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.exp(<type> <op1>,
                                         metadata <rounding mode>,
                                         metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
exponential of the specified value.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``exp`` functions
would, and handles error conditions in the same way.


'``llvm.experimental.constrained.exp2``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.exp2(<type> <op1>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
exponential of the specified value.


Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``exp2`` functions
would, and handles error conditions in the same way.


'``llvm.experimental.constrained.log``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.log(<type> <op1>,
                                         metadata <rounding mode>,
                                         metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
logarithm of the specified value.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.


Semantics:
""""""""""

This function returns the same values as the libm ``log`` functions
would, and handles error conditions in the same way.


'``llvm.experimental.constrained.log10``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.log10(<type> <op1>,
                                           metadata <rounding mode>,
                                           metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
logarithm of the specified value.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``log10`` functions
would, and handles error conditions in the same way.


'``llvm.experimental.constrained.log2``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.log2(<type> <op1>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
logarithm of the specified value.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``log2`` functions
would, and handles error conditions in the same way.


'``llvm.experimental.constrained.rint``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.rint(<type> <op1>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.rint``' intrinsic returns the first
operand rounded to the nearest integer. It may raise an inexact floating-point
exception if the operand is not an integer.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``rint`` functions
would, and handles error conditions in the same way.  The rounding mode is
described, not determined, by the rounding mode argument.  The actual rounding
mode is determined by the runtime floating-point environment.  The rounding
mode argument is only intended as information to the compiler.


'``llvm.experimental.constrained.lrint``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <inttype>
      @llvm.experimental.constrained.lrint(<fptype> <op1>,
                                           metadata <rounding mode>,
                                           metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.lrint``' intrinsic returns the first
operand rounded to the nearest integer. An inexact floating-point exception
will be raised if the operand is not an integer. An invalid exception is
raised if the result is too large to fit into a supported integer type,
and in this case the result is undefined.

Arguments:
""""""""""

The first argument is a floating-point number. The return value is an
integer type. Not all types are supported on all targets. The supported
types are the same as the ``llvm.lrint`` intrinsic and the ``lrint``
libm functions.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``lrint`` functions
would, and handles error conditions in the same way.

The rounding mode is described, not determined, by the rounding mode
argument.  The actual rounding mode is determined by the runtime floating-point
environment.  The rounding mode argument is only intended as information
to the compiler.

If the runtime floating-point environment is using the default rounding mode
then the results will be the same as the llvm.lrint intrinsic.


'``llvm.experimental.constrained.llrint``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <inttype>
      @llvm.experimental.constrained.llrint(<fptype> <op1>,
                                            metadata <rounding mode>,
                                            metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.llrint``' intrinsic returns the first
operand rounded to the nearest integer. An inexact floating-point exception
will be raised if the operand is not an integer. An invalid exception is
raised if the result is too large to fit into a supported integer type,
and in this case the result is undefined.

Arguments:
""""""""""

The first argument is a floating-point number. The return value is an
integer type. Not all types are supported on all targets. The supported
types are the same as the ``llvm.llrint`` intrinsic and the ``llrint``
libm functions.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``llrint`` functions
would, and handles error conditions in the same way.

The rounding mode is described, not determined, by the rounding mode
argument.  The actual rounding mode is determined by the runtime floating-point
environment.  The rounding mode argument is only intended as information
to the compiler.

If the runtime floating-point environment is using the default rounding mode
then the results will be the same as the llvm.llrint intrinsic.


'``llvm.experimental.constrained.nearbyint``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.nearbyint(<type> <op1>,
                                               metadata <rounding mode>,
                                               metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
operand rounded to the nearest integer. It will not raise an inexact
floating-point exception if the operand is not an integer.


Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``nearbyint`` functions
would, and handles error conditions in the same way.  The rounding mode is
described, not determined, by the rounding mode argument.  The actual rounding
mode is determined by the runtime floating-point environment.  The rounding
mode argument is only intended as information to the compiler.


'``llvm.experimental.constrained.maxnum``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
                                            metadata <rounding mode>,
                                            metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
of the two arguments.

Arguments:
""""""""""

The first two arguments and the return value are floating-point numbers
of the same type.

The third and forth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function follows the IEEE-754 semantics for maxNum. The rounding mode is
described, not determined, by the rounding mode argument. The actual rounding
mode is determined by the runtime floating-point environment. The rounding
mode argument is only intended as information to the compiler.


'``llvm.experimental.constrained.minnum``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
                                            metadata <rounding mode>,
                                            metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
of the two arguments.

Arguments:
""""""""""

The first two arguments and the return value are floating-point numbers
of the same type.

The third and forth arguments specify the rounding mode and exception
behavior as described above.

Semantics:
""""""""""

This function follows the IEEE-754 semantics for minNum. The rounding mode is
described, not determined, by the rounding mode argument. The actual rounding
mode is determined by the runtime floating-point environment. The rounding
mode argument is only intended as information to the compiler.


'``llvm.experimental.constrained.ceil``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.ceil(<type> <op1>,
                                          metadata <rounding mode>,
                                          metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
first operand.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above. The rounding mode is currently unused for this
intrinsic.

Semantics:
""""""""""

This function returns the same values as the libm ``ceil`` functions
would and handles error conditions in the same way.


'``llvm.experimental.constrained.floor``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.floor(<type> <op1>,
                                           metadata <rounding mode>,
                                           metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
first operand.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above. The rounding mode is currently unused for this
intrinsic.

Semantics:
""""""""""

This function returns the same values as the libm ``floor`` functions
would and handles error conditions in the same way.


'``llvm.experimental.constrained.round``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.round(<type> <op1>,
                                           metadata <rounding mode>,
                                           metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.round``' intrinsic returns the first
operand rounded to the nearest integer.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above. The rounding mode is currently unused for this
intrinsic.

Semantics:
""""""""""

This function returns the same values as the libm ``round`` functions
would and handles error conditions in the same way.


'``llvm.experimental.constrained.lround``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <inttype>
      @llvm.experimental.constrained.lround(<fptype> <op1>,
                                            metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.lround``' intrinsic returns the first
operand rounded to the nearest integer with ties away from zero.  It will
raise an inexact floating-point exception if the operand is not an integer.
An invalid exception is raised if the result is too large to fit into a
supported integer type, and in this case the result is undefined.

Arguments:
""""""""""

The first argument is a floating-point number. The return value is an
integer type. Not all types are supported on all targets. The supported
types are the same as the ``llvm.lround`` intrinsic and the ``lround``
libm functions.

The second argument specifies the exception behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``lround`` functions
would and handles error conditions in the same way.


'``llvm.experimental.constrained.llround``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <inttype>
      @llvm.experimental.constrained.llround(<fptype> <op1>,
                                             metadata <exception behavior>)
      
Overview:
"""""""""

The '``llvm.experimental.constrained.llround``' intrinsic returns the first
operand rounded to the nearest integer with ties away from zero. It will
raise an inexact floating-point exception if the operand is not an integer.
An invalid exception is raised if the result is too large to fit into a
supported integer type, and in this case the result is undefined.

Arguments:
""""""""""

The first argument is a floating-point number. The return value is an
integer type. Not all types are supported on all targets. The supported
types are the same as the ``llvm.llround`` intrinsic and the ``llround``
libm functions.

The second argument specifies the exception behavior as described above.

Semantics:
""""""""""

This function returns the same values as the libm ``llround`` functions
would and handles error conditions in the same way.


'``llvm.experimental.constrained.trunc``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare <type>
      @llvm.experimental.constrained.trunc(<type> <op1>,
                                           metadata <truncing mode>,
                                           metadata <exception behavior>)

Overview:
"""""""""

The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
operand rounded to the nearest integer not larger in magnitude than the
operand.

Arguments:
""""""""""

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the truncing mode and exception
behavior as described above. The truncing mode is currently unused for this
intrinsic.

Semantics:
""""""""""

This function returns the same values as the libm ``trunc`` functions
would and handles error conditions in the same way.


General Intrinsics
------------------

This class of intrinsics is designed to be generic and has no specific
purpose.

'``llvm.var.annotation``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)

Overview:
"""""""""

The '``llvm.var.annotation``' intrinsic.

Arguments:
""""""""""

The first argument is a pointer to a value, the second is a pointer to a
global string, the third is a pointer to a global string which is the
source file name, and the last argument is the line number.

Semantics:
""""""""""

This intrinsic allows annotation of local variables with arbitrary
strings. This can be useful for special purpose optimizations that want
to look for these annotations. These have no other defined use; they are
ignored by code generation and optimization.

'``llvm.ptr.annotation.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
pointer to an integer of any width. *NOTE* you must specify an address space for
the pointer. The identifier for the default address space is the integer
'``0``'.

::

      declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)

Overview:
"""""""""

The '``llvm.ptr.annotation``' intrinsic.

Arguments:
""""""""""

The first argument is a pointer to an integer value of arbitrary bitwidth
(result of some expression), the second is a pointer to a global string, the
third is a pointer to a global string which is the source file name, and the
last argument is the line number. It returns the value of the first argument.

Semantics:
""""""""""

This intrinsic allows annotation of a pointer to an integer with arbitrary
strings. This can be useful for special purpose optimizations that want to look
for these annotations. These have no other defined use; they are ignored by code
generation and optimization.

'``llvm.annotation.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use '``llvm.annotation``' on
any integer bit width.

::

      declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
      declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)

Overview:
"""""""""

The '``llvm.annotation``' intrinsic.

Arguments:
""""""""""

The first argument is an integer value (result of some expression), the
second is a pointer to a global string, the third is a pointer to a
global string which is the source file name, and the last argument is
the line number. It returns the value of the first argument.

Semantics:
""""""""""

This intrinsic allows annotations to be put on arbitrary expressions
with arbitrary strings. This can be useful for special purpose
optimizations that want to look for these annotations. These have no
other defined use; they are ignored by code generation and optimization.

'``llvm.codeview.annotation``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This annotation emits a label at its program point and an associated
``S_ANNOTATION`` codeview record with some additional string metadata. This is
used to implement MSVC's ``__annotation`` intrinsic. It is marked
``noduplicate``, so calls to this intrinsic prevent inlining and should be
considered expensive.

::

      declare void @llvm.codeview.annotation(metadata)

Arguments:
""""""""""

The argument should be an MDTuple containing any number of MDStrings.

'``llvm.trap``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.trap() cold noreturn nounwind

Overview:
"""""""""

The '``llvm.trap``' intrinsic.

Arguments:
""""""""""

None.

Semantics:
""""""""""

This intrinsic is lowered to the target dependent trap instruction. If
the target does not have a trap instruction, this intrinsic will be
lowered to a call of the ``abort()`` function.

'``llvm.debugtrap``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.debugtrap() nounwind

Overview:
"""""""""

The '``llvm.debugtrap``' intrinsic.

Arguments:
""""""""""

None.

Semantics:
""""""""""

This intrinsic is lowered to code which is intended to cause an
execution trap with the intention of requesting the attention of a
debugger.

'``llvm.stackprotector``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)

Overview:
"""""""""

The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
onto the stack at ``slot``. The stack slot is adjusted to ensure that it
is placed on the stack before local variables.

Arguments:
""""""""""

The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
The first argument is the value loaded from the stack guard
``@__stack_chk_guard``. The second variable is an ``alloca`` that has
enough space to hold the value of the guard.

Semantics:
""""""""""

This intrinsic causes the prologue/epilogue inserter to force the position of
the ``AllocaInst`` stack slot to be before local variables on the stack. This is
to ensure that if a local variable on the stack is overwritten, it will destroy
the value of the guard. When the function exits, the guard on the stack is
checked against the original guard by ``llvm.stackprotectorcheck``. If they are
different, then ``llvm.stackprotectorcheck`` causes the program to abort by
calling the ``__stack_chk_fail()`` function.

'``llvm.stackguard``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.stackguard()

Overview:
"""""""""

The ``llvm.stackguard`` intrinsic returns the system stack guard value.

It should not be generated by frontends, since it is only for internal usage.
The reason why we create this intrinsic is that we still support IR form Stack
Protector in FastISel.

Arguments:
""""""""""

None.

Semantics:
""""""""""

On some platforms, the value returned by this intrinsic remains unchanged
between loads in the same thread. On other platforms, it returns the same
global variable value, if any, e.g. ``@__stack_chk_guard``.

Currently some platforms have IR-level customized stack guard loading (e.g.
X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
in the future.

'``llvm.objectsize``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
      declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)

Overview:
"""""""""

The ``llvm.objectsize`` intrinsic is designed to provide information to the
optimizer to determine whether a) an operation (like memcpy) will overflow a
buffer that corresponds to an object, or b) that a runtime check for overflow
isn't necessary. An object in this context means an allocation of a specific
class, structure, array, or other object.

Arguments:
""""""""""

The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
pointer to or into the ``object``. The second argument determines whether
``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
in address space 0 is used as its pointer argument. If it's ``false``,
``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
the ``null`` is in a non-zero address space or if ``true`` is given for the
third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
argument to ``llvm.objectsize`` determines if the value should be evaluated at
runtime.

The second, third, and fourth arguments only accept constants.

Semantics:
""""""""""

The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
the object concerned. If the size cannot be determined, ``llvm.objectsize``
returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).

'``llvm.expect``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.expect`` on any
integer bit width.

::

      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)

Overview:
"""""""""

The ``llvm.expect`` intrinsic provides information about expected (the
most probable) value of ``val``, which can be used by optimizers.

Arguments:
""""""""""

The ``llvm.expect`` intrinsic takes two arguments. The first argument is
a value. The second argument is an expected value.

Semantics:
""""""""""

This intrinsic is lowered to the ``val``.

.. _int_assume:

'``llvm.assume``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.assume(i1 %cond)

Overview:
"""""""""

The ``llvm.assume`` allows the optimizer to assume that the provided
condition is true. This information can then be used in simplifying other parts
of the code.

Arguments:
""""""""""

The condition which the optimizer may assume is always true.

Semantics:
""""""""""

The intrinsic allows the optimizer to assume that the provided condition is
always true whenever the control flow reaches the intrinsic call. No code is
generated for this intrinsic, and instructions that contribute only to the
provided condition are not used for code generation. If the condition is
violated during execution, the behavior is undefined.

Note that the optimizer might limit the transformations performed on values
used by the ``llvm.assume`` intrinsic in order to preserve the instructions
only used to form the intrinsic's input argument. This might prove undesirable
if the extra information provided by the ``llvm.assume`` intrinsic does not cause
sufficient overall improvement in code quality. For this reason,
``llvm.assume`` should not be used to document basic mathematical invariants
that the optimizer can otherwise deduce or facts that are of little use to the
optimizer.

.. _int_ssa_copy:

'``llvm.ssa_copy``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare type @llvm.ssa_copy(type %operand) returned(1) readnone

Arguments:
""""""""""

The first argument is an operand which is used as the returned value.

Overview:
""""""""""

The ``llvm.ssa_copy`` intrinsic can be used to attach information to
operations by copying them and giving them new names.  For example,
the PredicateInfo utility uses it to build Extended SSA form, and
attach various forms of information to operands that dominate specific
uses.  It is not meant for general use, only for building temporary
renaming forms that require value splits at certain points.

.. _type.test:

'``llvm.type.test``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone


Arguments:
""""""""""

The first argument is a pointer to be tested. The second argument is a
metadata object representing a :doc:`type identifier <TypeMetadata>`.

Overview:
"""""""""

The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
with the given type identifier.

.. _type.checked.load:

'``llvm.type.checked.load``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly


Arguments:
""""""""""

The first argument is a pointer from which to load a function pointer. The
second argument is the byte offset from which to load the function pointer. The
third argument is a metadata object representing a :doc:`type identifier
<TypeMetadata>`.

Overview:
"""""""""

The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
virtual table pointer using type metadata. This intrinsic is used to implement
control flow integrity in conjunction with virtual call optimization. The
virtual call optimization pass will optimize away ``llvm.type.checked.load``
intrinsics associated with devirtualized calls, thereby removing the type
check in cases where it is not needed to enforce the control flow integrity
constraint.

If the given pointer is associated with a type metadata identifier, this
function returns true as the second element of its return value. (Note that
the function may also return true if the given pointer is not associated
with a type metadata identifier.) If the function's return value's second
element is true, the following rules apply to the first element:

- If the given pointer is associated with the given type metadata identifier,
  it is the function pointer loaded from the given byte offset from the given
  pointer.

- If the given pointer is not associated with the given type metadata
  identifier, it is one of the following (the choice of which is unspecified):

  1. The function pointer that would have been loaded from an arbitrarily chosen
     (through an unspecified mechanism) pointer associated with the type
     metadata.

  2. If the function has a non-void return type, a pointer to a function that
     returns an unspecified value without causing side effects.

If the function's return value's second element is false, the value of the
first element is undefined.


'``llvm.donothing``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.donothing() nounwind readnone

Overview:
"""""""""

The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
three intrinsics (besides ``llvm.experimental.patchpoint`` and
``llvm.experimental.gc.statepoint``) that can be called with an invoke
instruction.

Arguments:
""""""""""

None.

Semantics:
""""""""""

This intrinsic does nothing, and it's removed by optimizers and ignored
by codegen.

'``llvm.experimental.deoptimize``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]

Overview:
"""""""""

This intrinsic, together with :ref:`deoptimization operand bundles
<deopt_opbundles>`, allow frontends to express transfer of control and
frame-local state from the currently executing (typically more specialized,
hence faster) version of a function into another (typically more generic, hence
slower) version.

In languages with a fully integrated managed runtime like Java and JavaScript
this intrinsic can be used to implement "uncommon trap" or "side exit" like
functionality.  In unmanaged languages like C and C++, this intrinsic can be
used to represent the slow paths of specialized functions.


Arguments:
""""""""""

The intrinsic takes an arbitrary number of arguments, whose meaning is
decided by the :ref:`lowering strategy<deoptimize_lowering>`.

Semantics:
""""""""""

The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
deoptimization continuation (denoted using a :ref:`deoptimization
operand bundle <deopt_opbundles>`) and returns the value returned by
the deoptimization continuation.  Defining the semantic properties of
the continuation itself is out of scope of the language reference --
as far as LLVM is concerned, the deoptimization continuation can
invoke arbitrary side effects, including reading from and writing to
the entire heap.

Deoptimization continuations expressed using ``"deopt"`` operand bundles always
continue execution to the end of the physical frame containing them, so all
calls to ``@llvm.experimental.deoptimize`` must be in "tail position":

   - ``@llvm.experimental.deoptimize`` cannot be invoked.
   - The call must immediately precede a :ref:`ret <i_ret>` instruction.
   - The ``ret`` instruction must return the value produced by the
     ``@llvm.experimental.deoptimize`` call if there is one, or void.

Note that the above restrictions imply that the return type for a call to
``@llvm.experimental.deoptimize`` will match the return type of its immediate
caller.

The inliner composes the ``"deopt"`` continuations of the caller into the
``"deopt"`` continuations present in the inlinee, and also updates calls to this
intrinsic to return directly from the frame of the function it inlined into.

All declarations of ``@llvm.experimental.deoptimize`` must share the
same calling convention.

.. _deoptimize_lowering:

Lowering:
"""""""""

Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
ensure that this symbol is defined).  The call arguments to
``@llvm.experimental.deoptimize`` are lowered as if they were formal
arguments of the specified types, and not as varargs.


'``llvm.experimental.guard``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]

Overview:
"""""""""

This intrinsic, together with :ref:`deoptimization operand bundles
<deopt_opbundles>`, allows frontends to express guards or checks on
optimistic assumptions made during compilation.  The semantics of
``@llvm.experimental.guard`` is defined in terms of
``@llvm.experimental.deoptimize`` -- its body is defined to be
equivalent to:

.. code-block:: text

  define void @llvm.experimental.guard(i1 %pred, <args...>) {
    %realPred = and i1 %pred, undef
    br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]

  leave:
    call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
    ret void

  continue:
    ret void
  }


with the optional ``[, !make.implicit !{}]`` present if and only if it
is present on the call site.  For more details on ``!make.implicit``,
see :doc:`FaultMaps`.

In words, ``@llvm.experimental.guard`` executes the attached
``"deopt"`` continuation if (but **not** only if) its first argument
is ``false``.  Since the optimizer is allowed to replace the ``undef``
with an arbitrary value, it can optimize guard to fail "spuriously",
i.e. without the original condition being false (hence the "not only
if"); and this allows for "check widening" type optimizations.

``@llvm.experimental.guard`` cannot be invoked.


'``llvm.experimental.widenable.condition``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i1 @llvm.experimental.widenable.condition()

Overview:
"""""""""

This intrinsic represents a "widenable condition" which is
boolean expressions with the following property: whether this
expression is `true` or `false`, the program is correct and
well-defined.

Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
``@llvm.experimental.widenable.condition`` allows frontends to
express guards or checks on optimistic assumptions made during
compilation and represent them as branch instructions on special
conditions.

While this may appear similar in semantics to `undef`, it is very
different in that an invocation produces a particular, singular
value. It is also intended to be lowered late, and remain available
for specific optimizations and transforms that can benefit from its
special properties.

Arguments:
""""""""""

None.

Semantics:
""""""""""

The intrinsic ``@llvm.experimental.widenable.condition()``
returns either `true` or `false`. For each evaluation of a call
to this intrinsic, the program must be valid and correct both if
it returns `true` and if it returns `false`. This allows
transformation passes to replace evaluations of this intrinsic
with either value whenever one is beneficial.

When used in a branch condition, it allows us to choose between
two alternative correct solutions for the same problem, like
in example below:

.. code-block:: text

    %cond = call i1 @llvm.experimental.widenable.condition()
    br i1 %cond, label %solution_1, label %solution_2

  label %fast_path:
    ; Apply memory-consuming but fast solution for a task.

  label %slow_path:
    ; Cheap in memory but slow solution.

Whether the result of intrinsic's call is `true` or `false`,
it should be correct to pick either solution. We can switch
between them by replacing the result of
``@llvm.experimental.widenable.condition`` with different
`i1` expressions.

This is how it can be used to represent guards as widenable branches:

.. code-block:: text

  block:
    ; Unguarded instructions
    call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
    ; Guarded instructions

Can be expressed in an alternative equivalent form of explicit branch using
``@llvm.experimental.widenable.condition``:

.. code-block:: text

  block:
    ; Unguarded instructions
    %widenable_condition = call i1 @llvm.experimental.widenable.condition()
    %guard_condition = and i1 %cond, %widenable_condition
    br i1 %guard_condition, label %guarded, label %deopt

  guarded:
    ; Guarded instructions

  deopt:
    call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]

So the block `guarded` is only reachable when `%cond` is `true`,
and it should be valid to go to the block `deopt` whenever `%cond`
is `true` or `false`.

``@llvm.experimental.widenable.condition`` will never throw, thus
it cannot be invoked.

Guard widening:
"""""""""""""""

When ``@llvm.experimental.widenable.condition()`` is used in
condition of a guard represented as explicit branch, it is
legal to widen the guard's condition with any additional
conditions.

Guard widening looks like replacement of

.. code-block:: text

  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
  %guard_cond = and i1 %cond, %widenable_cond
  br i1 %guard_cond, label %guarded, label %deopt

with

.. code-block:: text

  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
  %new_cond = and i1 %any_other_cond, %widenable_cond
  %new_guard_cond = and i1 %cond, %new_cond
  br i1 %new_guard_cond, label %guarded, label %deopt

for this branch. Here `%any_other_cond` is an arbitrarily chosen
well-defined `i1` value. By making guard widening, we may
impose stricter conditions on `guarded` block and bail to the
deopt when the new condition is not met.

Lowering:
"""""""""

Default lowering strategy is replacing the result of
call of ``@llvm.experimental.widenable.condition``  with
constant `true`. However it is always correct to replace
it with any other `i1` value. Any pass can
freely do it if it can benefit from non-default lowering.


'``llvm.load.relative``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly

Overview:
"""""""""

This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
adds ``%ptr`` to that value and returns it. The constant folder specifically
recognizes the form of this intrinsic and the constant initializers it may
load from; if a loaded constant initializer is known to have the form
``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.

LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.

'``llvm.sideeffect``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.sideeffect() inaccessiblememonly nounwind

Overview:
"""""""""

The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
treat it as having side effects, so it can be inserted into a loop to
indicate that the loop shouldn't be assumed to terminate (which could
potentially lead to the loop being optimized away entirely), even if it's
an infinite loop with no other side effects.

Arguments:
""""""""""

None.

Semantics:
""""""""""

This intrinsic actually does nothing, but optimizers must assume that it
has externally observable side effects.

'``llvm.is.constant.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.

::

      declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
      declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
      declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone

Overview:
"""""""""

The '``llvm.is.constant``' intrinsic will return true if the argument
is known to be a manifest compile-time constant. It is guaranteed to
fold to either true or false before generating machine code.

Semantics:
""""""""""

This intrinsic generates no code. If its argument is known to be a
manifest compile-time constant value, then the intrinsic will be
converted to a constant true value. Otherwise, it will be converted to
a constant false value.

In particular, note that if the argument is a constant expression
which refers to a global (the address of which _is_ a constant, but
not manifest during the compile), then the intrinsic evaluates to
false.

The result also intentionally depends on the result of optimization
passes -- e.g., the result can change depending on whether a
function gets inlined or not. A function's parameters are
obviously not constant. However, a call like
``llvm.is.constant.i32(i32 %param)`` *can* return true after the
function is inlined, if the value passed to the function parameter was
a constant.

On the other hand, if constant folding is not run, it will never
evaluate to true, even in simple cases.

.. _int_ptrmask:

'``llvm.ptrmask``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare ptrty llvm.ptrmask(ptrty %ptr, intty %mask) readnone speculatable

Arguments:
""""""""""

The first argument is a pointer. The second argument is an integer.

Overview:
""""""""""

The ``llvm.ptrmask`` intrinsic masks out bits of the pointer according to a mask.
This allows stripping data from tagged pointers without converting them to an
integer (ptrtoint/inttoptr). As a consequence, we can preserve more information
to facilitate alias analysis and underlying-object detection.

Semantics:
""""""""""

The result of ``ptrmask(ptr, mask)`` is equivalent to
``getelementptr ptr, (ptrtoint(ptr) & mask) - ptrtoint(ptr)``. Both the returned
pointer and the first argument are based on the same underlying object (for more
information on the *based on* terminology see
:ref:`the pointer aliasing rules <pointeraliasing>`). If the bitwidth of the
mask argument does not match the pointer size of the target, the mask is
zero-extended or truncated accordingly.

Stack Map Intrinsics
--------------------

LLVM provides experimental intrinsics to support runtime patching
mechanisms commonly desired in dynamic language JITs. These intrinsics
are described in :doc:`StackMaps`.

Element Wise Atomic Memory Intrinsics
-------------------------------------

These intrinsics are similar to the standard library memory intrinsics except
that they perform memory transfer as a sequence of atomic memory accesses.

.. _int_memcpy_element_unordered_atomic:

'``llvm.memcpy.element.unordered.atomic``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.

::

      declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
                                                                       i8* <src>,
                                                                       i32 <len>,
                                                                       i32 <element_size>)
      declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
                                                                       i8* <src>,
                                                                       i64 <len>,
                                                                       i32 <element_size>)

Overview:
"""""""""

The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
as arrays with elements that are exactly ``element_size`` bytes, and the copy between
buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
that are a positive integer multiple of the ``element_size`` in size.

Arguments:
""""""""""

The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
intrinsic, with the added constraint that ``len`` is required to be a positive integer
multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
``element_size``, then the behaviour of the intrinsic is undefined.

``element_size`` must be a compile-time constant positive power of two no greater than
target-specific atomic access size limit.

For each of the input pointers ``align`` parameter attribute must be specified. It
must be a power of two no less than the ``element_size``. Caller guarantees that
both the source and destination pointers are aligned to that boundary.

Semantics:
""""""""""

The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
memory from the source location to the destination location. These locations are not
allowed to overlap. The memory copy is performed as a sequence of load/store operations
where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
aligned at an ``element_size`` boundary.

The order of the copy is unspecified. The same value may be read from the source
buffer many times, but only one write is issued to the destination buffer per
element. It is well defined to have concurrent reads and writes to both source and
destination provided those reads and writes are unordered atomic when specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered loads from the source location and stores to the
destination.

Lowering:
"""""""""

In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
is replaced with an actual element size.

Optimizer is allowed to inline memory copy when it's profitable to do so.

'``llvm.memmove.element.unordered.atomic``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use
``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
different address spaces. Not all targets support all bit widths however.

::

      declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
                                                                        i8* <src>,
                                                                        i32 <len>,
                                                                        i32 <element_size>)
      declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
                                                                        i8* <src>,
                                                                        i64 <len>,
                                                                        i32 <element_size>)

Overview:
"""""""""

The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
``src`` are treated as arrays with elements that are exactly ``element_size``
bytes, and the copy between buffers uses a sequence of
:ref:`unordered atomic <ordering>` load/store operations that are a positive
integer multiple of the ``element_size`` in size.

Arguments:
""""""""""

The first three arguments are the same as they are in the
:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
``len`` is required to be a positive integer multiple of the ``element_size``.
If ``len`` is not a positive integer multiple of ``element_size``, then the
behaviour of the intrinsic is undefined.

``element_size`` must be a compile-time constant positive power of two no
greater than a target-specific atomic access size limit.

For each of the input pointers the ``align`` parameter attribute must be
specified. It must be a power of two no less than the ``element_size``. Caller
guarantees that both the source and destination pointers are aligned to that
boundary.

Semantics:
""""""""""

The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
of memory from the source location to the destination location. These locations
are allowed to overlap. The memory copy is performed as a sequence of load/store
operations where each access is guaranteed to be a multiple of ``element_size``
bytes wide and aligned at an ``element_size`` boundary.

The order of the copy is unspecified. The same value may be read from the source
buffer many times, but only one write is issued to the destination buffer per
element. It is well defined to have concurrent reads and writes to both source
and destination provided those reads and writes are unordered atomic when
specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered loads from the source location and stores to the
destination.

Lowering:
"""""""""

In the most general case call to the
'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
actual element size.

The optimizer is allowed to inline the memory copy when it's profitable to do so.

.. _int_memset_element_unordered_atomic:

'``llvm.memset.element.unordered.atomic``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.

::

      declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
                                                                  i8 <value>,
                                                                  i32 <len>,
                                                                  i32 <element_size>)
      declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
                                                                  i8 <value>,
                                                                  i64 <len>,
                                                                  i32 <element_size>)

Overview:
"""""""""

The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
with elements that are exactly ``element_size`` bytes, and the assignment to that array
uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
that are a positive integer multiple of the ``element_size`` in size.

Arguments:
""""""""""

The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
intrinsic, with the added constraint that ``len`` is required to be a positive integer
multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
``element_size``, then the behaviour of the intrinsic is undefined.

``element_size`` must be a compile-time constant positive power of two no greater than
target-specific atomic access size limit.

The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
must be a power of two no less than the ``element_size``. Caller guarantees that
the destination pointer is aligned to that boundary.

Semantics:
""""""""""

The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
memory starting at the destination location to the given ``value``. The memory is
set with a sequence of store operations where each access is guaranteed to be a
multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.

The order of the assignment is unspecified. Only one write is issued to the
destination buffer per element. It is well defined to have concurrent reads and
writes to the destination provided those reads and writes are unordered atomic
when specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered stores to the destination.

Lowering:
"""""""""

In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
is replaced with an actual element size.

The optimizer is allowed to inline the memory assignment when it's profitable to do so.

Objective-C ARC Runtime Intrinsics
----------------------------------

LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
LLVM is aware of the semantics of these functions, and optimizes based on that
knowledge. You can read more about the details of Objective-C ARC `here
<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.

'``llvm.objc.autorelease``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.autorelease(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.

'``llvm.objc.autoreleasePoolPop``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.autoreleasePoolPop(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.

'``llvm.objc.autoreleasePoolPush``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.autoreleasePoolPush()

Lowering:
"""""""""

Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.

'``llvm.objc.autoreleaseReturnValue``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.autoreleaseReturnValue(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.

'``llvm.objc.copyWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.copyWeak(i8**, i8**)

Lowering:
"""""""""

Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.

'``llvm.objc.destroyWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.destroyWeak(i8**)

Lowering:
"""""""""

Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.

'``llvm.objc.initWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.initWeak(i8**, i8*)

Lowering:
"""""""""

Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.

'``llvm.objc.loadWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.loadWeak(i8**)

Lowering:
"""""""""

Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.

'``llvm.objc.loadWeakRetained``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.loadWeakRetained(i8**)

Lowering:
"""""""""

Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.

'``llvm.objc.moveWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.moveWeak(i8**, i8**)

Lowering:
"""""""""

Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.

'``llvm.objc.release``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.release(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.

'``llvm.objc.retain``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.retain(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.

'``llvm.objc.retainAutorelease``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.retainAutorelease(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.

'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.

'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.

'``llvm.objc.retainBlock``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.retainBlock(i8*)

Lowering:
"""""""""

Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.

'``llvm.objc.storeStrong``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare void @llvm.objc.storeStrong(i8**, i8*)

Lowering:
"""""""""

Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.

'``llvm.objc.storeWeak``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare i8* @llvm.objc.storeWeak(i8**, i8*)

Lowering:
"""""""""

Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.

Preserving Debug Information Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

These intrinsics are used to carry certain debuginfo together with
IR-level operations. For example, it may be desirable to
know the structure/union name and the original user-level field
indices. Such information got lost in IR GetElementPtr instruction
since the IR types are different from debugInfo types and unions
are converted to structs in IR.

'``llvm.preserve.array.access.index``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare <ret_type>
      @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(<type> base,
                                                                           i32 dim,
                                                                           i32 index)

Overview:
"""""""""

The '``llvm.preserve.array.access.index``' intrinsic returns the getelementptr address
based on array base ``base``, array dimension ``dim`` and the last access index ``index``
into the array. The return type ``ret_type`` is a pointer type to the array element.
The array ``dim`` and ``index`` are preserved which is more robust than
getelementptr instruction which may be subject to compiler transformation.
The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
to provide array or pointer debuginfo type.
The metadata is a ``DICompositeType`` or ``DIDerivedType`` representing the
debuginfo version of ``type``.

Arguments:
""""""""""

The ``base`` is the array base address.  The ``dim`` is the array dimension.
The ``base`` is a pointer if ``dim`` equals 0.
The ``index`` is the last access index into the array or pointer.

Semantics:
""""""""""

The '``llvm.preserve.array.access.index``' intrinsic produces the same result
as a getelementptr with base ``base`` and access operands ``{dim's 0's, index}``.

'``llvm.preserve.union.access.index``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare <type>
      @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(<type> base,
                                                                        i32 di_index)

Overview:
"""""""""

The '``llvm.preserve.union.access.index``' intrinsic carries the debuginfo field index
``di_index`` and returns the ``base`` address.
The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
to provide union debuginfo type.
The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
The return type ``type`` is the same as the ``base`` type.

Arguments:
""""""""""

The ``base`` is the union base address. The ``di_index`` is the field index in debuginfo.

Semantics:
""""""""""

The '``llvm.preserve.union.access.index``' intrinsic returns the ``base`` address.

'``llvm.preserve.struct.access.index``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""
::

      declare <ret_type>
      @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(<type> base,
                                                                 i32 gep_index,
                                                                 i32 di_index)

Overview:
"""""""""

The '``llvm.preserve.struct.access.index``' intrinsic returns the getelementptr address
based on struct base ``base`` and IR struct member index ``gep_index``.
The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
to provide struct debuginfo type.
The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
The return type ``ret_type`` is a pointer type to the structure member.

Arguments:
""""""""""

The ``base`` is the structure base address. The ``gep_index`` is the struct member index
based on IR structures. The ``di_index`` is the struct member index based on debuginfo.

Semantics:
""""""""""

The '``llvm.preserve.struct.access.index``' intrinsic produces the same result
as a getelementptr with base ``base`` and access operands ``{0, gep_index}``.